2 * Copyright 2000, International Business Machines Corporation and others.
5 * This software has been released under the terms of the IBM Public
6 * License. For details, see the LICENSE file in the top-level source
7 * directory or online at http://www.openafs.org/dl/license10.html
10 /* RX: Extended Remote Procedure Call */
12 #include <afsconfig.h>
13 #include <afs/param.h>
16 # include "afs/sysincludes.h"
17 # include "afsincludes.h"
22 # ifdef AFS_LINUX20_ENV
23 # include "h/socket.h"
25 # include "netinet/in.h"
27 # include "netinet/ip6.h"
28 # include "inet/common.h"
30 # include "inet/ip_ire.h"
32 # include "afs/afs_args.h"
33 # include "afs/afs_osi.h"
34 # ifdef RX_KERNEL_TRACE
35 # include "rx_kcommon.h"
37 # if defined(AFS_AIX_ENV)
41 # undef RXDEBUG /* turn off debugging */
43 # if defined(AFS_SGI_ENV)
44 # include "sys/debug.h"
47 # include "afs/sysincludes.h"
48 # include "afsincludes.h"
49 # endif /* !UKERNEL */
50 # include "afs/lock.h"
51 # include "rx_kmutex.h"
52 # include "rx_kernel.h"
53 # define AFSOP_STOP_RXCALLBACK 210 /* Stop CALLBACK process */
54 # define AFSOP_STOP_AFS 211 /* Stop AFS process */
55 # define AFSOP_STOP_BKG 212 /* Stop BKG process */
56 extern afs_int32 afs_termState;
58 # include "sys/lockl.h"
59 # include "sys/lock_def.h"
60 # endif /* AFS_AIX41_ENV */
61 # include "afs/rxgen_consts.h"
66 # include <afs/afsutil.h>
67 # include <WINNT\afsreg.h>
76 #include "rx_atomic.h"
77 #include "rx_globals.h"
79 #include "rx_internal.h"
86 #include "rx_packet.h"
88 #include <afs/rxgen_consts.h>
91 #ifdef AFS_PTHREAD_ENV
93 int (*registerProgram) (pid_t, char *) = 0;
94 int (*swapNameProgram) (pid_t, const char *, char *) = 0;
97 int (*registerProgram) (PROCESS, char *) = 0;
98 int (*swapNameProgram) (PROCESS, const char *, char *) = 0;
102 /* Local static routines */
103 static void rxi_DestroyConnectionNoLock(struct rx_connection *conn);
104 static void rxi_ComputeRoundTripTime(struct rx_packet *, struct rx_ackPacket *,
105 struct rx_call *, struct rx_peer *,
107 static void rxi_Resend(struct rxevent *event, void *arg0, void *arg1,
109 static void rxi_SendDelayedAck(struct rxevent *event, void *call,
110 void *dummy, int dummy2);
111 static void rxi_SendDelayedCallAbort(struct rxevent *event, void *arg1,
112 void *dummy, int dummy2);
113 static void rxi_SendDelayedConnAbort(struct rxevent *event, void *arg1,
114 void *unused, int unused2);
115 static void rxi_ReapConnections(struct rxevent *unused, void *unused1,
116 void *unused2, int unused3);
117 static struct rx_packet *rxi_SendCallAbort(struct rx_call *call,
118 struct rx_packet *packet,
119 int istack, int force);
120 static void rxi_AckAll(struct rx_call *call);
121 static struct rx_connection
122 *rxi_FindConnection(osi_socket socket, afs_uint32 host, u_short port,
123 u_short serviceId, afs_uint32 cid,
124 afs_uint32 epoch, int type, u_int securityIndex);
125 static struct rx_packet
126 *rxi_ReceiveDataPacket(struct rx_call *call, struct rx_packet *np,
127 int istack, osi_socket socket,
128 afs_uint32 host, u_short port, int *tnop,
129 struct rx_call **newcallp);
130 static struct rx_packet
131 *rxi_ReceiveAckPacket(struct rx_call *call, struct rx_packet *np,
133 static struct rx_packet
134 *rxi_ReceiveResponsePacket(struct rx_connection *conn,
135 struct rx_packet *np, int istack);
136 static struct rx_packet
137 *rxi_ReceiveChallengePacket(struct rx_connection *conn,
138 struct rx_packet *np, int istack);
139 static void rxi_AttachServerProc(struct rx_call *call, osi_socket socket,
140 int *tnop, struct rx_call **newcallp);
141 static void rxi_ClearTransmitQueue(struct rx_call *call, int force);
142 static void rxi_ClearReceiveQueue(struct rx_call *call);
143 static void rxi_ResetCall(struct rx_call *call, int newcall);
144 static void rxi_ScheduleKeepAliveEvent(struct rx_call *call);
145 static void rxi_ScheduleNatKeepAliveEvent(struct rx_connection *conn);
146 static void rxi_ScheduleGrowMTUEvent(struct rx_call *call, int secs);
147 static void rxi_KeepAliveOn(struct rx_call *call);
148 static void rxi_GrowMTUOn(struct rx_call *call);
149 static void rxi_ChallengeOn(struct rx_connection *conn);
151 #ifdef RX_ENABLE_LOCKS
152 static int rxi_CheckCall(struct rx_call *call, int haveCTLock);
153 static void rxi_SetAcksInTransmitQueue(struct rx_call *call);
155 static int rxi_CheckCall(struct rx_call *call);
158 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
160 rx_atomic_t rxi_start_aborted; /* rxi_start awoke after rxi_Send in error.*/
161 rx_atomic_t rxi_start_in_error;
163 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
165 /* Constant delay time before sending an acknowledge of the last packet
166 * received. This is to avoid sending an extra acknowledge when the
167 * client is about to make another call, anyway, or the server is
170 * The lastAckDelay may not exceeed 400ms without causing peers to
171 * unecessarily timeout.
173 struct clock rx_lastAckDelay = {0, 400000};
175 /* Constant delay time before sending a soft ack when none was requested.
176 * This is to make sure we send soft acks before the sender times out,
177 * Normally we wait and send a hard ack when the receiver consumes the packet
179 * This value has been 100ms in all shipping versions of OpenAFS. Changing it
180 * will require changes to the peer's RTT calculations.
182 struct clock rx_softAckDelay = {0, 100000};
185 * rxi_rpc_peer_stat_cnt counts the total number of peer stat structures
186 * currently allocated within rx. This number is used to allocate the
187 * memory required to return the statistics when queried.
188 * Protected by the rx_rpc_stats mutex.
191 static unsigned int rxi_rpc_peer_stat_cnt;
194 * rxi_rpc_process_stat_cnt counts the total number of local process stat
195 * structures currently allocated within rx. The number is used to allocate
196 * the memory required to return the statistics when queried.
197 * Protected by the rx_rpc_stats mutex.
200 static unsigned int rxi_rpc_process_stat_cnt;
203 * rxi_busyChannelError is a boolean. It indicates whether or not RX_CALL_BUSY
204 * errors should be reported to the application when a call channel appears busy
205 * (inferred from the receipt of RX_PACKET_TYPE_BUSY packets on the channel),
206 * and there are other call channels in the connection that are not busy.
207 * If 0, we do not return errors upon receiving busy packets; we just keep
208 * trying on the same call channel until we hit a timeout.
210 static afs_int32 rxi_busyChannelError = 0;
212 rx_atomic_t rx_nWaiting = RX_ATOMIC_INIT(0);
213 rx_atomic_t rx_nWaited = RX_ATOMIC_INIT(0);
215 #if !defined(offsetof)
216 #include <stddef.h> /* for definition of offsetof() */
219 #ifdef RX_ENABLE_LOCKS
220 afs_kmutex_t rx_atomic_mutex;
223 /* Forward prototypes */
224 static struct rx_call * rxi_NewCall(struct rx_connection *, int);
227 putConnection (struct rx_connection *conn) {
228 MUTEX_ENTER(&rx_refcnt_mutex);
230 MUTEX_EXIT(&rx_refcnt_mutex);
233 #ifdef AFS_PTHREAD_ENV
236 * Use procedural initialization of mutexes/condition variables
240 extern afs_kmutex_t rx_quota_mutex;
241 extern afs_kmutex_t rx_pthread_mutex;
242 extern afs_kmutex_t rx_packets_mutex;
243 extern afs_kmutex_t rx_refcnt_mutex;
244 extern afs_kmutex_t des_init_mutex;
245 extern afs_kmutex_t des_random_mutex;
246 extern afs_kmutex_t rx_clock_mutex;
247 extern afs_kmutex_t rxi_connCacheMutex;
248 extern afs_kmutex_t event_handler_mutex;
249 extern afs_kmutex_t listener_mutex;
250 extern afs_kmutex_t rx_if_init_mutex;
251 extern afs_kmutex_t rx_if_mutex;
253 extern afs_kcondvar_t rx_event_handler_cond;
254 extern afs_kcondvar_t rx_listener_cond;
256 static afs_kmutex_t epoch_mutex;
257 static afs_kmutex_t rx_init_mutex;
258 static afs_kmutex_t rx_debug_mutex;
259 static afs_kmutex_t rx_rpc_stats;
262 rxi_InitPthread(void)
264 MUTEX_INIT(&rx_clock_mutex, "clock", MUTEX_DEFAULT, 0);
265 MUTEX_INIT(&rx_stats_mutex, "stats", MUTEX_DEFAULT, 0);
266 MUTEX_INIT(&rx_atomic_mutex, "atomic", MUTEX_DEFAULT, 0);
267 MUTEX_INIT(&rx_quota_mutex, "quota", MUTEX_DEFAULT, 0);
268 MUTEX_INIT(&rx_pthread_mutex, "pthread", MUTEX_DEFAULT, 0);
269 MUTEX_INIT(&rx_packets_mutex, "packets", MUTEX_DEFAULT, 0);
270 MUTEX_INIT(&rx_refcnt_mutex, "refcnts", MUTEX_DEFAULT, 0);
271 MUTEX_INIT(&epoch_mutex, "epoch", MUTEX_DEFAULT, 0);
272 MUTEX_INIT(&rx_init_mutex, "init", MUTEX_DEFAULT, 0);
273 MUTEX_INIT(&event_handler_mutex, "event handler", MUTEX_DEFAULT, 0);
274 MUTEX_INIT(&rxi_connCacheMutex, "conn cache", MUTEX_DEFAULT, 0);
275 MUTEX_INIT(&listener_mutex, "listener", MUTEX_DEFAULT, 0);
276 MUTEX_INIT(&rx_if_init_mutex, "if init", MUTEX_DEFAULT, 0);
277 MUTEX_INIT(&rx_if_mutex, "if", MUTEX_DEFAULT, 0);
278 MUTEX_INIT(&rx_debug_mutex, "debug", MUTEX_DEFAULT, 0);
280 CV_INIT(&rx_event_handler_cond, "evhand", CV_DEFAULT, 0);
281 CV_INIT(&rx_listener_cond, "rxlisten", CV_DEFAULT, 0);
283 osi_Assert(pthread_key_create(&rx_thread_id_key, NULL) == 0);
284 osi_Assert(pthread_key_create(&rx_ts_info_key, NULL) == 0);
286 MUTEX_INIT(&rx_rpc_stats, "rx_rpc_stats", MUTEX_DEFAULT, 0);
287 MUTEX_INIT(&rx_freePktQ_lock, "rx_freePktQ_lock", MUTEX_DEFAULT, 0);
288 #ifdef RX_ENABLE_LOCKS
291 #endif /* RX_LOCKS_DB */
292 MUTEX_INIT(&freeSQEList_lock, "freeSQEList lock", MUTEX_DEFAULT, 0);
293 MUTEX_INIT(&rx_freeCallQueue_lock, "rx_freeCallQueue_lock", MUTEX_DEFAULT,
295 CV_INIT(&rx_waitingForPackets_cv, "rx_waitingForPackets_cv", CV_DEFAULT,
297 MUTEX_INIT(&rx_peerHashTable_lock, "rx_peerHashTable_lock", MUTEX_DEFAULT,
299 MUTEX_INIT(&rx_connHashTable_lock, "rx_connHashTable_lock", MUTEX_DEFAULT,
301 MUTEX_INIT(&rx_serverPool_lock, "rx_serverPool_lock", MUTEX_DEFAULT, 0);
302 MUTEX_INIT(&rxi_keyCreate_lock, "rxi_keyCreate_lock", MUTEX_DEFAULT, 0);
303 #endif /* RX_ENABLE_LOCKS */
306 pthread_once_t rx_once_init = PTHREAD_ONCE_INIT;
307 #define INIT_PTHREAD_LOCKS osi_Assert(pthread_once(&rx_once_init, rxi_InitPthread)==0)
309 * The rx_stats_mutex mutex protects the following global variables:
310 * rxi_lowConnRefCount
311 * rxi_lowPeerRefCount
320 * The rx_quota_mutex mutex protects the following global variables:
328 * The rx_freePktQ_lock protects the following global variables:
333 * The rx_packets_mutex mutex protects the following global variables:
341 * The rx_pthread_mutex mutex protects the following global variables:
342 * rxi_fcfs_thread_num
345 #define INIT_PTHREAD_LOCKS
349 /* Variables for handling the minProcs implementation. availProcs gives the
350 * number of threads available in the pool at this moment (not counting dudes
351 * executing right now). totalMin gives the total number of procs required
352 * for handling all minProcs requests. minDeficit is a dynamic variable
353 * tracking the # of procs required to satisfy all of the remaining minProcs
355 * For fine grain locking to work, the quota check and the reservation of
356 * a server thread has to come while rxi_availProcs and rxi_minDeficit
357 * are locked. To this end, the code has been modified under #ifdef
358 * RX_ENABLE_LOCKS so that quota checks and reservation occur at the
359 * same time. A new function, ReturnToServerPool() returns the allocation.
361 * A call can be on several queue's (but only one at a time). When
362 * rxi_ResetCall wants to remove the call from a queue, it has to ensure
363 * that no one else is touching the queue. To this end, we store the address
364 * of the queue lock in the call structure (under the call lock) when we
365 * put the call on a queue, and we clear the call_queue_lock when the
366 * call is removed from a queue (once the call lock has been obtained).
367 * This allows rxi_ResetCall to safely synchronize with others wishing
368 * to manipulate the queue.
371 #if defined(RX_ENABLE_LOCKS)
372 static afs_kmutex_t rx_rpc_stats;
375 /* We keep a "last conn pointer" in rxi_FindConnection. The odds are
376 ** pretty good that the next packet coming in is from the same connection
377 ** as the last packet, since we're send multiple packets in a transmit window.
379 struct rx_connection *rxLastConn = 0;
381 #ifdef RX_ENABLE_LOCKS
382 /* The locking hierarchy for rx fine grain locking is composed of these
385 * rx_connHashTable_lock - synchronizes conn creation, rx_connHashTable access
386 * conn_call_lock - used to synchonize rx_EndCall and rx_NewCall
387 * call->lock - locks call data fields.
388 * These are independent of each other:
389 * rx_freeCallQueue_lock
394 * serverQueueEntry->lock
395 * rx_peerHashTable_lock - locked under rx_connHashTable_lock
397 * peer->lock - locks peer data fields.
398 * conn_data_lock - that more than one thread is not updating a conn data
399 * field at the same time.
410 * Do we need a lock to protect the peer field in the conn structure?
411 * conn->peer was previously a constant for all intents and so has no
412 * lock protecting this field. The multihomed client delta introduced
413 * a RX code change : change the peer field in the connection structure
414 * to that remote interface from which the last packet for this
415 * connection was sent out. This may become an issue if further changes
418 #define SET_CALL_QUEUE_LOCK(C, L) (C)->call_queue_lock = (L)
419 #define CLEAR_CALL_QUEUE_LOCK(C) (C)->call_queue_lock = NULL
421 /* rxdb_fileID is used to identify the lock location, along with line#. */
422 static int rxdb_fileID = RXDB_FILE_RX;
423 #endif /* RX_LOCKS_DB */
424 #else /* RX_ENABLE_LOCKS */
425 #define SET_CALL_QUEUE_LOCK(C, L)
426 #define CLEAR_CALL_QUEUE_LOCK(C)
427 #endif /* RX_ENABLE_LOCKS */
428 struct rx_serverQueueEntry *rx_waitForPacket = 0;
429 struct rx_serverQueueEntry *rx_waitingForPacket = 0;
431 /* ------------Exported Interfaces------------- */
433 /* This function allows rxkad to set the epoch to a suitably random number
434 * which rx_NewConnection will use in the future. The principle purpose is to
435 * get rxnull connections to use the same epoch as the rxkad connections do, at
436 * least once the first rxkad connection is established. This is important now
437 * that the host/port addresses aren't used in FindConnection: the uniqueness
438 * of epoch/cid matters and the start time won't do. */
440 #ifdef AFS_PTHREAD_ENV
442 * This mutex protects the following global variables:
446 #define LOCK_EPOCH MUTEX_ENTER(&epoch_mutex)
447 #define UNLOCK_EPOCH MUTEX_EXIT(&epoch_mutex)
451 #endif /* AFS_PTHREAD_ENV */
454 rx_SetEpoch(afs_uint32 epoch)
461 /* Initialize rx. A port number may be mentioned, in which case this
462 * becomes the default port number for any service installed later.
463 * If 0 is provided for the port number, a random port will be chosen
464 * by the kernel. Whether this will ever overlap anything in
465 * /etc/services is anybody's guess... Returns 0 on success, -1 on
470 int rxinit_status = 1;
471 #ifdef AFS_PTHREAD_ENV
473 * This mutex protects the following global variables:
477 #define LOCK_RX_INIT MUTEX_ENTER(&rx_init_mutex)
478 #define UNLOCK_RX_INIT MUTEX_EXIT(&rx_init_mutex)
481 #define UNLOCK_RX_INIT
485 rx_InitHost(u_int host, u_int port)
492 char *htable, *ptable;
499 if (rxinit_status == 0) {
500 tmp_status = rxinit_status;
502 return tmp_status; /* Already started; return previous error code. */
508 if (afs_winsockInit() < 0)
514 * Initialize anything necessary to provide a non-premptive threading
517 rxi_InitializeThreadSupport();
520 /* Allocate and initialize a socket for client and perhaps server
523 rx_socket = rxi_GetHostUDPSocket(host, (u_short) port);
524 if (rx_socket == OSI_NULLSOCKET) {
528 #if defined(RX_ENABLE_LOCKS) && defined(KERNEL)
531 #endif /* RX_LOCKS_DB */
532 MUTEX_INIT(&rx_stats_mutex, "rx_stats_mutex", MUTEX_DEFAULT, 0);
533 MUTEX_INIT(&rx_quota_mutex, "rx_quota_mutex", MUTEX_DEFAULT, 0);
534 MUTEX_INIT(&rx_pthread_mutex, "rx_pthread_mutex", MUTEX_DEFAULT, 0);
535 MUTEX_INIT(&rx_packets_mutex, "rx_packets_mutex", MUTEX_DEFAULT, 0);
536 MUTEX_INIT(&rx_refcnt_mutex, "rx_refcnt_mutex", MUTEX_DEFAULT, 0);
537 MUTEX_INIT(&rx_rpc_stats, "rx_rpc_stats", MUTEX_DEFAULT, 0);
538 MUTEX_INIT(&rx_freePktQ_lock, "rx_freePktQ_lock", MUTEX_DEFAULT, 0);
539 MUTEX_INIT(&freeSQEList_lock, "freeSQEList lock", MUTEX_DEFAULT, 0);
540 MUTEX_INIT(&rx_freeCallQueue_lock, "rx_freeCallQueue_lock", MUTEX_DEFAULT,
542 CV_INIT(&rx_waitingForPackets_cv, "rx_waitingForPackets_cv", CV_DEFAULT,
544 MUTEX_INIT(&rx_peerHashTable_lock, "rx_peerHashTable_lock", MUTEX_DEFAULT,
546 MUTEX_INIT(&rx_connHashTable_lock, "rx_connHashTable_lock", MUTEX_DEFAULT,
548 MUTEX_INIT(&rx_serverPool_lock, "rx_serverPool_lock", MUTEX_DEFAULT, 0);
549 #if defined(AFS_HPUX110_ENV)
551 rx_sleepLock = alloc_spinlock(LAST_HELD_ORDER - 10, "rx_sleepLock");
552 #endif /* AFS_HPUX110_ENV */
553 #endif /* RX_ENABLE_LOCKS && KERNEL */
556 rx_connDeadTime = 12;
557 rx_tranquil = 0; /* reset flag */
558 rxi_ResetStatistics();
560 osi_Alloc(rx_hashTableSize * sizeof(struct rx_connection *));
561 PIN(htable, rx_hashTableSize * sizeof(struct rx_connection *)); /* XXXXX */
562 memset(htable, 0, rx_hashTableSize * sizeof(struct rx_connection *));
563 ptable = (char *)osi_Alloc(rx_hashTableSize * sizeof(struct rx_peer *));
564 PIN(ptable, rx_hashTableSize * sizeof(struct rx_peer *)); /* XXXXX */
565 memset(ptable, 0, rx_hashTableSize * sizeof(struct rx_peer *));
567 /* Malloc up a bunch of packets & buffers */
569 queue_Init(&rx_freePacketQueue);
570 rxi_NeedMorePackets = FALSE;
571 rx_nPackets = 0; /* rx_nPackets is managed by rxi_MorePackets* */
573 /* enforce a minimum number of allocated packets */
574 if (rx_extraPackets < rxi_nSendFrags * rx_maxSendWindow)
575 rx_extraPackets = rxi_nSendFrags * rx_maxSendWindow;
577 /* allocate the initial free packet pool */
578 #ifdef RX_ENABLE_TSFPQ
579 rxi_MorePacketsTSFPQ(rx_extraPackets + RX_MAX_QUOTA + 2, RX_TS_FPQ_FLUSH_GLOBAL, 0);
580 #else /* RX_ENABLE_TSFPQ */
581 rxi_MorePackets(rx_extraPackets + RX_MAX_QUOTA + 2); /* fudge */
582 #endif /* RX_ENABLE_TSFPQ */
589 #if defined(AFS_NT40_ENV) && !defined(AFS_PTHREAD_ENV)
590 tv.tv_sec = clock_now.sec;
591 tv.tv_usec = clock_now.usec;
592 srand((unsigned int)tv.tv_usec);
599 #if defined(KERNEL) && !defined(UKERNEL)
600 /* Really, this should never happen in a real kernel */
603 struct sockaddr_in addr;
605 int addrlen = sizeof(addr);
607 socklen_t addrlen = sizeof(addr);
609 if (getsockname((intptr_t)rx_socket, (struct sockaddr *)&addr, &addrlen)) {
613 rx_port = addr.sin_port;
616 rx_stats.minRtt.sec = 9999999;
618 rx_SetEpoch(tv.tv_sec | 0x80000000);
620 rx_SetEpoch(tv.tv_sec); /* Start time of this package, rxkad
621 * will provide a randomer value. */
623 MUTEX_ENTER(&rx_quota_mutex);
624 rxi_dataQuota += rx_extraQuota; /* + extra pkts caller asked to rsrv */
625 MUTEX_EXIT(&rx_quota_mutex);
626 /* *Slightly* random start time for the cid. This is just to help
627 * out with the hashing function at the peer */
628 rx_nextCid = ((tv.tv_sec ^ tv.tv_usec) << RX_CIDSHIFT);
629 rx_connHashTable = (struct rx_connection **)htable;
630 rx_peerHashTable = (struct rx_peer **)ptable;
632 rx_hardAckDelay.sec = 0;
633 rx_hardAckDelay.usec = 100000; /* 100 milliseconds */
635 rxevent_Init(20, rxi_ReScheduleEvents);
637 /* Initialize various global queues */
638 queue_Init(&rx_idleServerQueue);
639 queue_Init(&rx_incomingCallQueue);
640 queue_Init(&rx_freeCallQueue);
642 #if defined(AFS_NT40_ENV) && !defined(KERNEL)
643 /* Initialize our list of usable IP addresses. */
647 #if defined(RXK_LISTENER_ENV) || !defined(KERNEL)
648 /* Start listener process (exact function is dependent on the
649 * implementation environment--kernel or user space) */
654 tmp_status = rxinit_status = 0;
662 return rx_InitHost(htonl(INADDR_ANY), port);
668 * The rxi_rto functions implement a TCP (RFC2988) style algorithm for
669 * maintaing the round trip timer.
674 * Start a new RTT timer for a given call and packet.
676 * There must be no resendEvent already listed for this call, otherwise this
677 * will leak events - intended for internal use within the RTO code only
680 * the RX call to start the timer for
681 * @param[in] lastPacket
682 * a flag indicating whether the last packet has been sent or not
684 * @pre call must be locked before calling this function
688 rxi_rto_startTimer(struct rx_call *call, int lastPacket, int istack)
690 struct clock now, retryTime;
695 clock_Add(&retryTime, &call->rto);
697 /* If we're sending the last packet, and we're the client, then the server
698 * may wait for an additional 400ms before returning the ACK, wait for it
699 * rather than hitting a timeout */
700 if (lastPacket && call->conn->type == RX_CLIENT_CONNECTION)
701 clock_Addmsec(&retryTime, 400);
703 CALL_HOLD(call, RX_CALL_REFCOUNT_RESEND);
704 call->resendEvent = rxevent_Post(&retryTime, &now, rxi_Resend,
709 * Cancel an RTT timer for a given call.
713 * the RX call to cancel the timer for
715 * @pre call must be locked before calling this function
720 rxi_rto_cancel(struct rx_call *call)
722 rxevent_Cancel(&call->resendEvent, call, RX_CALL_REFCOUNT_RESEND);
726 * Tell the RTO timer that we have sent a packet.
728 * If the timer isn't already running, then start it. If the timer is running,
732 * the RX call that the packet has been sent on
733 * @param[in] lastPacket
734 * A flag which is true if this is the last packet for the call
736 * @pre The call must be locked before calling this function
741 rxi_rto_packet_sent(struct rx_call *call, int lastPacket, int istack)
743 if (call->resendEvent)
746 rxi_rto_startTimer(call, lastPacket, istack);
750 * Tell the RTO timer that we have received an new ACK message
752 * This function should be called whenever a call receives an ACK that
753 * acknowledges new packets. Whatever happens, we stop the current timer.
754 * If there are unacked packets in the queue which have been sent, then
755 * we restart the timer from now. Otherwise, we leave it stopped.
758 * the RX call that the ACK has been received on
762 rxi_rto_packet_acked(struct rx_call *call, int istack)
764 struct rx_packet *p, *nxp;
766 rxi_rto_cancel(call);
768 if (queue_IsEmpty(&call->tq))
771 for (queue_Scan(&call->tq, p, nxp, rx_packet)) {
772 if (p->header.seq > call->tfirst + call->twind)
775 if (!(p->flags & RX_PKTFLAG_ACKED) && p->flags & RX_PKTFLAG_SENT) {
776 rxi_rto_startTimer(call, p->header.flags & RX_LAST_PACKET, istack);
784 * Set an initial round trip timeout for a peer connection
786 * @param[in] secs The timeout to set in seconds
790 rx_rto_setPeerTimeoutSecs(struct rx_peer *peer, int secs) {
791 peer->rtt = secs * 8000;
795 * Enables or disables the busy call channel error (RX_CALL_BUSY).
797 * @param[in] onoff Non-zero to enable busy call channel errors.
799 * @pre Neither rx_Init nor rx_InitHost have been called yet
802 rx_SetBusyChannelError(afs_int32 onoff)
804 osi_Assert(rxinit_status != 0);
805 rxi_busyChannelError = onoff ? 1 : 0;
809 * Set a delayed ack event on the specified call for the given time
811 * @param[in] call - the call on which to set the event
812 * @param[in] offset - the delay from now after which the event fires
815 rxi_PostDelayedAckEvent(struct rx_call *call, struct clock *offset)
817 struct clock now, when;
821 clock_Add(&when, offset);
823 if (!call->delayedAckEvent
824 || clock_Gt(&call->delayedAckTime, &when)) {
826 rxevent_Cancel(&call->delayedAckEvent, call,
827 RX_CALL_REFCOUNT_DELAY);
828 CALL_HOLD(call, RX_CALL_REFCOUNT_DELAY);
830 call->delayedAckEvent = rxevent_Post(&when, &now,
833 call->delayedAckTime = when;
837 /* called with unincremented nRequestsRunning to see if it is OK to start
838 * a new thread in this service. Could be "no" for two reasons: over the
839 * max quota, or would prevent others from reaching their min quota.
841 #ifdef RX_ENABLE_LOCKS
842 /* This verion of QuotaOK reserves quota if it's ok while the
843 * rx_serverPool_lock is held. Return quota using ReturnToServerPool().
846 QuotaOK(struct rx_service *aservice)
848 /* check if over max quota */
849 if (aservice->nRequestsRunning >= aservice->maxProcs) {
853 /* under min quota, we're OK */
854 /* otherwise, can use only if there are enough to allow everyone
855 * to go to their min quota after this guy starts.
858 MUTEX_ENTER(&rx_quota_mutex);
859 if ((aservice->nRequestsRunning < aservice->minProcs)
860 || (rxi_availProcs > rxi_minDeficit)) {
861 aservice->nRequestsRunning++;
862 /* just started call in minProcs pool, need fewer to maintain
864 if (aservice->nRequestsRunning <= aservice->minProcs)
867 MUTEX_EXIT(&rx_quota_mutex);
870 MUTEX_EXIT(&rx_quota_mutex);
876 ReturnToServerPool(struct rx_service *aservice)
878 aservice->nRequestsRunning--;
879 MUTEX_ENTER(&rx_quota_mutex);
880 if (aservice->nRequestsRunning < aservice->minProcs)
883 MUTEX_EXIT(&rx_quota_mutex);
886 #else /* RX_ENABLE_LOCKS */
888 QuotaOK(struct rx_service *aservice)
891 /* under min quota, we're OK */
892 if (aservice->nRequestsRunning < aservice->minProcs)
895 /* check if over max quota */
896 if (aservice->nRequestsRunning >= aservice->maxProcs)
899 /* otherwise, can use only if there are enough to allow everyone
900 * to go to their min quota after this guy starts.
902 MUTEX_ENTER(&rx_quota_mutex);
903 if (rxi_availProcs > rxi_minDeficit)
905 MUTEX_EXIT(&rx_quota_mutex);
908 #endif /* RX_ENABLE_LOCKS */
911 /* Called by rx_StartServer to start up lwp's to service calls.
912 NExistingProcs gives the number of procs already existing, and which
913 therefore needn't be created. */
915 rxi_StartServerProcs(int nExistingProcs)
917 struct rx_service *service;
922 /* For each service, reserve N processes, where N is the "minimum"
923 * number of processes that MUST be able to execute a request in parallel,
924 * at any time, for that process. Also compute the maximum difference
925 * between any service's maximum number of processes that can run
926 * (i.e. the maximum number that ever will be run, and a guarantee
927 * that this number will run if other services aren't running), and its
928 * minimum number. The result is the extra number of processes that
929 * we need in order to provide the latter guarantee */
930 for (i = 0; i < RX_MAX_SERVICES; i++) {
932 service = rx_services[i];
933 if (service == (struct rx_service *)0)
935 nProcs += service->minProcs;
936 diff = service->maxProcs - service->minProcs;
940 nProcs += maxdiff; /* Extra processes needed to allow max number requested to run in any given service, under good conditions */
941 nProcs -= nExistingProcs; /* Subtract the number of procs that were previously created for use as server procs */
942 for (i = 0; i < nProcs; i++) {
943 rxi_StartServerProc(rx_ServerProc, rx_stackSize);
949 /* This routine is only required on Windows */
951 rx_StartClientThread(void)
953 #ifdef AFS_PTHREAD_ENV
955 pid = pthread_self();
956 #endif /* AFS_PTHREAD_ENV */
958 #endif /* AFS_NT40_ENV */
960 /* This routine must be called if any services are exported. If the
961 * donateMe flag is set, the calling process is donated to the server
964 rx_StartServer(int donateMe)
966 struct rx_service *service;
972 /* Start server processes, if necessary (exact function is dependent
973 * on the implementation environment--kernel or user space). DonateMe
974 * will be 1 if there is 1 pre-existing proc, i.e. this one. In this
975 * case, one less new proc will be created rx_StartServerProcs.
977 rxi_StartServerProcs(donateMe);
979 /* count up the # of threads in minProcs, and add set the min deficit to
980 * be that value, too.
982 for (i = 0; i < RX_MAX_SERVICES; i++) {
983 service = rx_services[i];
984 if (service == (struct rx_service *)0)
986 MUTEX_ENTER(&rx_quota_mutex);
987 rxi_totalMin += service->minProcs;
988 /* below works even if a thread is running, since minDeficit would
989 * still have been decremented and later re-incremented.
991 rxi_minDeficit += service->minProcs;
992 MUTEX_EXIT(&rx_quota_mutex);
995 /* Turn on reaping of idle server connections */
996 rxi_ReapConnections(NULL, NULL, NULL, 0);
1001 #ifndef AFS_NT40_ENV
1005 #ifdef AFS_PTHREAD_ENV
1007 pid = afs_pointer_to_int(pthread_self());
1008 #else /* AFS_PTHREAD_ENV */
1010 LWP_CurrentProcess(&pid);
1011 #endif /* AFS_PTHREAD_ENV */
1013 sprintf(name, "srv_%d", ++nProcs);
1014 if (registerProgram)
1015 (*registerProgram) (pid, name);
1017 #endif /* AFS_NT40_ENV */
1018 rx_ServerProc(NULL); /* Never returns */
1020 #ifdef RX_ENABLE_TSFPQ
1021 /* no use leaving packets around in this thread's local queue if
1022 * it isn't getting donated to the server thread pool.
1024 rxi_FlushLocalPacketsTSFPQ();
1025 #endif /* RX_ENABLE_TSFPQ */
1029 /* Create a new client connection to the specified service, using the
1030 * specified security object to implement the security model for this
1032 struct rx_connection *
1033 rx_NewConnection(afs_uint32 shost, u_short sport, u_short sservice,
1034 struct rx_securityClass *securityObject,
1035 int serviceSecurityIndex)
1039 struct rx_connection *conn;
1044 dpf(("rx_NewConnection(host %x, port %u, service %u, securityObject %p, "
1045 "serviceSecurityIndex %d)\n",
1046 ntohl(shost), ntohs(sport), sservice, securityObject,
1047 serviceSecurityIndex));
1049 /* Vasilsi said: "NETPRI protects Cid and Alloc", but can this be true in
1050 * the case of kmem_alloc? */
1051 conn = rxi_AllocConnection();
1052 #ifdef RX_ENABLE_LOCKS
1053 MUTEX_INIT(&conn->conn_call_lock, "conn call lock", MUTEX_DEFAULT, 0);
1054 MUTEX_INIT(&conn->conn_data_lock, "conn data lock", MUTEX_DEFAULT, 0);
1055 CV_INIT(&conn->conn_call_cv, "conn call cv", CV_DEFAULT, 0);
1058 MUTEX_ENTER(&rx_connHashTable_lock);
1059 cid = (rx_nextCid += RX_MAXCALLS);
1060 conn->type = RX_CLIENT_CONNECTION;
1062 conn->epoch = rx_epoch;
1063 conn->peer = rxi_FindPeer(shost, sport, 0, 1);
1064 conn->serviceId = sservice;
1065 conn->securityObject = securityObject;
1066 conn->securityData = (void *) 0;
1067 conn->securityIndex = serviceSecurityIndex;
1068 rx_SetConnDeadTime(conn, rx_connDeadTime);
1069 rx_SetConnSecondsUntilNatPing(conn, 0);
1070 conn->ackRate = RX_FAST_ACK_RATE;
1071 conn->nSpecific = 0;
1072 conn->specific = NULL;
1073 conn->challengeEvent = NULL;
1074 conn->delayedAbortEvent = NULL;
1075 conn->abortCount = 0;
1077 for (i = 0; i < RX_MAXCALLS; i++) {
1078 conn->twind[i] = rx_initSendWindow;
1079 conn->rwind[i] = rx_initReceiveWindow;
1080 conn->lastBusy[i] = 0;
1083 RXS_NewConnection(securityObject, conn);
1085 CONN_HASH(shost, sport, conn->cid, conn->epoch, RX_CLIENT_CONNECTION);
1087 conn->refCount++; /* no lock required since only this thread knows... */
1088 conn->next = rx_connHashTable[hashindex];
1089 rx_connHashTable[hashindex] = conn;
1090 if (rx_stats_active)
1091 rx_atomic_inc(&rx_stats.nClientConns);
1092 MUTEX_EXIT(&rx_connHashTable_lock);
1098 * Ensure a connection's timeout values are valid.
1100 * @param[in] conn The connection to check
1102 * @post conn->secondUntilDead <= conn->idleDeadTime <= conn->hardDeadTime,
1103 * unless idleDeadTime and/or hardDeadTime are not set
1107 rxi_CheckConnTimeouts(struct rx_connection *conn)
1109 /* a connection's timeouts must have the relationship
1110 * deadTime <= idleDeadTime <= hardDeadTime. Otherwise, for example, a
1111 * total loss of network to a peer may cause an idle timeout instead of a
1112 * dead timeout, simply because the idle timeout gets hit first. Also set
1113 * a minimum deadTime of 6, just to ensure it doesn't get set too low. */
1114 /* this logic is slightly complicated by the fact that
1115 * idleDeadTime/hardDeadTime may not be set at all, but it's not too bad.
1117 conn->secondsUntilDead = MAX(conn->secondsUntilDead, 6);
1118 if (conn->idleDeadTime) {
1119 conn->idleDeadTime = MAX(conn->idleDeadTime, conn->secondsUntilDead);
1121 if (conn->hardDeadTime) {
1122 if (conn->idleDeadTime) {
1123 conn->hardDeadTime = MAX(conn->idleDeadTime, conn->hardDeadTime);
1125 conn->hardDeadTime = MAX(conn->secondsUntilDead, conn->hardDeadTime);
1131 rx_SetConnDeadTime(struct rx_connection *conn, int seconds)
1133 /* The idea is to set the dead time to a value that allows several
1134 * keepalives to be dropped without timing out the connection. */
1135 conn->secondsUntilDead = seconds;
1136 rxi_CheckConnTimeouts(conn);
1137 conn->secondsUntilPing = conn->secondsUntilDead / 6;
1141 rx_SetConnHardDeadTime(struct rx_connection *conn, int seconds)
1143 conn->hardDeadTime = seconds;
1144 rxi_CheckConnTimeouts(conn);
1148 rx_SetConnIdleDeadTime(struct rx_connection *conn, int seconds)
1150 conn->idleDeadTime = seconds;
1151 conn->idleDeadDetection = (seconds ? 1 : 0);
1152 rxi_CheckConnTimeouts(conn);
1155 int rxi_lowPeerRefCount = 0;
1156 int rxi_lowConnRefCount = 0;
1159 * Cleanup a connection that was destroyed in rxi_DestroyConnectioNoLock.
1160 * NOTE: must not be called with rx_connHashTable_lock held.
1163 rxi_CleanupConnection(struct rx_connection *conn)
1165 /* Notify the service exporter, if requested, that this connection
1166 * is being destroyed */
1167 if (conn->type == RX_SERVER_CONNECTION && conn->service->destroyConnProc)
1168 (*conn->service->destroyConnProc) (conn);
1170 /* Notify the security module that this connection is being destroyed */
1171 RXS_DestroyConnection(conn->securityObject, conn);
1173 /* If this is the last connection using the rx_peer struct, set its
1174 * idle time to now. rxi_ReapConnections will reap it if it's still
1175 * idle (refCount == 0) after rx_idlePeerTime (60 seconds) have passed.
1177 MUTEX_ENTER(&rx_peerHashTable_lock);
1178 if (conn->peer->refCount < 2) {
1179 conn->peer->idleWhen = clock_Sec();
1180 if (conn->peer->refCount < 1) {
1181 conn->peer->refCount = 1;
1182 if (rx_stats_active) {
1183 MUTEX_ENTER(&rx_stats_mutex);
1184 rxi_lowPeerRefCount++;
1185 MUTEX_EXIT(&rx_stats_mutex);
1189 conn->peer->refCount--;
1190 MUTEX_EXIT(&rx_peerHashTable_lock);
1192 if (rx_stats_active)
1194 if (conn->type == RX_SERVER_CONNECTION)
1195 rx_atomic_dec(&rx_stats.nServerConns);
1197 rx_atomic_dec(&rx_stats.nClientConns);
1200 if (conn->specific) {
1202 for (i = 0; i < conn->nSpecific; i++) {
1203 if (conn->specific[i] && rxi_keyCreate_destructor[i])
1204 (*rxi_keyCreate_destructor[i]) (conn->specific[i]);
1205 conn->specific[i] = NULL;
1207 free(conn->specific);
1209 conn->specific = NULL;
1210 conn->nSpecific = 0;
1211 #endif /* !KERNEL */
1213 MUTEX_DESTROY(&conn->conn_call_lock);
1214 MUTEX_DESTROY(&conn->conn_data_lock);
1215 CV_DESTROY(&conn->conn_call_cv);
1217 rxi_FreeConnection(conn);
1220 /* Destroy the specified connection */
1222 rxi_DestroyConnection(struct rx_connection *conn)
1224 MUTEX_ENTER(&rx_connHashTable_lock);
1225 rxi_DestroyConnectionNoLock(conn);
1226 /* conn should be at the head of the cleanup list */
1227 if (conn == rx_connCleanup_list) {
1228 rx_connCleanup_list = rx_connCleanup_list->next;
1229 MUTEX_EXIT(&rx_connHashTable_lock);
1230 rxi_CleanupConnection(conn);
1232 #ifdef RX_ENABLE_LOCKS
1234 MUTEX_EXIT(&rx_connHashTable_lock);
1236 #endif /* RX_ENABLE_LOCKS */
1240 rxi_DestroyConnectionNoLock(struct rx_connection *conn)
1242 struct rx_connection **conn_ptr;
1244 struct rx_packet *packet;
1251 MUTEX_ENTER(&conn->conn_data_lock);
1252 MUTEX_ENTER(&rx_refcnt_mutex);
1253 if (conn->refCount > 0)
1256 if (rx_stats_active) {
1257 MUTEX_ENTER(&rx_stats_mutex);
1258 rxi_lowConnRefCount++;
1259 MUTEX_EXIT(&rx_stats_mutex);
1263 if ((conn->refCount > 0) || (conn->flags & RX_CONN_BUSY)) {
1264 /* Busy; wait till the last guy before proceeding */
1265 MUTEX_EXIT(&rx_refcnt_mutex);
1266 MUTEX_EXIT(&conn->conn_data_lock);
1271 /* If the client previously called rx_NewCall, but it is still
1272 * waiting, treat this as a running call, and wait to destroy the
1273 * connection later when the call completes. */
1274 if ((conn->type == RX_CLIENT_CONNECTION)
1275 && (conn->flags & (RX_CONN_MAKECALL_WAITING|RX_CONN_MAKECALL_ACTIVE))) {
1276 conn->flags |= RX_CONN_DESTROY_ME;
1277 MUTEX_EXIT(&conn->conn_data_lock);
1281 MUTEX_EXIT(&rx_refcnt_mutex);
1282 MUTEX_EXIT(&conn->conn_data_lock);
1284 /* Check for extant references to this connection */
1285 MUTEX_ENTER(&conn->conn_call_lock);
1286 for (i = 0; i < RX_MAXCALLS; i++) {
1287 struct rx_call *call = conn->call[i];
1290 if (conn->type == RX_CLIENT_CONNECTION) {
1291 MUTEX_ENTER(&call->lock);
1292 if (call->delayedAckEvent) {
1293 /* Push the final acknowledgment out now--there
1294 * won't be a subsequent call to acknowledge the
1295 * last reply packets */
1296 rxevent_Cancel(&call->delayedAckEvent, call,
1297 RX_CALL_REFCOUNT_DELAY);
1298 if (call->state == RX_STATE_PRECALL
1299 || call->state == RX_STATE_ACTIVE) {
1300 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
1305 MUTEX_EXIT(&call->lock);
1309 MUTEX_EXIT(&conn->conn_call_lock);
1311 #ifdef RX_ENABLE_LOCKS
1313 if (MUTEX_TRYENTER(&conn->conn_data_lock)) {
1314 MUTEX_EXIT(&conn->conn_data_lock);
1316 /* Someone is accessing a packet right now. */
1320 #endif /* RX_ENABLE_LOCKS */
1323 /* Don't destroy the connection if there are any call
1324 * structures still in use */
1325 MUTEX_ENTER(&conn->conn_data_lock);
1326 conn->flags |= RX_CONN_DESTROY_ME;
1327 MUTEX_EXIT(&conn->conn_data_lock);
1332 if (conn->natKeepAliveEvent) {
1333 rxi_NatKeepAliveOff(conn);
1336 if (conn->delayedAbortEvent) {
1337 rxevent_Cancel(&conn->delayedAbortEvent, NULL, 0);
1338 packet = rxi_AllocPacket(RX_PACKET_CLASS_SPECIAL);
1340 MUTEX_ENTER(&conn->conn_data_lock);
1341 rxi_SendConnectionAbort(conn, packet, 0, 1);
1342 MUTEX_EXIT(&conn->conn_data_lock);
1343 rxi_FreePacket(packet);
1347 /* Remove from connection hash table before proceeding */
1349 &rx_connHashTable[CONN_HASH
1350 (peer->host, peer->port, conn->cid, conn->epoch,
1352 for (; *conn_ptr; conn_ptr = &(*conn_ptr)->next) {
1353 if (*conn_ptr == conn) {
1354 *conn_ptr = conn->next;
1358 /* if the conn that we are destroying was the last connection, then we
1359 * clear rxLastConn as well */
1360 if (rxLastConn == conn)
1363 /* Make sure the connection is completely reset before deleting it. */
1364 /* get rid of pending events that could zap us later */
1365 rxevent_Cancel(&conn->challengeEvent, NULL, 0);
1366 rxevent_Cancel(&conn->checkReachEvent, NULL, 0);
1367 rxevent_Cancel(&conn->natKeepAliveEvent, NULL, 0);
1369 /* Add the connection to the list of destroyed connections that
1370 * need to be cleaned up. This is necessary to avoid deadlocks
1371 * in the routines we call to inform others that this connection is
1372 * being destroyed. */
1373 conn->next = rx_connCleanup_list;
1374 rx_connCleanup_list = conn;
1377 /* Externally available version */
1379 rx_DestroyConnection(struct rx_connection *conn)
1384 rxi_DestroyConnection(conn);
1389 rx_GetConnection(struct rx_connection *conn)
1394 MUTEX_ENTER(&rx_refcnt_mutex);
1396 MUTEX_EXIT(&rx_refcnt_mutex);
1400 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
1401 /* Wait for the transmit queue to no longer be busy.
1402 * requires the call->lock to be held */
1404 rxi_WaitforTQBusy(struct rx_call *call) {
1405 while (!call->error && (call->flags & RX_CALL_TQ_BUSY)) {
1406 call->flags |= RX_CALL_TQ_WAIT;
1408 #ifdef RX_ENABLE_LOCKS
1409 osirx_AssertMine(&call->lock, "rxi_WaitforTQ lock");
1410 CV_WAIT(&call->cv_tq, &call->lock);
1411 #else /* RX_ENABLE_LOCKS */
1412 osi_rxSleep(&call->tq);
1413 #endif /* RX_ENABLE_LOCKS */
1415 if (call->tqWaiters == 0) {
1416 call->flags &= ~RX_CALL_TQ_WAIT;
1423 rxi_WakeUpTransmitQueue(struct rx_call *call)
1425 if (call->tqWaiters || (call->flags & RX_CALL_TQ_WAIT)) {
1426 dpf(("call %"AFS_PTR_FMT" has %d waiters and flags %d\n",
1427 call, call->tqWaiters, call->flags));
1428 #ifdef RX_ENABLE_LOCKS
1429 osirx_AssertMine(&call->lock, "rxi_Start start");
1430 CV_BROADCAST(&call->cv_tq);
1431 #else /* RX_ENABLE_LOCKS */
1432 osi_rxWakeup(&call->tq);
1433 #endif /* RX_ENABLE_LOCKS */
1437 /* Start a new rx remote procedure call, on the specified connection.
1438 * If wait is set to 1, wait for a free call channel; otherwise return
1439 * 0. Maxtime gives the maximum number of seconds this call may take,
1440 * after rx_NewCall returns. After this time interval, a call to any
1441 * of rx_SendData, rx_ReadData, etc. will fail with RX_CALL_TIMEOUT.
1442 * For fine grain locking, we hold the conn_call_lock in order to
1443 * to ensure that we don't get signalle after we found a call in an active
1444 * state and before we go to sleep.
1447 rx_NewCall(struct rx_connection *conn)
1449 int i, wait, ignoreBusy = 1;
1450 struct rx_call *call;
1451 struct clock queueTime;
1452 afs_uint32 leastBusy = 0;
1456 dpf(("rx_NewCall(conn %"AFS_PTR_FMT")\n", conn));
1459 clock_GetTime(&queueTime);
1461 * Check if there are others waiting for a new call.
1462 * If so, let them go first to avoid starving them.
1463 * This is a fairly simple scheme, and might not be
1464 * a complete solution for large numbers of waiters.
1466 * makeCallWaiters keeps track of the number of
1467 * threads waiting to make calls and the
1468 * RX_CONN_MAKECALL_WAITING flag bit is used to
1469 * indicate that there are indeed calls waiting.
1470 * The flag is set when the waiter is incremented.
1471 * It is only cleared when makeCallWaiters is 0.
1472 * This prevents us from accidently destroying the
1473 * connection while it is potentially about to be used.
1475 MUTEX_ENTER(&conn->conn_call_lock);
1476 MUTEX_ENTER(&conn->conn_data_lock);
1477 while (conn->flags & RX_CONN_MAKECALL_ACTIVE) {
1478 conn->flags |= RX_CONN_MAKECALL_WAITING;
1479 conn->makeCallWaiters++;
1480 MUTEX_EXIT(&conn->conn_data_lock);
1482 #ifdef RX_ENABLE_LOCKS
1483 CV_WAIT(&conn->conn_call_cv, &conn->conn_call_lock);
1487 MUTEX_ENTER(&conn->conn_data_lock);
1488 conn->makeCallWaiters--;
1489 if (conn->makeCallWaiters == 0)
1490 conn->flags &= ~RX_CONN_MAKECALL_WAITING;
1493 /* We are now the active thread in rx_NewCall */
1494 conn->flags |= RX_CONN_MAKECALL_ACTIVE;
1495 MUTEX_EXIT(&conn->conn_data_lock);
1500 for (i = 0; i < RX_MAXCALLS; i++) {
1501 call = conn->call[i];
1503 if (!ignoreBusy && conn->lastBusy[i] != leastBusy) {
1504 /* we're not ignoring busy call slots; only look at the
1505 * call slot that is the "least" busy */
1509 if (call->state == RX_STATE_DALLY) {
1510 MUTEX_ENTER(&call->lock);
1511 if (call->state == RX_STATE_DALLY) {
1512 if (ignoreBusy && conn->lastBusy[i]) {
1513 /* if we're ignoring busy call slots, skip any ones that
1514 * have lastBusy set */
1515 if (leastBusy == 0 || conn->lastBusy[i] < leastBusy) {
1516 leastBusy = conn->lastBusy[i];
1518 MUTEX_EXIT(&call->lock);
1523 * We are setting the state to RX_STATE_RESET to
1524 * ensure that no one else will attempt to use this
1525 * call once we drop the conn->conn_call_lock and
1526 * call->lock. We must drop the conn->conn_call_lock
1527 * before calling rxi_ResetCall because the process
1528 * of clearing the transmit queue can block for an
1529 * extended period of time. If we block while holding
1530 * the conn->conn_call_lock, then all rx_EndCall
1531 * processing will block as well. This has a detrimental
1532 * effect on overall system performance.
1534 call->state = RX_STATE_RESET;
1535 (*call->callNumber)++;
1536 MUTEX_EXIT(&conn->conn_call_lock);
1537 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
1538 rxi_ResetCall(call, 0);
1539 if (MUTEX_TRYENTER(&conn->conn_call_lock))
1543 * If we failed to be able to safely obtain the
1544 * conn->conn_call_lock we will have to drop the
1545 * call->lock to avoid a deadlock. When the call->lock
1546 * is released the state of the call can change. If it
1547 * is no longer RX_STATE_RESET then some other thread is
1550 MUTEX_EXIT(&call->lock);
1551 MUTEX_ENTER(&conn->conn_call_lock);
1552 MUTEX_ENTER(&call->lock);
1554 if (call->state == RX_STATE_RESET)
1558 * If we get here it means that after dropping
1559 * the conn->conn_call_lock and call->lock that
1560 * the call is no longer ours. If we can't find
1561 * a free call in the remaining slots we should
1562 * not go immediately to RX_CONN_MAKECALL_WAITING
1563 * because by dropping the conn->conn_call_lock
1564 * we have given up synchronization with rx_EndCall.
1565 * Instead, cycle through one more time to see if
1566 * we can find a call that can call our own.
1568 CALL_RELE(call, RX_CALL_REFCOUNT_BEGIN);
1571 MUTEX_EXIT(&call->lock);
1574 if (ignoreBusy && conn->lastBusy[i]) {
1575 /* if we're ignoring busy call slots, skip any ones that
1576 * have lastBusy set */
1577 if (leastBusy == 0 || conn->lastBusy[i] < leastBusy) {
1578 leastBusy = conn->lastBusy[i];
1583 /* rxi_NewCall returns with mutex locked */
1584 call = rxi_NewCall(conn, i);
1585 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
1589 if (i < RX_MAXCALLS) {
1590 conn->lastBusy[i] = 0;
1591 call->flags &= ~RX_CALL_PEER_BUSY;
1596 if (leastBusy && ignoreBusy) {
1597 /* we didn't find a useable call slot, but we did see at least one
1598 * 'busy' slot; look again and only use a slot with the 'least
1604 MUTEX_ENTER(&conn->conn_data_lock);
1605 conn->flags |= RX_CONN_MAKECALL_WAITING;
1606 conn->makeCallWaiters++;
1607 MUTEX_EXIT(&conn->conn_data_lock);
1609 #ifdef RX_ENABLE_LOCKS
1610 CV_WAIT(&conn->conn_call_cv, &conn->conn_call_lock);
1614 MUTEX_ENTER(&conn->conn_data_lock);
1615 conn->makeCallWaiters--;
1616 if (conn->makeCallWaiters == 0)
1617 conn->flags &= ~RX_CONN_MAKECALL_WAITING;
1618 MUTEX_EXIT(&conn->conn_data_lock);
1620 /* Client is initially in send mode */
1621 call->state = RX_STATE_ACTIVE;
1622 call->error = conn->error;
1624 call->mode = RX_MODE_ERROR;
1626 call->mode = RX_MODE_SENDING;
1628 /* remember start time for call in case we have hard dead time limit */
1629 call->queueTime = queueTime;
1630 clock_GetTime(&call->startTime);
1631 hzero(call->bytesSent);
1632 hzero(call->bytesRcvd);
1634 /* Turn on busy protocol. */
1635 rxi_KeepAliveOn(call);
1637 /* Attempt MTU discovery */
1638 rxi_GrowMTUOn(call);
1641 * We are no longer the active thread in rx_NewCall
1643 MUTEX_ENTER(&conn->conn_data_lock);
1644 conn->flags &= ~RX_CONN_MAKECALL_ACTIVE;
1645 MUTEX_EXIT(&conn->conn_data_lock);
1648 * Wake up anyone else who might be giving us a chance to
1649 * run (see code above that avoids resource starvation).
1651 #ifdef RX_ENABLE_LOCKS
1652 CV_BROADCAST(&conn->conn_call_cv);
1656 MUTEX_EXIT(&conn->conn_call_lock);
1658 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
1659 if (call->flags & (RX_CALL_TQ_BUSY | RX_CALL_TQ_CLEARME)) {
1660 osi_Panic("rx_NewCall call about to be used without an empty tq");
1662 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
1664 MUTEX_EXIT(&call->lock);
1667 dpf(("rx_NewCall(call %"AFS_PTR_FMT")\n", call));
1672 rxi_HasActiveCalls(struct rx_connection *aconn)
1675 struct rx_call *tcall;
1679 for (i = 0; i < RX_MAXCALLS; i++) {
1680 if ((tcall = aconn->call[i])) {
1681 if ((tcall->state == RX_STATE_ACTIVE)
1682 || (tcall->state == RX_STATE_PRECALL)) {
1693 rxi_GetCallNumberVector(struct rx_connection *aconn,
1694 afs_int32 * aint32s)
1697 struct rx_call *tcall;
1701 MUTEX_ENTER(&aconn->conn_call_lock);
1702 for (i = 0; i < RX_MAXCALLS; i++) {
1703 if ((tcall = aconn->call[i]) && (tcall->state == RX_STATE_DALLY))
1704 aint32s[i] = aconn->callNumber[i] + 1;
1706 aint32s[i] = aconn->callNumber[i];
1708 MUTEX_EXIT(&aconn->conn_call_lock);
1714 rxi_SetCallNumberVector(struct rx_connection *aconn,
1715 afs_int32 * aint32s)
1718 struct rx_call *tcall;
1722 MUTEX_ENTER(&aconn->conn_call_lock);
1723 for (i = 0; i < RX_MAXCALLS; i++) {
1724 if ((tcall = aconn->call[i]) && (tcall->state == RX_STATE_DALLY))
1725 aconn->callNumber[i] = aint32s[i] - 1;
1727 aconn->callNumber[i] = aint32s[i];
1729 MUTEX_EXIT(&aconn->conn_call_lock);
1734 /* Advertise a new service. A service is named locally by a UDP port
1735 * number plus a 16-bit service id. Returns (struct rx_service *) 0
1738 char *serviceName; Name for identification purposes (e.g. the
1739 service name might be used for probing for
1742 rx_NewServiceHost(afs_uint32 host, u_short port, u_short serviceId,
1743 char *serviceName, struct rx_securityClass **securityObjects,
1744 int nSecurityObjects,
1745 afs_int32(*serviceProc) (struct rx_call * acall))
1747 osi_socket socket = OSI_NULLSOCKET;
1748 struct rx_service *tservice;
1754 if (serviceId == 0) {
1756 "rx_NewService: service id for service %s is not non-zero.\n",
1763 "rx_NewService: A non-zero port must be specified on this call if a non-zero port was not provided at Rx initialization (service %s).\n",
1771 tservice = rxi_AllocService();
1774 #ifdef RX_ENABLE_LOCKS
1775 MUTEX_INIT(&tservice->svc_data_lock, "svc data lock", MUTEX_DEFAULT, 0);
1778 for (i = 0; i < RX_MAX_SERVICES; i++) {
1779 struct rx_service *service = rx_services[i];
1781 if (port == service->servicePort && host == service->serviceHost) {
1782 if (service->serviceId == serviceId) {
1783 /* The identical service has already been
1784 * installed; if the caller was intending to
1785 * change the security classes used by this
1786 * service, he/she loses. */
1788 "rx_NewService: tried to install service %s with service id %d, which is already in use for service %s\n",
1789 serviceName, serviceId, service->serviceName);
1791 rxi_FreeService(tservice);
1794 /* Different service, same port: re-use the socket
1795 * which is bound to the same port */
1796 socket = service->socket;
1799 if (socket == OSI_NULLSOCKET) {
1800 /* If we don't already have a socket (from another
1801 * service on same port) get a new one */
1802 socket = rxi_GetHostUDPSocket(host, port);
1803 if (socket == OSI_NULLSOCKET) {
1805 rxi_FreeService(tservice);
1810 service->socket = socket;
1811 service->serviceHost = host;
1812 service->servicePort = port;
1813 service->serviceId = serviceId;
1814 service->serviceName = serviceName;
1815 service->nSecurityObjects = nSecurityObjects;
1816 service->securityObjects = securityObjects;
1817 service->minProcs = 0;
1818 service->maxProcs = 1;
1819 service->idleDeadTime = 60;
1820 service->idleDeadErr = 0;
1821 service->connDeadTime = rx_connDeadTime;
1822 service->executeRequestProc = serviceProc;
1823 service->checkReach = 0;
1824 service->nSpecific = 0;
1825 service->specific = NULL;
1826 rx_services[i] = service; /* not visible until now */
1832 rxi_FreeService(tservice);
1833 (osi_Msg "rx_NewService: cannot support > %d services\n",
1838 /* Set configuration options for all of a service's security objects */
1841 rx_SetSecurityConfiguration(struct rx_service *service,
1842 rx_securityConfigVariables type,
1846 for (i = 0; i<service->nSecurityObjects; i++) {
1847 if (service->securityObjects[i]) {
1848 RXS_SetConfiguration(service->securityObjects[i], NULL, type,
1856 rx_NewService(u_short port, u_short serviceId, char *serviceName,
1857 struct rx_securityClass **securityObjects, int nSecurityObjects,
1858 afs_int32(*serviceProc) (struct rx_call * acall))
1860 return rx_NewServiceHost(htonl(INADDR_ANY), port, serviceId, serviceName, securityObjects, nSecurityObjects, serviceProc);
1863 /* Generic request processing loop. This routine should be called
1864 * by the implementation dependent rx_ServerProc. If socketp is
1865 * non-null, it will be set to the file descriptor that this thread
1866 * is now listening on. If socketp is null, this routine will never
1869 rxi_ServerProc(int threadID, struct rx_call *newcall, osi_socket * socketp)
1871 struct rx_call *call;
1873 struct rx_service *tservice = NULL;
1880 call = rx_GetCall(threadID, tservice, socketp);
1881 if (socketp && *socketp != OSI_NULLSOCKET) {
1882 /* We are now a listener thread */
1888 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
1889 #ifdef RX_ENABLE_LOCKS
1891 #endif /* RX_ENABLE_LOCKS */
1892 afs_termState = AFSOP_STOP_AFS;
1893 afs_osi_Wakeup(&afs_termState);
1894 #ifdef RX_ENABLE_LOCKS
1896 #endif /* RX_ENABLE_LOCKS */
1901 /* if server is restarting( typically smooth shutdown) then do not
1902 * allow any new calls.
1905 if (rx_tranquil && (call != NULL)) {
1909 MUTEX_ENTER(&call->lock);
1911 rxi_CallError(call, RX_RESTARTING);
1912 rxi_SendCallAbort(call, (struct rx_packet *)0, 0, 0);
1914 MUTEX_EXIT(&call->lock);
1919 tservice = call->conn->service;
1921 if (tservice->beforeProc)
1922 (*tservice->beforeProc) (call);
1924 code = tservice->executeRequestProc(call);
1926 if (tservice->afterProc)
1927 (*tservice->afterProc) (call, code);
1929 rx_EndCall(call, code);
1931 if (tservice->postProc)
1932 (*tservice->postProc) (code);
1934 if (rx_stats_active) {
1935 MUTEX_ENTER(&rx_stats_mutex);
1937 MUTEX_EXIT(&rx_stats_mutex);
1944 rx_WakeupServerProcs(void)
1946 struct rx_serverQueueEntry *np, *tqp;
1950 MUTEX_ENTER(&rx_serverPool_lock);
1952 #ifdef RX_ENABLE_LOCKS
1953 if (rx_waitForPacket)
1954 CV_BROADCAST(&rx_waitForPacket->cv);
1955 #else /* RX_ENABLE_LOCKS */
1956 if (rx_waitForPacket)
1957 osi_rxWakeup(rx_waitForPacket);
1958 #endif /* RX_ENABLE_LOCKS */
1959 MUTEX_ENTER(&freeSQEList_lock);
1960 for (np = rx_FreeSQEList; np; np = tqp) {
1961 tqp = *(struct rx_serverQueueEntry **)np;
1962 #ifdef RX_ENABLE_LOCKS
1963 CV_BROADCAST(&np->cv);
1964 #else /* RX_ENABLE_LOCKS */
1966 #endif /* RX_ENABLE_LOCKS */
1968 MUTEX_EXIT(&freeSQEList_lock);
1969 for (queue_Scan(&rx_idleServerQueue, np, tqp, rx_serverQueueEntry)) {
1970 #ifdef RX_ENABLE_LOCKS
1971 CV_BROADCAST(&np->cv);
1972 #else /* RX_ENABLE_LOCKS */
1974 #endif /* RX_ENABLE_LOCKS */
1976 MUTEX_EXIT(&rx_serverPool_lock);
1981 * One thing that seems to happen is that all the server threads get
1982 * tied up on some empty or slow call, and then a whole bunch of calls
1983 * arrive at once, using up the packet pool, so now there are more
1984 * empty calls. The most critical resources here are server threads
1985 * and the free packet pool. The "doreclaim" code seems to help in
1986 * general. I think that eventually we arrive in this state: there
1987 * are lots of pending calls which do have all their packets present,
1988 * so they won't be reclaimed, are multi-packet calls, so they won't
1989 * be scheduled until later, and thus are tying up most of the free
1990 * packet pool for a very long time.
1992 * 1. schedule multi-packet calls if all the packets are present.
1993 * Probably CPU-bound operation, useful to return packets to pool.
1994 * Do what if there is a full window, but the last packet isn't here?
1995 * 3. preserve one thread which *only* runs "best" calls, otherwise
1996 * it sleeps and waits for that type of call.
1997 * 4. Don't necessarily reserve a whole window for each thread. In fact,
1998 * the current dataquota business is badly broken. The quota isn't adjusted
1999 * to reflect how many packets are presently queued for a running call.
2000 * So, when we schedule a queued call with a full window of packets queued
2001 * up for it, that *should* free up a window full of packets for other 2d-class
2002 * calls to be able to use from the packet pool. But it doesn't.
2004 * NB. Most of the time, this code doesn't run -- since idle server threads
2005 * sit on the idle server queue and are assigned by "...ReceivePacket" as soon
2006 * as a new call arrives.
2008 /* Sleep until a call arrives. Returns a pointer to the call, ready
2009 * for an rx_Read. */
2010 #ifdef RX_ENABLE_LOCKS
2012 rx_GetCall(int tno, struct rx_service *cur_service, osi_socket * socketp)
2014 struct rx_serverQueueEntry *sq;
2015 struct rx_call *call = (struct rx_call *)0;
2016 struct rx_service *service = NULL;
2018 MUTEX_ENTER(&freeSQEList_lock);
2020 if ((sq = rx_FreeSQEList)) {
2021 rx_FreeSQEList = *(struct rx_serverQueueEntry **)sq;
2022 MUTEX_EXIT(&freeSQEList_lock);
2023 } else { /* otherwise allocate a new one and return that */
2024 MUTEX_EXIT(&freeSQEList_lock);
2025 sq = rxi_Alloc(sizeof(struct rx_serverQueueEntry));
2026 MUTEX_INIT(&sq->lock, "server Queue lock", MUTEX_DEFAULT, 0);
2027 CV_INIT(&sq->cv, "server Queue lock", CV_DEFAULT, 0);
2030 MUTEX_ENTER(&rx_serverPool_lock);
2031 if (cur_service != NULL) {
2032 ReturnToServerPool(cur_service);
2035 if (queue_IsNotEmpty(&rx_incomingCallQueue)) {
2036 struct rx_call *tcall, *ncall, *choice2 = NULL;
2038 /* Scan for eligible incoming calls. A call is not eligible
2039 * if the maximum number of calls for its service type are
2040 * already executing */
2041 /* One thread will process calls FCFS (to prevent starvation),
2042 * while the other threads may run ahead looking for calls which
2043 * have all their input data available immediately. This helps
2044 * keep threads from blocking, waiting for data from the client. */
2045 for (queue_Scan(&rx_incomingCallQueue, tcall, ncall, rx_call)) {
2046 service = tcall->conn->service;
2047 if (!QuotaOK(service)) {
2050 MUTEX_ENTER(&rx_pthread_mutex);
2051 if (tno == rxi_fcfs_thread_num
2052 || queue_IsLast(&rx_incomingCallQueue, tcall)) {
2053 MUTEX_EXIT(&rx_pthread_mutex);
2054 /* If we're the fcfs thread , then we'll just use
2055 * this call. If we haven't been able to find an optimal
2056 * choice, and we're at the end of the list, then use a
2057 * 2d choice if one has been identified. Otherwise... */
2058 call = (choice2 ? choice2 : tcall);
2059 service = call->conn->service;
2061 MUTEX_EXIT(&rx_pthread_mutex);
2062 if (!queue_IsEmpty(&tcall->rq)) {
2063 struct rx_packet *rp;
2064 rp = queue_First(&tcall->rq, rx_packet);
2065 if (rp->header.seq == 1) {
2067 || (rp->header.flags & RX_LAST_PACKET)) {
2069 } else if (rxi_2dchoice && !choice2
2070 && !(tcall->flags & RX_CALL_CLEARED)
2071 && (tcall->rprev > rxi_HardAckRate)) {
2081 ReturnToServerPool(service);
2088 MUTEX_EXIT(&rx_serverPool_lock);
2089 MUTEX_ENTER(&call->lock);
2091 if (call->flags & RX_CALL_WAIT_PROC) {
2092 call->flags &= ~RX_CALL_WAIT_PROC;
2093 rx_atomic_dec(&rx_nWaiting);
2096 if (call->state != RX_STATE_PRECALL || call->error) {
2097 MUTEX_EXIT(&call->lock);
2098 MUTEX_ENTER(&rx_serverPool_lock);
2099 ReturnToServerPool(service);
2104 if (queue_IsEmpty(&call->rq)
2105 || queue_First(&call->rq, rx_packet)->header.seq != 1)
2106 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
2108 CLEAR_CALL_QUEUE_LOCK(call);
2111 /* If there are no eligible incoming calls, add this process
2112 * to the idle server queue, to wait for one */
2116 *socketp = OSI_NULLSOCKET;
2118 sq->socketp = socketp;
2119 queue_Append(&rx_idleServerQueue, sq);
2120 #ifndef AFS_AIX41_ENV
2121 rx_waitForPacket = sq;
2123 rx_waitingForPacket = sq;
2124 #endif /* AFS_AIX41_ENV */
2126 CV_WAIT(&sq->cv, &rx_serverPool_lock);
2128 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
2129 MUTEX_EXIT(&rx_serverPool_lock);
2130 return (struct rx_call *)0;
2133 } while (!(call = sq->newcall)
2134 && !(socketp && *socketp != OSI_NULLSOCKET));
2135 MUTEX_EXIT(&rx_serverPool_lock);
2137 MUTEX_ENTER(&call->lock);
2143 MUTEX_ENTER(&freeSQEList_lock);
2144 *(struct rx_serverQueueEntry **)sq = rx_FreeSQEList;
2145 rx_FreeSQEList = sq;
2146 MUTEX_EXIT(&freeSQEList_lock);
2149 clock_GetTime(&call->startTime);
2150 call->state = RX_STATE_ACTIVE;
2151 call->mode = RX_MODE_RECEIVING;
2152 #ifdef RX_KERNEL_TRACE
2153 if (ICL_SETACTIVE(afs_iclSetp)) {
2154 int glockOwner = ISAFS_GLOCK();
2157 afs_Trace3(afs_iclSetp, CM_TRACE_WASHERE, ICL_TYPE_STRING,
2158 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
2165 rxi_calltrace(RX_CALL_START, call);
2166 dpf(("rx_GetCall(port=%d, service=%d) ==> call %"AFS_PTR_FMT"\n",
2167 call->conn->service->servicePort, call->conn->service->serviceId,
2170 MUTEX_EXIT(&call->lock);
2171 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
2173 dpf(("rx_GetCall(socketp=%p, *socketp=0x%x)\n", socketp, *socketp));
2178 #else /* RX_ENABLE_LOCKS */
2180 rx_GetCall(int tno, struct rx_service *cur_service, osi_socket * socketp)
2182 struct rx_serverQueueEntry *sq;
2183 struct rx_call *call = (struct rx_call *)0, *choice2;
2184 struct rx_service *service = NULL;
2188 MUTEX_ENTER(&freeSQEList_lock);
2190 if ((sq = rx_FreeSQEList)) {
2191 rx_FreeSQEList = *(struct rx_serverQueueEntry **)sq;
2192 MUTEX_EXIT(&freeSQEList_lock);
2193 } else { /* otherwise allocate a new one and return that */
2194 MUTEX_EXIT(&freeSQEList_lock);
2195 sq = rxi_Alloc(sizeof(struct rx_serverQueueEntry));
2196 MUTEX_INIT(&sq->lock, "server Queue lock", MUTEX_DEFAULT, 0);
2197 CV_INIT(&sq->cv, "server Queue lock", CV_DEFAULT, 0);
2199 MUTEX_ENTER(&sq->lock);
2201 if (cur_service != NULL) {
2202 cur_service->nRequestsRunning--;
2203 MUTEX_ENTER(&rx_quota_mutex);
2204 if (cur_service->nRequestsRunning < cur_service->minProcs)
2207 MUTEX_EXIT(&rx_quota_mutex);
2209 if (queue_IsNotEmpty(&rx_incomingCallQueue)) {
2210 struct rx_call *tcall, *ncall;
2211 /* Scan for eligible incoming calls. A call is not eligible
2212 * if the maximum number of calls for its service type are
2213 * already executing */
2214 /* One thread will process calls FCFS (to prevent starvation),
2215 * while the other threads may run ahead looking for calls which
2216 * have all their input data available immediately. This helps
2217 * keep threads from blocking, waiting for data from the client. */
2218 choice2 = (struct rx_call *)0;
2219 for (queue_Scan(&rx_incomingCallQueue, tcall, ncall, rx_call)) {
2220 service = tcall->conn->service;
2221 if (QuotaOK(service)) {
2222 MUTEX_ENTER(&rx_pthread_mutex);
2223 if (tno == rxi_fcfs_thread_num
2224 || !tcall->queue_item_header.next) {
2225 MUTEX_EXIT(&rx_pthread_mutex);
2226 /* If we're the fcfs thread, then we'll just use
2227 * this call. If we haven't been able to find an optimal
2228 * choice, and we're at the end of the list, then use a
2229 * 2d choice if one has been identified. Otherwise... */
2230 call = (choice2 ? choice2 : tcall);
2231 service = call->conn->service;
2233 MUTEX_EXIT(&rx_pthread_mutex);
2234 if (!queue_IsEmpty(&tcall->rq)) {
2235 struct rx_packet *rp;
2236 rp = queue_First(&tcall->rq, rx_packet);
2237 if (rp->header.seq == 1
2239 || (rp->header.flags & RX_LAST_PACKET))) {
2241 } else if (rxi_2dchoice && !choice2
2242 && !(tcall->flags & RX_CALL_CLEARED)
2243 && (tcall->rprev > rxi_HardAckRate)) {
2257 /* we can't schedule a call if there's no data!!! */
2258 /* send an ack if there's no data, if we're missing the
2259 * first packet, or we're missing something between first
2260 * and last -- there's a "hole" in the incoming data. */
2261 if (queue_IsEmpty(&call->rq)
2262 || queue_First(&call->rq, rx_packet)->header.seq != 1
2263 || call->rprev != queue_Last(&call->rq, rx_packet)->header.seq)
2264 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
2266 call->flags &= (~RX_CALL_WAIT_PROC);
2267 service->nRequestsRunning++;
2268 /* just started call in minProcs pool, need fewer to maintain
2270 MUTEX_ENTER(&rx_quota_mutex);
2271 if (service->nRequestsRunning <= service->minProcs)
2274 MUTEX_EXIT(&rx_quota_mutex);
2275 rx_atomic_dec(&rx_nWaiting);
2276 /* MUTEX_EXIT(&call->lock); */
2278 /* If there are no eligible incoming calls, add this process
2279 * to the idle server queue, to wait for one */
2282 *socketp = OSI_NULLSOCKET;
2284 sq->socketp = socketp;
2285 queue_Append(&rx_idleServerQueue, sq);
2289 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
2291 rxi_Free(sq, sizeof(struct rx_serverQueueEntry));
2292 return (struct rx_call *)0;
2295 } while (!(call = sq->newcall)
2296 && !(socketp && *socketp != OSI_NULLSOCKET));
2298 MUTEX_EXIT(&sq->lock);
2300 MUTEX_ENTER(&freeSQEList_lock);
2301 *(struct rx_serverQueueEntry **)sq = rx_FreeSQEList;
2302 rx_FreeSQEList = sq;
2303 MUTEX_EXIT(&freeSQEList_lock);
2306 clock_GetTime(&call->startTime);
2307 call->state = RX_STATE_ACTIVE;
2308 call->mode = RX_MODE_RECEIVING;
2309 #ifdef RX_KERNEL_TRACE
2310 if (ICL_SETACTIVE(afs_iclSetp)) {
2311 int glockOwner = ISAFS_GLOCK();
2314 afs_Trace3(afs_iclSetp, CM_TRACE_WASHERE, ICL_TYPE_STRING,
2315 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
2322 rxi_calltrace(RX_CALL_START, call);
2323 dpf(("rx_GetCall(port=%d, service=%d) ==> call %p\n",
2324 call->conn->service->servicePort, call->conn->service->serviceId,
2327 dpf(("rx_GetCall(socketp=%p, *socketp=0x%x)\n", socketp, *socketp));
2334 #endif /* RX_ENABLE_LOCKS */
2338 /* Establish a procedure to be called when a packet arrives for a
2339 * call. This routine will be called at most once after each call,
2340 * and will also be called if there is an error condition on the or
2341 * the call is complete. Used by multi rx to build a selection
2342 * function which determines which of several calls is likely to be a
2343 * good one to read from.
2344 * NOTE: the way this is currently implemented it is probably only a
2345 * good idea to (1) use it immediately after a newcall (clients only)
2346 * and (2) only use it once. Other uses currently void your warranty
2349 rx_SetArrivalProc(struct rx_call *call,
2350 void (*proc) (struct rx_call * call,
2353 void * handle, int arg)
2355 call->arrivalProc = proc;
2356 call->arrivalProcHandle = handle;
2357 call->arrivalProcArg = arg;
2360 /* Call is finished (possibly prematurely). Return rc to the peer, if
2361 * appropriate, and return the final error code from the conversation
2365 rx_EndCall(struct rx_call *call, afs_int32 rc)
2367 struct rx_connection *conn = call->conn;
2371 dpf(("rx_EndCall(call %"AFS_PTR_FMT" rc %d error %d abortCode %d)\n",
2372 call, rc, call->error, call->abortCode));
2375 MUTEX_ENTER(&call->lock);
2377 if (rc == 0 && call->error == 0) {
2378 call->abortCode = 0;
2379 call->abortCount = 0;
2382 call->arrivalProc = (void (*)())0;
2383 if (rc && call->error == 0) {
2384 rxi_CallError(call, rc);
2385 call->mode = RX_MODE_ERROR;
2386 /* Send an abort message to the peer if this error code has
2387 * only just been set. If it was set previously, assume the
2388 * peer has already been sent the error code or will request it
2390 rxi_SendCallAbort(call, (struct rx_packet *)0, 0, 0);
2392 if (conn->type == RX_SERVER_CONNECTION) {
2393 /* Make sure reply or at least dummy reply is sent */
2394 if (call->mode == RX_MODE_RECEIVING) {
2395 MUTEX_EXIT(&call->lock);
2396 rxi_WriteProc(call, 0, 0);
2397 MUTEX_ENTER(&call->lock);
2399 if (call->mode == RX_MODE_SENDING) {
2400 MUTEX_EXIT(&call->lock);
2401 rxi_FlushWrite(call);
2402 MUTEX_ENTER(&call->lock);
2404 rxi_calltrace(RX_CALL_END, call);
2405 /* Call goes to hold state until reply packets are acknowledged */
2406 if (call->tfirst + call->nSoftAcked < call->tnext) {
2407 call->state = RX_STATE_HOLD;
2409 call->state = RX_STATE_DALLY;
2410 rxi_ClearTransmitQueue(call, 0);
2411 rxi_rto_cancel(call);
2412 rxevent_Cancel(&call->keepAliveEvent, call,
2413 RX_CALL_REFCOUNT_ALIVE);
2415 } else { /* Client connection */
2417 /* Make sure server receives input packets, in the case where
2418 * no reply arguments are expected */
2419 if ((call->mode == RX_MODE_SENDING)
2420 || (call->mode == RX_MODE_RECEIVING && call->rnext == 1)) {
2421 MUTEX_EXIT(&call->lock);
2422 (void)rxi_ReadProc(call, &dummy, 1);
2423 MUTEX_ENTER(&call->lock);
2426 /* If we had an outstanding delayed ack, be nice to the server
2427 * and force-send it now.
2429 if (call->delayedAckEvent) {
2430 rxevent_Cancel(&call->delayedAckEvent, call,
2431 RX_CALL_REFCOUNT_DELAY);
2432 rxi_SendDelayedAck(NULL, call, NULL, 0);
2435 /* We need to release the call lock since it's lower than the
2436 * conn_call_lock and we don't want to hold the conn_call_lock
2437 * over the rx_ReadProc call. The conn_call_lock needs to be held
2438 * here for the case where rx_NewCall is perusing the calls on
2439 * the connection structure. We don't want to signal until
2440 * rx_NewCall is in a stable state. Otherwise, rx_NewCall may
2441 * have checked this call, found it active and by the time it
2442 * goes to sleep, will have missed the signal.
2444 MUTEX_EXIT(&call->lock);
2445 MUTEX_ENTER(&conn->conn_call_lock);
2446 MUTEX_ENTER(&call->lock);
2448 if (!(call->flags & RX_CALL_PEER_BUSY)) {
2449 conn->lastBusy[call->channel] = 0;
2452 MUTEX_ENTER(&conn->conn_data_lock);
2453 conn->flags |= RX_CONN_BUSY;
2454 if (conn->flags & RX_CONN_MAKECALL_WAITING) {
2455 MUTEX_EXIT(&conn->conn_data_lock);
2456 #ifdef RX_ENABLE_LOCKS
2457 CV_BROADCAST(&conn->conn_call_cv);
2462 #ifdef RX_ENABLE_LOCKS
2464 MUTEX_EXIT(&conn->conn_data_lock);
2466 #endif /* RX_ENABLE_LOCKS */
2467 call->state = RX_STATE_DALLY;
2469 error = call->error;
2471 /* currentPacket, nLeft, and NFree must be zeroed here, because
2472 * ResetCall cannot: ResetCall may be called at splnet(), in the
2473 * kernel version, and may interrupt the macros rx_Read or
2474 * rx_Write, which run at normal priority for efficiency. */
2475 if (call->currentPacket) {
2476 #ifdef RX_TRACK_PACKETS
2477 call->currentPacket->flags &= ~RX_PKTFLAG_CP;
2479 rxi_FreePacket(call->currentPacket);
2480 call->currentPacket = (struct rx_packet *)0;
2483 call->nLeft = call->nFree = call->curlen = 0;
2485 /* Free any packets from the last call to ReadvProc/WritevProc */
2486 #ifdef RXDEBUG_PACKET
2488 #endif /* RXDEBUG_PACKET */
2489 rxi_FreePackets(0, &call->iovq);
2490 MUTEX_EXIT(&call->lock);
2492 CALL_RELE(call, RX_CALL_REFCOUNT_BEGIN);
2493 if (conn->type == RX_CLIENT_CONNECTION) {
2494 MUTEX_ENTER(&conn->conn_data_lock);
2495 conn->flags &= ~RX_CONN_BUSY;
2496 MUTEX_EXIT(&conn->conn_data_lock);
2497 MUTEX_EXIT(&conn->conn_call_lock);
2501 * Map errors to the local host's errno.h format.
2503 error = ntoh_syserr_conv(error);
2507 #if !defined(KERNEL)
2509 /* Call this routine when shutting down a server or client (especially
2510 * clients). This will allow Rx to gracefully garbage collect server
2511 * connections, and reduce the number of retries that a server might
2512 * make to a dead client.
2513 * This is not quite right, since some calls may still be ongoing and
2514 * we can't lock them to destroy them. */
2518 struct rx_connection **conn_ptr, **conn_end;
2522 if (rxinit_status == 1) {
2524 return; /* Already shutdown. */
2526 rxi_DeleteCachedConnections();
2527 if (rx_connHashTable) {
2528 MUTEX_ENTER(&rx_connHashTable_lock);
2529 for (conn_ptr = &rx_connHashTable[0], conn_end =
2530 &rx_connHashTable[rx_hashTableSize]; conn_ptr < conn_end;
2532 struct rx_connection *conn, *next;
2533 for (conn = *conn_ptr; conn; conn = next) {
2535 if (conn->type == RX_CLIENT_CONNECTION) {
2536 MUTEX_ENTER(&rx_refcnt_mutex);
2538 MUTEX_EXIT(&rx_refcnt_mutex);
2539 #ifdef RX_ENABLE_LOCKS
2540 rxi_DestroyConnectionNoLock(conn);
2541 #else /* RX_ENABLE_LOCKS */
2542 rxi_DestroyConnection(conn);
2543 #endif /* RX_ENABLE_LOCKS */
2547 #ifdef RX_ENABLE_LOCKS
2548 while (rx_connCleanup_list) {
2549 struct rx_connection *conn;
2550 conn = rx_connCleanup_list;
2551 rx_connCleanup_list = rx_connCleanup_list->next;
2552 MUTEX_EXIT(&rx_connHashTable_lock);
2553 rxi_CleanupConnection(conn);
2554 MUTEX_ENTER(&rx_connHashTable_lock);
2556 MUTEX_EXIT(&rx_connHashTable_lock);
2557 #endif /* RX_ENABLE_LOCKS */
2562 afs_winsockCleanup();
2570 /* if we wakeup packet waiter too often, can get in loop with two
2571 AllocSendPackets each waking each other up (from ReclaimPacket calls) */
2573 rxi_PacketsUnWait(void)
2575 if (!rx_waitingForPackets) {
2579 if (rxi_OverQuota(RX_PACKET_CLASS_SEND)) {
2580 return; /* still over quota */
2583 rx_waitingForPackets = 0;
2584 #ifdef RX_ENABLE_LOCKS
2585 CV_BROADCAST(&rx_waitingForPackets_cv);
2587 osi_rxWakeup(&rx_waitingForPackets);
2593 /* ------------------Internal interfaces------------------------- */
2595 /* Return this process's service structure for the
2596 * specified socket and service */
2597 static struct rx_service *
2598 rxi_FindService(osi_socket socket, u_short serviceId)
2600 struct rx_service **sp;
2601 for (sp = &rx_services[0]; *sp; sp++) {
2602 if ((*sp)->serviceId == serviceId && (*sp)->socket == socket)
2608 #ifdef RXDEBUG_PACKET
2609 #ifdef KDUMP_RX_LOCK
2610 static struct rx_call_rx_lock *rx_allCallsp = 0;
2612 static struct rx_call *rx_allCallsp = 0;
2614 #endif /* RXDEBUG_PACKET */
2616 /* Allocate a call structure, for the indicated channel of the
2617 * supplied connection. The mode and state of the call must be set by
2618 * the caller. Returns the call with mutex locked. */
2619 static struct rx_call *
2620 rxi_NewCall(struct rx_connection *conn, int channel)
2622 struct rx_call *call;
2623 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2624 struct rx_call *cp; /* Call pointer temp */
2625 struct rx_call *nxp; /* Next call pointer, for queue_Scan */
2626 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2628 dpf(("rxi_NewCall(conn %"AFS_PTR_FMT", channel %d)\n", conn, channel));
2630 /* Grab an existing call structure, or allocate a new one.
2631 * Existing call structures are assumed to have been left reset by
2633 MUTEX_ENTER(&rx_freeCallQueue_lock);
2635 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2637 * EXCEPT that the TQ might not yet be cleared out.
2638 * Skip over those with in-use TQs.
2641 for (queue_Scan(&rx_freeCallQueue, cp, nxp, rx_call)) {
2642 if (!(cp->flags & RX_CALL_TQ_BUSY)) {
2648 #else /* AFS_GLOBAL_RXLOCK_KERNEL */
2649 if (queue_IsNotEmpty(&rx_freeCallQueue)) {
2650 call = queue_First(&rx_freeCallQueue, rx_call);
2651 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2653 if (rx_stats_active)
2654 rx_atomic_dec(&rx_stats.nFreeCallStructs);
2655 MUTEX_EXIT(&rx_freeCallQueue_lock);
2656 MUTEX_ENTER(&call->lock);
2657 CLEAR_CALL_QUEUE_LOCK(call);
2658 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2659 /* Now, if TQ wasn't cleared earlier, do it now. */
2660 rxi_WaitforTQBusy(call);
2661 if (call->flags & RX_CALL_TQ_CLEARME) {
2662 rxi_ClearTransmitQueue(call, 1);
2663 /*queue_Init(&call->tq);*/
2665 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2666 /* Bind the call to its connection structure */
2668 rxi_ResetCall(call, 1);
2671 call = rxi_Alloc(sizeof(struct rx_call));
2672 #ifdef RXDEBUG_PACKET
2673 call->allNextp = rx_allCallsp;
2674 rx_allCallsp = call;
2676 rx_atomic_inc_and_read(&rx_stats.nCallStructs);
2677 #else /* RXDEBUG_PACKET */
2678 rx_atomic_inc(&rx_stats.nCallStructs);
2679 #endif /* RXDEBUG_PACKET */
2681 MUTEX_EXIT(&rx_freeCallQueue_lock);
2682 MUTEX_INIT(&call->lock, "call lock", MUTEX_DEFAULT, NULL);
2683 MUTEX_ENTER(&call->lock);
2684 CV_INIT(&call->cv_twind, "call twind", CV_DEFAULT, 0);
2685 CV_INIT(&call->cv_rq, "call rq", CV_DEFAULT, 0);
2686 CV_INIT(&call->cv_tq, "call tq", CV_DEFAULT, 0);
2688 /* Initialize once-only items */
2689 queue_Init(&call->tq);
2690 queue_Init(&call->rq);
2691 queue_Init(&call->iovq);
2692 #ifdef RXDEBUG_PACKET
2693 call->rqc = call->tqc = call->iovqc = 0;
2694 #endif /* RXDEBUG_PACKET */
2695 /* Bind the call to its connection structure (prereq for reset) */
2697 rxi_ResetCall(call, 1);
2699 call->channel = channel;
2700 call->callNumber = &conn->callNumber[channel];
2701 call->rwind = conn->rwind[channel];
2702 call->twind = conn->twind[channel];
2703 /* Note that the next expected call number is retained (in
2704 * conn->callNumber[i]), even if we reallocate the call structure
2706 conn->call[channel] = call;
2707 /* if the channel's never been used (== 0), we should start at 1, otherwise
2708 * the call number is valid from the last time this channel was used */
2709 if (*call->callNumber == 0)
2710 *call->callNumber = 1;
2715 /* A call has been inactive long enough that so we can throw away
2716 * state, including the call structure, which is placed on the call
2719 * call->lock amd rx_refcnt_mutex are held upon entry.
2720 * haveCTLock is set when called from rxi_ReapConnections.
2722 * return 1 if the call is freed, 0 if not.
2725 rxi_FreeCall(struct rx_call *call, int haveCTLock)
2727 int channel = call->channel;
2728 struct rx_connection *conn = call->conn;
2729 u_char state = call->state;
2732 * We are setting the state to RX_STATE_RESET to
2733 * ensure that no one else will attempt to use this
2734 * call once we drop the refcnt lock. We must drop
2735 * the refcnt lock before calling rxi_ResetCall
2736 * because it cannot be held across acquiring the
2737 * freepktQ lock. NewCall does the same.
2739 call->state = RX_STATE_RESET;
2740 MUTEX_EXIT(&rx_refcnt_mutex);
2741 rxi_ResetCall(call, 0);
2743 if (MUTEX_TRYENTER(&conn->conn_call_lock))
2745 if (state == RX_STATE_DALLY || state == RX_STATE_HOLD)
2746 (*call->callNumber)++;
2748 if (call->conn->call[channel] == call)
2749 call->conn->call[channel] = 0;
2750 MUTEX_EXIT(&conn->conn_call_lock);
2753 * We couldn't obtain the conn_call_lock so we can't
2754 * disconnect the call from the connection. Set the
2755 * call state to dally so that the call can be reused.
2757 MUTEX_ENTER(&rx_refcnt_mutex);
2758 call->state = RX_STATE_DALLY;
2762 MUTEX_ENTER(&rx_freeCallQueue_lock);
2763 SET_CALL_QUEUE_LOCK(call, &rx_freeCallQueue_lock);
2764 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2765 /* A call may be free even though its transmit queue is still in use.
2766 * Since we search the call list from head to tail, put busy calls at
2767 * the head of the list, and idle calls at the tail.
2769 if (call->flags & RX_CALL_TQ_BUSY)
2770 queue_Prepend(&rx_freeCallQueue, call);
2772 queue_Append(&rx_freeCallQueue, call);
2773 #else /* AFS_GLOBAL_RXLOCK_KERNEL */
2774 queue_Append(&rx_freeCallQueue, call);
2775 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2776 if (rx_stats_active)
2777 rx_atomic_inc(&rx_stats.nFreeCallStructs);
2778 MUTEX_EXIT(&rx_freeCallQueue_lock);
2780 /* Destroy the connection if it was previously slated for
2781 * destruction, i.e. the Rx client code previously called
2782 * rx_DestroyConnection (client connections), or
2783 * rxi_ReapConnections called the same routine (server
2784 * connections). Only do this, however, if there are no
2785 * outstanding calls. Note that for fine grain locking, there appears
2786 * to be a deadlock in that rxi_FreeCall has a call locked and
2787 * DestroyConnectionNoLock locks each call in the conn. But note a
2788 * few lines up where we have removed this call from the conn.
2789 * If someone else destroys a connection, they either have no
2790 * call lock held or are going through this section of code.
2792 MUTEX_ENTER(&conn->conn_data_lock);
2793 if (conn->flags & RX_CONN_DESTROY_ME && !(conn->flags & RX_CONN_MAKECALL_WAITING)) {
2794 MUTEX_ENTER(&rx_refcnt_mutex);
2796 MUTEX_EXIT(&rx_refcnt_mutex);
2797 MUTEX_EXIT(&conn->conn_data_lock);
2798 #ifdef RX_ENABLE_LOCKS
2800 rxi_DestroyConnectionNoLock(conn);
2802 rxi_DestroyConnection(conn);
2803 #else /* RX_ENABLE_LOCKS */
2804 rxi_DestroyConnection(conn);
2805 #endif /* RX_ENABLE_LOCKS */
2807 MUTEX_EXIT(&conn->conn_data_lock);
2809 MUTEX_ENTER(&rx_refcnt_mutex);
2813 rx_atomic_t rxi_Allocsize = RX_ATOMIC_INIT(0);
2814 rx_atomic_t rxi_Alloccnt = RX_ATOMIC_INIT(0);
2817 rxi_Alloc(size_t size)
2821 if (rx_stats_active) {
2822 rx_atomic_add(&rxi_Allocsize, (int) size);
2823 rx_atomic_inc(&rxi_Alloccnt);
2827 #if defined(KERNEL) && !defined(UKERNEL) && defined(AFS_FBSD80_ENV)
2828 afs_osi_Alloc_NoSleep(size);
2833 osi_Panic("rxi_Alloc error");
2839 rxi_Free(void *addr, size_t size)
2841 if (rx_stats_active) {
2842 rx_atomic_sub(&rxi_Allocsize, (int) size);
2843 rx_atomic_dec(&rxi_Alloccnt);
2845 osi_Free(addr, size);
2849 rxi_SetPeerMtu(struct rx_peer *peer, afs_uint32 host, afs_uint32 port, int mtu)
2851 struct rx_peer **peer_ptr = NULL, **peer_end = NULL;
2852 struct rx_peer *next = NULL;
2856 MUTEX_ENTER(&rx_peerHashTable_lock);
2858 peer_ptr = &rx_peerHashTable[0];
2859 peer_end = &rx_peerHashTable[rx_hashTableSize];
2862 for ( ; peer_ptr < peer_end; peer_ptr++) {
2865 for ( ; peer; peer = next) {
2867 if (host == peer->host)
2872 hashIndex = PEER_HASH(host, port);
2873 for (peer = rx_peerHashTable[hashIndex]; peer; peer = peer->next) {
2874 if ((peer->host == host) && (peer->port == port))
2879 MUTEX_ENTER(&rx_peerHashTable_lock);
2884 MUTEX_EXIT(&rx_peerHashTable_lock);
2886 MUTEX_ENTER(&peer->peer_lock);
2887 /* We don't handle dropping below min, so don't */
2888 mtu = MAX(mtu, RX_MIN_PACKET_SIZE);
2889 peer->ifMTU=MIN(mtu, peer->ifMTU);
2890 peer->natMTU = rxi_AdjustIfMTU(peer->ifMTU);
2891 /* if we tweaked this down, need to tune our peer MTU too */
2892 peer->MTU = MIN(peer->MTU, peer->natMTU);
2893 /* if we discovered a sub-1500 mtu, degrade */
2894 if (peer->ifMTU < OLD_MAX_PACKET_SIZE)
2895 peer->maxDgramPackets = 1;
2896 /* We no longer have valid peer packet information */
2897 if (peer->maxPacketSize-RX_IPUDP_SIZE > peer->ifMTU)
2898 peer->maxPacketSize = 0;
2899 MUTEX_EXIT(&peer->peer_lock);
2901 MUTEX_ENTER(&rx_peerHashTable_lock);
2903 if (host && !port) {
2905 /* pick up where we left off */
2909 MUTEX_EXIT(&rx_peerHashTable_lock);
2912 /* Find the peer process represented by the supplied (host,port)
2913 * combination. If there is no appropriate active peer structure, a
2914 * new one will be allocated and initialized
2915 * The origPeer, if set, is a pointer to a peer structure on which the
2916 * refcount will be be decremented. This is used to replace the peer
2917 * structure hanging off a connection structure */
2919 rxi_FindPeer(afs_uint32 host, u_short port,
2920 struct rx_peer *origPeer, int create)
2924 hashIndex = PEER_HASH(host, port);
2925 MUTEX_ENTER(&rx_peerHashTable_lock);
2926 for (pp = rx_peerHashTable[hashIndex]; pp; pp = pp->next) {
2927 if ((pp->host == host) && (pp->port == port))
2932 pp = rxi_AllocPeer(); /* This bzero's *pp */
2933 pp->host = host; /* set here or in InitPeerParams is zero */
2935 MUTEX_INIT(&pp->peer_lock, "peer_lock", MUTEX_DEFAULT, 0);
2936 queue_Init(&pp->rpcStats);
2937 pp->next = rx_peerHashTable[hashIndex];
2938 rx_peerHashTable[hashIndex] = pp;
2939 rxi_InitPeerParams(pp);
2940 if (rx_stats_active)
2941 rx_atomic_inc(&rx_stats.nPeerStructs);
2948 origPeer->refCount--;
2949 MUTEX_EXIT(&rx_peerHashTable_lock);
2954 /* Find the connection at (host, port) started at epoch, and with the
2955 * given connection id. Creates the server connection if necessary.
2956 * The type specifies whether a client connection or a server
2957 * connection is desired. In both cases, (host, port) specify the
2958 * peer's (host, pair) pair. Client connections are not made
2959 * automatically by this routine. The parameter socket gives the
2960 * socket descriptor on which the packet was received. This is used,
2961 * in the case of server connections, to check that *new* connections
2962 * come via a valid (port, serviceId). Finally, the securityIndex
2963 * parameter must match the existing index for the connection. If a
2964 * server connection is created, it will be created using the supplied
2965 * index, if the index is valid for this service */
2966 static struct rx_connection *
2967 rxi_FindConnection(osi_socket socket, afs_uint32 host,
2968 u_short port, u_short serviceId, afs_uint32 cid,
2969 afs_uint32 epoch, int type, u_int securityIndex)
2971 int hashindex, flag, i;
2972 struct rx_connection *conn;
2973 hashindex = CONN_HASH(host, port, cid, epoch, type);
2974 MUTEX_ENTER(&rx_connHashTable_lock);
2975 rxLastConn ? (conn = rxLastConn, flag = 0) : (conn =
2976 rx_connHashTable[hashindex],
2979 if ((conn->type == type) && ((cid & RX_CIDMASK) == conn->cid)
2980 && (epoch == conn->epoch)) {
2981 struct rx_peer *pp = conn->peer;
2982 if (securityIndex != conn->securityIndex) {
2983 /* this isn't supposed to happen, but someone could forge a packet
2984 * like this, and there seems to be some CM bug that makes this
2985 * happen from time to time -- in which case, the fileserver
2987 MUTEX_EXIT(&rx_connHashTable_lock);
2988 return (struct rx_connection *)0;
2990 if (pp->host == host && pp->port == port)
2992 if (type == RX_CLIENT_CONNECTION && pp->port == port)
2994 /* So what happens when it's a callback connection? */
2995 if ( /*type == RX_CLIENT_CONNECTION && */
2996 (conn->epoch & 0x80000000))
3000 /* the connection rxLastConn that was used the last time is not the
3001 ** one we are looking for now. Hence, start searching in the hash */
3003 conn = rx_connHashTable[hashindex];
3008 struct rx_service *service;
3009 if (type == RX_CLIENT_CONNECTION) {
3010 MUTEX_EXIT(&rx_connHashTable_lock);
3011 return (struct rx_connection *)0;
3013 service = rxi_FindService(socket, serviceId);
3014 if (!service || (securityIndex >= service->nSecurityObjects)
3015 || (service->securityObjects[securityIndex] == 0)) {
3016 MUTEX_EXIT(&rx_connHashTable_lock);
3017 return (struct rx_connection *)0;
3019 conn = rxi_AllocConnection(); /* This bzero's the connection */
3020 MUTEX_INIT(&conn->conn_call_lock, "conn call lock", MUTEX_DEFAULT, 0);
3021 MUTEX_INIT(&conn->conn_data_lock, "conn data lock", MUTEX_DEFAULT, 0);
3022 CV_INIT(&conn->conn_call_cv, "conn call cv", CV_DEFAULT, 0);
3023 conn->next = rx_connHashTable[hashindex];
3024 rx_connHashTable[hashindex] = conn;
3025 conn->peer = rxi_FindPeer(host, port, 0, 1);
3026 conn->type = RX_SERVER_CONNECTION;
3027 conn->lastSendTime = clock_Sec(); /* don't GC immediately */
3028 conn->epoch = epoch;
3029 conn->cid = cid & RX_CIDMASK;
3030 conn->ackRate = RX_FAST_ACK_RATE;
3031 conn->service = service;
3032 conn->serviceId = serviceId;
3033 conn->securityIndex = securityIndex;
3034 conn->securityObject = service->securityObjects[securityIndex];
3035 conn->nSpecific = 0;
3036 conn->specific = NULL;
3037 rx_SetConnDeadTime(conn, service->connDeadTime);
3038 conn->idleDeadTime = service->idleDeadTime;
3039 conn->idleDeadDetection = service->idleDeadErr ? 1 : 0;
3040 for (i = 0; i < RX_MAXCALLS; i++) {
3041 conn->twind[i] = rx_initSendWindow;
3042 conn->rwind[i] = rx_initReceiveWindow;
3044 /* Notify security object of the new connection */
3045 RXS_NewConnection(conn->securityObject, conn);
3046 /* XXXX Connection timeout? */
3047 if (service->newConnProc)
3048 (*service->newConnProc) (conn);
3049 if (rx_stats_active)
3050 rx_atomic_inc(&rx_stats.nServerConns);
3053 MUTEX_ENTER(&rx_refcnt_mutex);
3055 MUTEX_EXIT(&rx_refcnt_mutex);
3057 rxLastConn = conn; /* store this connection as the last conn used */
3058 MUTEX_EXIT(&rx_connHashTable_lock);
3063 * Timeout a call on a busy call channel if appropriate.
3065 * @param[in] call The busy call.
3067 * @pre 'call' is marked as busy (namely,
3068 * call->conn->lastBusy[call->channel] != 0)
3070 * @pre call->lock is held
3071 * @pre rxi_busyChannelError is nonzero
3073 * @note call->lock is dropped and reacquired
3076 rxi_CheckBusy(struct rx_call *call)
3078 struct rx_connection *conn = call->conn;
3079 int channel = call->channel;
3080 int freechannel = 0;
3082 afs_uint32 callNumber;
3084 MUTEX_EXIT(&call->lock);
3086 MUTEX_ENTER(&conn->conn_call_lock);
3087 callNumber = *call->callNumber;
3089 /* Are there any other call slots on this conn that we should try? Look for
3090 * slots that are empty and are either non-busy, or were marked as busy
3091 * longer than conn->secondsUntilDead seconds before this call started. */
3093 for (i = 0; i < RX_MAXCALLS && !freechannel; i++) {
3095 /* only look at channels that aren't us */
3099 if (conn->lastBusy[i]) {
3100 /* if this channel looked busy too recently, don't look at it */
3101 if (conn->lastBusy[i] >= call->startTime.sec) {
3104 if (call->startTime.sec - conn->lastBusy[i] < conn->secondsUntilDead) {
3109 if (conn->call[i]) {
3110 struct rx_call *tcall = conn->call[i];
3111 MUTEX_ENTER(&tcall->lock);
3112 if (tcall->state == RX_STATE_DALLY) {
3115 MUTEX_EXIT(&tcall->lock);
3121 MUTEX_ENTER(&call->lock);
3123 /* Since the call->lock and conn->conn_call_lock have been released it is
3124 * possible that (1) the call may no longer be busy and/or (2) the call may
3125 * have been reused by another waiting thread. Therefore, we must confirm
3126 * that the call state has not changed when deciding whether or not to
3127 * force this application thread to retry by forcing a Timeout error. */
3129 if (freechannel && *call->callNumber == callNumber &&
3130 (call->flags & RX_CALL_PEER_BUSY)) {
3131 /* Since 'freechannel' is set, there exists another channel in this
3132 * rx_conn that the application thread might be able to use. We know
3133 * that we have the correct call since callNumber is unchanged, and we
3134 * know that the call is still busy. So, set the call error state to
3135 * rxi_busyChannelError so the application can retry the request,
3136 * presumably on a less-busy call channel. */
3138 rxi_CallError(call, RX_CALL_BUSY);
3140 MUTEX_EXIT(&conn->conn_call_lock);
3143 /* There are two packet tracing routines available for testing and monitoring
3144 * Rx. One is called just after every packet is received and the other is
3145 * called just before every packet is sent. Received packets, have had their
3146 * headers decoded, and packets to be sent have not yet had their headers
3147 * encoded. Both take two parameters: a pointer to the packet and a sockaddr
3148 * containing the network address. Both can be modified. The return value, if
3149 * non-zero, indicates that the packet should be dropped. */
3151 int (*rx_justReceived) (struct rx_packet *, struct sockaddr_in *) = 0;
3152 int (*rx_almostSent) (struct rx_packet *, struct sockaddr_in *) = 0;
3154 /* A packet has been received off the interface. Np is the packet, socket is
3155 * the socket number it was received from (useful in determining which service
3156 * this packet corresponds to), and (host, port) reflect the host,port of the
3157 * sender. This call returns the packet to the caller if it is finished with
3158 * it, rather than de-allocating it, just as a small performance hack */
3161 rxi_ReceivePacket(struct rx_packet *np, osi_socket socket,
3162 afs_uint32 host, u_short port, int *tnop,
3163 struct rx_call **newcallp)
3165 struct rx_call *call;
3166 struct rx_connection *conn;
3168 afs_uint32 currentCallNumber;
3173 struct rx_packet *tnp;
3176 /* We don't print out the packet until now because (1) the time may not be
3177 * accurate enough until now in the lwp implementation (rx_Listener only gets
3178 * the time after the packet is read) and (2) from a protocol point of view,
3179 * this is the first time the packet has been seen */
3180 packetType = (np->header.type > 0 && np->header.type < RX_N_PACKET_TYPES)
3181 ? rx_packetTypes[np->header.type - 1] : "*UNKNOWN*";
3182 dpf(("R %d %s: %x.%d.%d.%d.%d.%d.%d flags %d, packet %"AFS_PTR_FMT"\n",
3183 np->header.serial, packetType, ntohl(host), ntohs(port), np->header.serviceId,
3184 np->header.epoch, np->header.cid, np->header.callNumber,
3185 np->header.seq, np->header.flags, np));
3188 /* Account for connectionless packets */
3189 if (rx_stats_active &&
3190 ((np->header.type == RX_PACKET_TYPE_VERSION) ||
3191 (np->header.type == RX_PACKET_TYPE_DEBUG))) {
3192 struct rx_peer *peer;
3194 /* Try to look up the peer structure, but don't create one */
3195 peer = rxi_FindPeer(host, port, 0, 0);
3197 /* Since this may not be associated with a connection, it may have
3198 * no refCount, meaning we could race with ReapConnections
3201 if (peer && (peer->refCount > 0)) {
3202 MUTEX_ENTER(&peer->peer_lock);
3203 hadd32(peer->bytesReceived, np->length);
3204 MUTEX_EXIT(&peer->peer_lock);
3208 if (np->header.type == RX_PACKET_TYPE_VERSION) {
3209 return rxi_ReceiveVersionPacket(np, socket, host, port, 1);
3212 if (np->header.type == RX_PACKET_TYPE_DEBUG) {
3213 return rxi_ReceiveDebugPacket(np, socket, host, port, 1);
3216 /* If an input tracer function is defined, call it with the packet and
3217 * network address. Note this function may modify its arguments. */
3218 if (rx_justReceived) {
3219 struct sockaddr_in addr;
3221 addr.sin_family = AF_INET;
3222 addr.sin_port = port;
3223 addr.sin_addr.s_addr = host;
3224 #ifdef STRUCT_SOCKADDR_HAS_SA_LEN
3225 addr.sin_len = sizeof(addr);
3226 #endif /* AFS_OSF_ENV */
3227 drop = (*rx_justReceived) (np, &addr);
3228 /* drop packet if return value is non-zero */
3231 port = addr.sin_port; /* in case fcn changed addr */
3232 host = addr.sin_addr.s_addr;
3236 /* If packet was not sent by the client, then *we* must be the client */
3237 type = ((np->header.flags & RX_CLIENT_INITIATED) != RX_CLIENT_INITIATED)
3238 ? RX_CLIENT_CONNECTION : RX_SERVER_CONNECTION;
3240 /* Find the connection (or fabricate one, if we're the server & if
3241 * necessary) associated with this packet */
3243 rxi_FindConnection(socket, host, port, np->header.serviceId,
3244 np->header.cid, np->header.epoch, type,
3245 np->header.securityIndex);
3248 /* If no connection found or fabricated, just ignore the packet.
3249 * (An argument could be made for sending an abort packet for
3254 /* If we're doing statistics, then account for the incoming packet */
3255 if (rx_stats_active) {
3256 MUTEX_ENTER(&conn->peer->peer_lock);
3257 hadd32(conn->peer->bytesReceived, np->length);
3258 MUTEX_EXIT(&conn->peer->peer_lock);
3261 /* If the connection is in an error state, send an abort packet and ignore
3262 * the incoming packet */
3264 /* Don't respond to an abort packet--we don't want loops! */
3265 MUTEX_ENTER(&conn->conn_data_lock);
3266 if (np->header.type != RX_PACKET_TYPE_ABORT)
3267 np = rxi_SendConnectionAbort(conn, np, 1, 0);
3268 putConnection(conn);
3269 MUTEX_EXIT(&conn->conn_data_lock);
3273 /* Check for connection-only requests (i.e. not call specific). */
3274 if (np->header.callNumber == 0) {
3275 switch (np->header.type) {
3276 case RX_PACKET_TYPE_ABORT: {
3277 /* What if the supplied error is zero? */
3278 afs_int32 errcode = ntohl(rx_GetInt32(np, 0));
3279 dpf(("rxi_ReceivePacket ABORT rx_GetInt32 = %d\n", errcode));
3280 rxi_ConnectionError(conn, errcode);
3281 putConnection(conn);
3284 case RX_PACKET_TYPE_CHALLENGE:
3285 tnp = rxi_ReceiveChallengePacket(conn, np, 1);
3286 putConnection(conn);
3288 case RX_PACKET_TYPE_RESPONSE:
3289 tnp = rxi_ReceiveResponsePacket(conn, np, 1);
3290 putConnection(conn);
3292 case RX_PACKET_TYPE_PARAMS:
3293 case RX_PACKET_TYPE_PARAMS + 1:
3294 case RX_PACKET_TYPE_PARAMS + 2:
3295 /* ignore these packet types for now */
3296 putConnection(conn);
3300 /* Should not reach here, unless the peer is broken: send an
3302 rxi_ConnectionError(conn, RX_PROTOCOL_ERROR);
3303 MUTEX_ENTER(&conn->conn_data_lock);
3304 tnp = rxi_SendConnectionAbort(conn, np, 1, 0);
3305 putConnection(conn);
3306 MUTEX_EXIT(&conn->conn_data_lock);
3311 channel = np->header.cid & RX_CHANNELMASK;
3312 MUTEX_ENTER(&conn->conn_call_lock);
3313 call = conn->call[channel];
3316 MUTEX_ENTER(&call->lock);
3317 currentCallNumber = conn->callNumber[channel];
3318 MUTEX_EXIT(&conn->conn_call_lock);
3319 } else if (type == RX_SERVER_CONNECTION) { /* No call allocated */
3320 call = conn->call[channel];
3322 MUTEX_ENTER(&call->lock);
3323 currentCallNumber = conn->callNumber[channel];
3324 MUTEX_EXIT(&conn->conn_call_lock);
3326 call = rxi_NewCall(conn, channel); /* returns locked call */
3327 *call->callNumber = currentCallNumber = np->header.callNumber;
3328 MUTEX_EXIT(&conn->conn_call_lock);
3330 if (np->header.callNumber == 0)
3331 dpf(("RecPacket call 0 %d %s: %x.%u.%u.%u.%u.%u.%u flags %d, packet %"AFS_PTR_FMT" len %d\n",
3332 np->header.serial, rx_packetTypes[np->header.type - 1], ntohl(conn->peer->host), ntohs(conn->peer->port),
3333 np->header.serial, np->header.epoch, np->header.cid, np->header.callNumber, np->header.seq,
3334 np->header.flags, np, np->length));
3336 call->state = RX_STATE_PRECALL;
3337 clock_GetTime(&call->queueTime);
3338 hzero(call->bytesSent);
3339 hzero(call->bytesRcvd);
3341 * If the number of queued calls exceeds the overload
3342 * threshold then abort this call.
3344 if ((rx_BusyThreshold > 0) &&
3345 (rx_atomic_read(&rx_nWaiting) > rx_BusyThreshold)) {
3346 struct rx_packet *tp;
3348 rxi_CallError(call, rx_BusyError);
3349 tp = rxi_SendCallAbort(call, np, 1, 0);
3350 MUTEX_EXIT(&call->lock);
3351 putConnection(conn);
3352 if (rx_stats_active)
3353 rx_atomic_inc(&rx_stats.nBusies);
3356 rxi_KeepAliveOn(call);
3358 } else { /* RX_CLIENT_CONNECTION and No call allocated */
3359 /* This packet can't be for this call. If the new call address is
3360 * 0 then no call is running on this channel. If there is a call
3361 * then, since this is a client connection we're getting data for
3362 * it must be for the previous call.
3364 MUTEX_EXIT(&conn->conn_call_lock);
3365 if (rx_stats_active)
3366 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3367 putConnection(conn);
3371 /* There is a non-NULL locked call at this point */
3372 if (type == RX_SERVER_CONNECTION) { /* We're the server */
3373 if (np->header.callNumber < currentCallNumber) {
3374 MUTEX_EXIT(&call->lock);
3375 if (rx_stats_active)
3376 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3377 putConnection(conn);
3379 } else if (np->header.callNumber != currentCallNumber) {
3380 /* Wait until the transmit queue is idle before deciding
3381 * whether to reset the current call. Chances are that the
3382 * call will be in ether DALLY or HOLD state once the TQ_BUSY
3385 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
3386 if (call->state == RX_STATE_ACTIVE) {
3387 rxi_WaitforTQBusy(call);
3389 * If we entered error state while waiting,
3390 * must call rxi_CallError to permit rxi_ResetCall
3391 * to processed when the tqWaiter count hits zero.
3394 rxi_CallError(call, call->error);
3395 MUTEX_EXIT(&call->lock);
3396 putConnection(conn);
3400 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
3401 /* If the new call cannot be taken right now send a busy and set
3402 * the error condition in this call, so that it terminates as
3403 * quickly as possible */
3404 if (call->state == RX_STATE_ACTIVE) {
3405 struct rx_packet *tp;
3407 rxi_CallError(call, RX_CALL_DEAD);
3408 tp = rxi_SendSpecial(call, conn, np, RX_PACKET_TYPE_BUSY,
3410 MUTEX_EXIT(&call->lock);
3411 putConnection(conn);
3414 rxi_ResetCall(call, 0);
3416 * The conn_call_lock is not held but no one else should be
3417 * using this call channel while we are processing this incoming
3418 * packet. This assignment should be safe.
3420 *call->callNumber = np->header.callNumber;
3422 if (np->header.callNumber == 0)
3423 dpf(("RecPacket call 0 %d %s: %x.%u.%u.%u.%u.%u.%u flags %d, packet %"AFS_PTR_FMT" len %d\n",
3424 np->header.serial, rx_packetTypes[np->header.type - 1], ntohl(conn->peer->host), ntohs(conn->peer->port),
3425 np->header.serial, np->header.epoch, np->header.cid, np->header.callNumber, np->header.seq,
3426 np->header.flags, np, np->length));
3428 call->state = RX_STATE_PRECALL;
3429 clock_GetTime(&call->queueTime);
3430 hzero(call->bytesSent);
3431 hzero(call->bytesRcvd);
3433 * If the number of queued calls exceeds the overload
3434 * threshold then abort this call.
3436 if ((rx_BusyThreshold > 0) &&
3437 (rx_atomic_read(&rx_nWaiting) > rx_BusyThreshold)) {
3438 struct rx_packet *tp;
3440 rxi_CallError(call, rx_BusyError);
3441 tp = rxi_SendCallAbort(call, np, 1, 0);
3442 MUTEX_EXIT(&call->lock);
3443 putConnection(conn);
3444 if (rx_stats_active)
3445 rx_atomic_inc(&rx_stats.nBusies);
3448 rxi_KeepAliveOn(call);
3450 /* Continuing call; do nothing here. */
3452 } else { /* we're the client */
3453 /* Ignore all incoming acknowledgements for calls in DALLY state */
3454 if ((call->state == RX_STATE_DALLY)
3455 && (np->header.type == RX_PACKET_TYPE_ACK)) {
3456 if (rx_stats_active)
3457 rx_atomic_inc(&rx_stats.ignorePacketDally);
3458 MUTEX_EXIT(&call->lock);
3459 putConnection(conn);
3463 /* Ignore anything that's not relevant to the current call. If there
3464 * isn't a current call, then no packet is relevant. */
3465 if (np->header.callNumber != currentCallNumber) {
3466 if (rx_stats_active)
3467 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3468 MUTEX_EXIT(&call->lock);
3469 putConnection(conn);
3472 /* If the service security object index stamped in the packet does not
3473 * match the connection's security index, ignore the packet */
3474 if (np->header.securityIndex != conn->securityIndex) {
3475 MUTEX_EXIT(&call->lock);
3476 putConnection(conn);
3480 /* If we're receiving the response, then all transmit packets are
3481 * implicitly acknowledged. Get rid of them. */
3482 if (np->header.type == RX_PACKET_TYPE_DATA) {
3483 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
3484 /* XXX Hack. Because we must release the global rx lock when
3485 * sending packets (osi_NetSend) we drop all acks while we're
3486 * traversing the tq in rxi_Start sending packets out because
3487 * packets may move to the freePacketQueue as result of being here!
3488 * So we drop these packets until we're safely out of the
3489 * traversing. Really ugly!
3490 * For fine grain RX locking, we set the acked field in the
3491 * packets and let rxi_Start remove them from the transmit queue.
3493 if (call->flags & RX_CALL_TQ_BUSY) {
3494 #ifdef RX_ENABLE_LOCKS
3495 rxi_SetAcksInTransmitQueue(call);
3497 putConnection(conn);
3498 return np; /* xmitting; drop packet */
3501 rxi_ClearTransmitQueue(call, 0);
3503 #else /* AFS_GLOBAL_RXLOCK_KERNEL */
3504 rxi_ClearTransmitQueue(call, 0);
3505 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
3507 if (np->header.type == RX_PACKET_TYPE_ACK) {
3508 /* now check to see if this is an ack packet acknowledging that the
3509 * server actually *lost* some hard-acked data. If this happens we
3510 * ignore this packet, as it may indicate that the server restarted in
3511 * the middle of a call. It is also possible that this is an old ack
3512 * packet. We don't abort the connection in this case, because this
3513 * *might* just be an old ack packet. The right way to detect a server
3514 * restart in the midst of a call is to notice that the server epoch
3516 /* XXX I'm not sure this is exactly right, since tfirst **IS**
3517 * XXX unacknowledged. I think that this is off-by-one, but
3518 * XXX I don't dare change it just yet, since it will
3519 * XXX interact badly with the server-restart detection
3520 * XXX code in receiveackpacket. */
3521 if (ntohl(rx_GetInt32(np, FIRSTACKOFFSET)) < call->tfirst) {
3522 if (rx_stats_active)
3523 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3524 MUTEX_EXIT(&call->lock);
3525 putConnection(conn);
3529 } /* else not a data packet */
3532 osirx_AssertMine(&call->lock, "rxi_ReceivePacket middle");
3533 /* Set remote user defined status from packet */
3534 call->remoteStatus = np->header.userStatus;
3536 /* Now do packet type-specific processing */
3537 switch (np->header.type) {
3538 case RX_PACKET_TYPE_DATA:
3539 np = rxi_ReceiveDataPacket(call, np, 1, socket, host, port, tnop,
3542 case RX_PACKET_TYPE_ACK:
3543 /* Respond immediately to ack packets requesting acknowledgement
3545 if (np->header.flags & RX_REQUEST_ACK) {
3547 (void)rxi_SendCallAbort(call, 0, 1, 0);
3549 (void)rxi_SendAck(call, 0, np->header.serial,
3550 RX_ACK_PING_RESPONSE, 1);
3552 np = rxi_ReceiveAckPacket(call, np, 1);
3554 case RX_PACKET_TYPE_ABORT: {
3555 /* An abort packet: reset the call, passing the error up to the user. */
3556 /* What if error is zero? */
3557 /* What if the error is -1? the application will treat it as a timeout. */
3558 afs_int32 errdata = ntohl(*(afs_int32 *) rx_DataOf(np));
3559 dpf(("rxi_ReceivePacket ABORT rx_DataOf = %d\n", errdata));
3560 rxi_CallError(call, errdata);
3561 MUTEX_EXIT(&call->lock);
3562 putConnection(conn);
3563 return np; /* xmitting; drop packet */
3565 case RX_PACKET_TYPE_BUSY: {
3566 struct clock busyTime;
3568 clock_GetTime(&busyTime);
3570 MUTEX_EXIT(&call->lock);
3572 MUTEX_ENTER(&conn->conn_call_lock);
3573 MUTEX_ENTER(&call->lock);
3574 conn->lastBusy[call->channel] = busyTime.sec;
3575 call->flags |= RX_CALL_PEER_BUSY;
3576 MUTEX_EXIT(&call->lock);
3577 MUTEX_EXIT(&conn->conn_call_lock);
3579 putConnection(conn);
3583 case RX_PACKET_TYPE_ACKALL:
3584 /* All packets acknowledged, so we can drop all packets previously
3585 * readied for sending */
3586 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
3587 /* XXX Hack. We because we can't release the global rx lock when
3588 * sending packets (osi_NetSend) we drop all ack pkts while we're
3589 * traversing the tq in rxi_Start sending packets out because
3590 * packets may move to the freePacketQueue as result of being
3591 * here! So we drop these packets until we're safely out of the
3592 * traversing. Really ugly!
3593 * For fine grain RX locking, we set the acked field in the packets
3594 * and let rxi_Start remove the packets from the transmit queue.
3596 if (call->flags & RX_CALL_TQ_BUSY) {
3597 #ifdef RX_ENABLE_LOCKS
3598 rxi_SetAcksInTransmitQueue(call);
3600 #else /* RX_ENABLE_LOCKS */
3601 MUTEX_EXIT(&call->lock);
3602 putConnection(conn);
3603 return np; /* xmitting; drop packet */
3604 #endif /* RX_ENABLE_LOCKS */
3606 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
3607 rxi_ClearTransmitQueue(call, 0);
3610 /* Should not reach here, unless the peer is broken: send an abort
3612 rxi_CallError(call, RX_PROTOCOL_ERROR);
3613 np = rxi_SendCallAbort(call, np, 1, 0);
3616 /* Note when this last legitimate packet was received, for keep-alive
3617 * processing. Note, we delay getting the time until now in the hope that
3618 * the packet will be delivered to the user before any get time is required
3619 * (if not, then the time won't actually be re-evaluated here). */
3620 call->lastReceiveTime = clock_Sec();
3621 /* we've received a legit packet, so the channel is not busy */
3622 call->flags &= ~RX_CALL_PEER_BUSY;
3623 MUTEX_EXIT(&call->lock);
3624 putConnection(conn);
3628 /* return true if this is an "interesting" connection from the point of view
3629 of someone trying to debug the system */
3631 rxi_IsConnInteresting(struct rx_connection *aconn)
3634 struct rx_call *tcall;
3636 if (aconn->flags & (RX_CONN_MAKECALL_WAITING | RX_CONN_DESTROY_ME))
3639 for (i = 0; i < RX_MAXCALLS; i++) {
3640 tcall = aconn->call[i];
3642 if ((tcall->state == RX_STATE_PRECALL)
3643 || (tcall->state == RX_STATE_ACTIVE))
3645 if ((tcall->mode == RX_MODE_SENDING)
3646 || (tcall->mode == RX_MODE_RECEIVING))
3654 /* if this is one of the last few packets AND it wouldn't be used by the
3655 receiving call to immediately satisfy a read request, then drop it on
3656 the floor, since accepting it might prevent a lock-holding thread from
3657 making progress in its reading. If a call has been cleared while in
3658 the precall state then ignore all subsequent packets until the call
3659 is assigned to a thread. */
3662 TooLow(struct rx_packet *ap, struct rx_call *acall)
3666 MUTEX_ENTER(&rx_quota_mutex);
3667 if (((ap->header.seq != 1) && (acall->flags & RX_CALL_CLEARED)
3668 && (acall->state == RX_STATE_PRECALL))
3669 || ((rx_nFreePackets < rxi_dataQuota + 2)
3670 && !((ap->header.seq < acall->rnext + rx_initSendWindow)
3671 && (acall->flags & RX_CALL_READER_WAIT)))) {
3674 MUTEX_EXIT(&rx_quota_mutex);
3680 * Clear the attach wait flag on a connection and proceed.
3682 * Any processing waiting for a connection to be attached should be
3683 * unblocked. We clear the flag and do any other needed tasks.
3686 * the conn to unmark waiting for attach
3688 * @pre conn's conn_data_lock must be locked before calling this function
3692 rxi_ConnClearAttachWait(struct rx_connection *conn)
3694 /* Indicate that rxi_CheckReachEvent is no longer running by
3695 * clearing the flag. Must be atomic under conn_data_lock to
3696 * avoid a new call slipping by: rxi_CheckConnReach holds
3697 * conn_data_lock while checking RX_CONN_ATTACHWAIT.
3699 conn->flags &= ~RX_CONN_ATTACHWAIT;
3700 if (conn->flags & RX_CONN_NAT_PING) {
3701 conn->flags &= ~RX_CONN_NAT_PING;
3702 rxi_ScheduleNatKeepAliveEvent(conn);
3707 rxi_CheckReachEvent(struct rxevent *event, void *arg1, void *arg2, int dummy)
3709 struct rx_connection *conn = arg1;
3710 struct rx_call *acall = arg2;
3711 struct rx_call *call = acall;
3712 struct clock when, now;
3715 MUTEX_ENTER(&conn->conn_data_lock);
3718 rxevent_Put(conn->checkReachEvent);
3719 conn->checkReachEvent = NULL;
3722 waiting = conn->flags & RX_CONN_ATTACHWAIT;
3724 putConnection(conn);
3726 MUTEX_EXIT(&conn->conn_data_lock);
3730 MUTEX_ENTER(&conn->conn_call_lock);
3731 MUTEX_ENTER(&conn->conn_data_lock);
3732 for (i = 0; i < RX_MAXCALLS; i++) {
3733 struct rx_call *tc = conn->call[i];
3734 if (tc && tc->state == RX_STATE_PRECALL) {