2 * Copyright 2000, International Business Machines Corporation and others.
5 * This software has been released under the terms of the IBM Public
6 * License. For details, see the LICENSE file in the top-level source
7 * directory or online at http://www.openafs.org/dl/license10.html
10 /* RX: Extended Remote Procedure Call */
12 #include <afsconfig.h>
13 #include <afs/param.h>
16 # include "afs/sysincludes.h"
17 # include "afsincludes.h"
22 # ifdef AFS_LINUX20_ENV
23 # include "h/socket.h"
25 # include "netinet/in.h"
27 # include "netinet/ip6.h"
28 # include "inet/common.h"
30 # include "inet/ip_ire.h"
32 # include "afs/afs_args.h"
33 # include "afs/afs_osi.h"
34 # ifdef RX_KERNEL_TRACE
35 # include "rx_kcommon.h"
37 # if defined(AFS_AIX_ENV)
41 # undef RXDEBUG /* turn off debugging */
43 # if defined(AFS_SGI_ENV)
44 # include "sys/debug.h"
47 # include "afs/sysincludes.h"
48 # include "afsincludes.h"
49 # endif /* !UKERNEL */
50 # include "afs/lock.h"
51 # include "rx_kmutex.h"
52 # include "rx_kernel.h"
53 # define AFSOP_STOP_RXCALLBACK 210 /* Stop CALLBACK process */
54 # define AFSOP_STOP_AFS 211 /* Stop AFS process */
55 # define AFSOP_STOP_BKG 212 /* Stop BKG process */
56 extern afs_int32 afs_termState;
58 # include "sys/lockl.h"
59 # include "sys/lock_def.h"
60 # endif /* AFS_AIX41_ENV */
61 # include "afs/rxgen_consts.h"
66 # include <afs/afsutil.h>
67 # include <WINNT\afsreg.h>
76 #include "rx_atomic.h"
77 #include "rx_globals.h"
79 #include "rx_internal.h"
86 #include "rx_packet.h"
88 #include <afs/rxgen_consts.h>
91 #ifdef AFS_PTHREAD_ENV
93 int (*registerProgram) (pid_t, char *) = 0;
94 int (*swapNameProgram) (pid_t, const char *, char *) = 0;
97 int (*registerProgram) (PROCESS, char *) = 0;
98 int (*swapNameProgram) (PROCESS, const char *, char *) = 0;
102 /* Local static routines */
103 static void rxi_DestroyConnectionNoLock(struct rx_connection *conn);
104 static void rxi_ComputeRoundTripTime(struct rx_packet *, struct rx_ackPacket *,
105 struct rx_call *, struct rx_peer *,
107 static void rxi_Resend(struct rxevent *event, void *arg0, void *arg1,
109 static void rxi_SendDelayedAck(struct rxevent *event, void *call,
110 void *dummy, int dummy2);
111 static void rxi_SendDelayedCallAbort(struct rxevent *event, void *arg1,
112 void *dummy, int dummy2);
113 static void rxi_SendDelayedConnAbort(struct rxevent *event, void *arg1,
114 void *unused, int unused2);
115 static void rxi_ReapConnections(struct rxevent *unused, void *unused1,
116 void *unused2, int unused3);
117 static struct rx_packet *rxi_SendCallAbort(struct rx_call *call,
118 struct rx_packet *packet,
119 int istack, int force);
120 static void rxi_AckAll(struct rx_call *call);
121 static struct rx_connection
122 *rxi_FindConnection(osi_socket socket, afs_uint32 host, u_short port,
123 u_short serviceId, afs_uint32 cid,
124 afs_uint32 epoch, int type, u_int securityIndex);
125 static struct rx_packet
126 *rxi_ReceiveDataPacket(struct rx_call *call, struct rx_packet *np,
127 int istack, osi_socket socket,
128 afs_uint32 host, u_short port, int *tnop,
129 struct rx_call **newcallp);
130 static struct rx_packet
131 *rxi_ReceiveAckPacket(struct rx_call *call, struct rx_packet *np,
133 static struct rx_packet
134 *rxi_ReceiveResponsePacket(struct rx_connection *conn,
135 struct rx_packet *np, int istack);
136 static struct rx_packet
137 *rxi_ReceiveChallengePacket(struct rx_connection *conn,
138 struct rx_packet *np, int istack);
139 static void rxi_AttachServerProc(struct rx_call *call, osi_socket socket,
140 int *tnop, struct rx_call **newcallp);
141 static void rxi_ClearTransmitQueue(struct rx_call *call, int force);
142 static void rxi_ClearReceiveQueue(struct rx_call *call);
143 static void rxi_ResetCall(struct rx_call *call, int newcall);
144 static void rxi_ScheduleKeepAliveEvent(struct rx_call *call);
145 static void rxi_ScheduleNatKeepAliveEvent(struct rx_connection *conn);
146 static void rxi_ScheduleGrowMTUEvent(struct rx_call *call, int secs);
147 static void rxi_KeepAliveOn(struct rx_call *call);
148 static void rxi_GrowMTUOn(struct rx_call *call);
149 static void rxi_ChallengeOn(struct rx_connection *conn);
151 #ifdef RX_ENABLE_LOCKS
152 static int rxi_CheckCall(struct rx_call *call, int haveCTLock);
153 static void rxi_SetAcksInTransmitQueue(struct rx_call *call);
155 static int rxi_CheckCall(struct rx_call *call);
158 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
160 rx_atomic_t rxi_start_aborted; /* rxi_start awoke after rxi_Send in error.*/
161 rx_atomic_t rxi_start_in_error;
163 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
165 /* Constant delay time before sending an acknowledge of the last packet
166 * received. This is to avoid sending an extra acknowledge when the
167 * client is about to make another call, anyway, or the server is
170 * The lastAckDelay may not exceeed 400ms without causing peers to
171 * unecessarily timeout.
173 struct clock rx_lastAckDelay = {0, 400000};
175 /* Constant delay time before sending a soft ack when none was requested.
176 * This is to make sure we send soft acks before the sender times out,
177 * Normally we wait and send a hard ack when the receiver consumes the packet
179 * This value has been 100ms in all shipping versions of OpenAFS. Changing it
180 * will require changes to the peer's RTT calculations.
182 struct clock rx_softAckDelay = {0, 100000};
185 * rxi_rpc_peer_stat_cnt counts the total number of peer stat structures
186 * currently allocated within rx. This number is used to allocate the
187 * memory required to return the statistics when queried.
188 * Protected by the rx_rpc_stats mutex.
191 static unsigned int rxi_rpc_peer_stat_cnt;
194 * rxi_rpc_process_stat_cnt counts the total number of local process stat
195 * structures currently allocated within rx. The number is used to allocate
196 * the memory required to return the statistics when queried.
197 * Protected by the rx_rpc_stats mutex.
200 static unsigned int rxi_rpc_process_stat_cnt;
203 * rxi_busyChannelError is a boolean. It indicates whether or not RX_CALL_BUSY
204 * errors should be reported to the application when a call channel appears busy
205 * (inferred from the receipt of RX_PACKET_TYPE_BUSY packets on the channel),
206 * and there are other call channels in the connection that are not busy.
207 * If 0, we do not return errors upon receiving busy packets; we just keep
208 * trying on the same call channel until we hit a timeout.
210 static afs_int32 rxi_busyChannelError = 0;
212 rx_atomic_t rx_nWaiting = RX_ATOMIC_INIT(0);
213 rx_atomic_t rx_nWaited = RX_ATOMIC_INIT(0);
215 #if !defined(offsetof)
216 #include <stddef.h> /* for definition of offsetof() */
219 #ifdef RX_ENABLE_LOCKS
220 afs_kmutex_t rx_atomic_mutex;
223 /* Forward prototypes */
224 static struct rx_call * rxi_NewCall(struct rx_connection *, int);
227 putConnection (struct rx_connection *conn) {
228 MUTEX_ENTER(&rx_refcnt_mutex);
230 MUTEX_EXIT(&rx_refcnt_mutex);
233 #ifdef AFS_PTHREAD_ENV
236 * Use procedural initialization of mutexes/condition variables
240 extern afs_kmutex_t rx_quota_mutex;
241 extern afs_kmutex_t rx_pthread_mutex;
242 extern afs_kmutex_t rx_packets_mutex;
243 extern afs_kmutex_t rx_refcnt_mutex;
244 extern afs_kmutex_t des_init_mutex;
245 extern afs_kmutex_t des_random_mutex;
246 extern afs_kmutex_t rx_clock_mutex;
247 extern afs_kmutex_t rxi_connCacheMutex;
248 extern afs_kmutex_t event_handler_mutex;
249 extern afs_kmutex_t listener_mutex;
250 extern afs_kmutex_t rx_if_init_mutex;
251 extern afs_kmutex_t rx_if_mutex;
253 extern afs_kcondvar_t rx_event_handler_cond;
254 extern afs_kcondvar_t rx_listener_cond;
256 static afs_kmutex_t epoch_mutex;
257 static afs_kmutex_t rx_init_mutex;
258 static afs_kmutex_t rx_debug_mutex;
259 static afs_kmutex_t rx_rpc_stats;
262 rxi_InitPthread(void)
264 MUTEX_INIT(&rx_clock_mutex, "clock", MUTEX_DEFAULT, 0);
265 MUTEX_INIT(&rx_stats_mutex, "stats", MUTEX_DEFAULT, 0);
266 MUTEX_INIT(&rx_atomic_mutex, "atomic", MUTEX_DEFAULT, 0);
267 MUTEX_INIT(&rx_quota_mutex, "quota", MUTEX_DEFAULT, 0);
268 MUTEX_INIT(&rx_pthread_mutex, "pthread", MUTEX_DEFAULT, 0);
269 MUTEX_INIT(&rx_packets_mutex, "packets", MUTEX_DEFAULT, 0);
270 MUTEX_INIT(&rx_refcnt_mutex, "refcnts", MUTEX_DEFAULT, 0);
271 MUTEX_INIT(&epoch_mutex, "epoch", MUTEX_DEFAULT, 0);
272 MUTEX_INIT(&rx_init_mutex, "init", MUTEX_DEFAULT, 0);
273 MUTEX_INIT(&event_handler_mutex, "event handler", MUTEX_DEFAULT, 0);
274 MUTEX_INIT(&rxi_connCacheMutex, "conn cache", MUTEX_DEFAULT, 0);
275 MUTEX_INIT(&listener_mutex, "listener", MUTEX_DEFAULT, 0);
276 MUTEX_INIT(&rx_if_init_mutex, "if init", MUTEX_DEFAULT, 0);
277 MUTEX_INIT(&rx_if_mutex, "if", MUTEX_DEFAULT, 0);
278 MUTEX_INIT(&rx_debug_mutex, "debug", MUTEX_DEFAULT, 0);
280 CV_INIT(&rx_event_handler_cond, "evhand", CV_DEFAULT, 0);
281 CV_INIT(&rx_listener_cond, "rxlisten", CV_DEFAULT, 0);
283 osi_Assert(pthread_key_create(&rx_thread_id_key, NULL) == 0);
284 osi_Assert(pthread_key_create(&rx_ts_info_key, NULL) == 0);
286 MUTEX_INIT(&rx_rpc_stats, "rx_rpc_stats", MUTEX_DEFAULT, 0);
287 MUTEX_INIT(&rx_freePktQ_lock, "rx_freePktQ_lock", MUTEX_DEFAULT, 0);
288 #ifdef RX_ENABLE_LOCKS
291 #endif /* RX_LOCKS_DB */
292 MUTEX_INIT(&freeSQEList_lock, "freeSQEList lock", MUTEX_DEFAULT, 0);
293 MUTEX_INIT(&rx_freeCallQueue_lock, "rx_freeCallQueue_lock", MUTEX_DEFAULT,
295 CV_INIT(&rx_waitingForPackets_cv, "rx_waitingForPackets_cv", CV_DEFAULT,
297 MUTEX_INIT(&rx_peerHashTable_lock, "rx_peerHashTable_lock", MUTEX_DEFAULT,
299 MUTEX_INIT(&rx_connHashTable_lock, "rx_connHashTable_lock", MUTEX_DEFAULT,
301 MUTEX_INIT(&rx_serverPool_lock, "rx_serverPool_lock", MUTEX_DEFAULT, 0);
302 MUTEX_INIT(&rxi_keyCreate_lock, "rxi_keyCreate_lock", MUTEX_DEFAULT, 0);
303 #endif /* RX_ENABLE_LOCKS */
306 pthread_once_t rx_once_init = PTHREAD_ONCE_INIT;
307 #define INIT_PTHREAD_LOCKS osi_Assert(pthread_once(&rx_once_init, rxi_InitPthread)==0)
309 * The rx_stats_mutex mutex protects the following global variables:
310 * rxi_lowConnRefCount
311 * rxi_lowPeerRefCount
320 * The rx_quota_mutex mutex protects the following global variables:
328 * The rx_freePktQ_lock protects the following global variables:
333 * The rx_packets_mutex mutex protects the following global variables:
341 * The rx_pthread_mutex mutex protects the following global variables:
342 * rxi_fcfs_thread_num
345 #define INIT_PTHREAD_LOCKS
349 /* Variables for handling the minProcs implementation. availProcs gives the
350 * number of threads available in the pool at this moment (not counting dudes
351 * executing right now). totalMin gives the total number of procs required
352 * for handling all minProcs requests. minDeficit is a dynamic variable
353 * tracking the # of procs required to satisfy all of the remaining minProcs
355 * For fine grain locking to work, the quota check and the reservation of
356 * a server thread has to come while rxi_availProcs and rxi_minDeficit
357 * are locked. To this end, the code has been modified under #ifdef
358 * RX_ENABLE_LOCKS so that quota checks and reservation occur at the
359 * same time. A new function, ReturnToServerPool() returns the allocation.
361 * A call can be on several queue's (but only one at a time). When
362 * rxi_ResetCall wants to remove the call from a queue, it has to ensure
363 * that no one else is touching the queue. To this end, we store the address
364 * of the queue lock in the call structure (under the call lock) when we
365 * put the call on a queue, and we clear the call_queue_lock when the
366 * call is removed from a queue (once the call lock has been obtained).
367 * This allows rxi_ResetCall to safely synchronize with others wishing
368 * to manipulate the queue.
371 #if defined(RX_ENABLE_LOCKS)
372 static afs_kmutex_t rx_rpc_stats;
375 /* We keep a "last conn pointer" in rxi_FindConnection. The odds are
376 ** pretty good that the next packet coming in is from the same connection
377 ** as the last packet, since we're send multiple packets in a transmit window.
379 struct rx_connection *rxLastConn = 0;
381 #ifdef RX_ENABLE_LOCKS
382 /* The locking hierarchy for rx fine grain locking is composed of these
385 * rx_connHashTable_lock - synchronizes conn creation, rx_connHashTable access
386 * conn_call_lock - used to synchonize rx_EndCall and rx_NewCall
387 * call->lock - locks call data fields.
388 * These are independent of each other:
389 * rx_freeCallQueue_lock
394 * serverQueueEntry->lock
395 * rx_peerHashTable_lock - locked under rx_connHashTable_lock
397 * peer->lock - locks peer data fields.
398 * conn_data_lock - that more than one thread is not updating a conn data
399 * field at the same time.
410 * Do we need a lock to protect the peer field in the conn structure?
411 * conn->peer was previously a constant for all intents and so has no
412 * lock protecting this field. The multihomed client delta introduced
413 * a RX code change : change the peer field in the connection structure
414 * to that remote interface from which the last packet for this
415 * connection was sent out. This may become an issue if further changes
418 #define SET_CALL_QUEUE_LOCK(C, L) (C)->call_queue_lock = (L)
419 #define CLEAR_CALL_QUEUE_LOCK(C) (C)->call_queue_lock = NULL
421 /* rxdb_fileID is used to identify the lock location, along with line#. */
422 static int rxdb_fileID = RXDB_FILE_RX;
423 #endif /* RX_LOCKS_DB */
424 #else /* RX_ENABLE_LOCKS */
425 #define SET_CALL_QUEUE_LOCK(C, L)
426 #define CLEAR_CALL_QUEUE_LOCK(C)
427 #endif /* RX_ENABLE_LOCKS */
428 struct rx_serverQueueEntry *rx_waitForPacket = 0;
429 struct rx_serverQueueEntry *rx_waitingForPacket = 0;
431 /* ------------Exported Interfaces------------- */
433 /* This function allows rxkad to set the epoch to a suitably random number
434 * which rx_NewConnection will use in the future. The principle purpose is to
435 * get rxnull connections to use the same epoch as the rxkad connections do, at
436 * least once the first rxkad connection is established. This is important now
437 * that the host/port addresses aren't used in FindConnection: the uniqueness
438 * of epoch/cid matters and the start time won't do. */
440 #ifdef AFS_PTHREAD_ENV
442 * This mutex protects the following global variables:
446 #define LOCK_EPOCH MUTEX_ENTER(&epoch_mutex)
447 #define UNLOCK_EPOCH MUTEX_EXIT(&epoch_mutex)
451 #endif /* AFS_PTHREAD_ENV */
454 rx_SetEpoch(afs_uint32 epoch)
461 /* Initialize rx. A port number may be mentioned, in which case this
462 * becomes the default port number for any service installed later.
463 * If 0 is provided for the port number, a random port will be chosen
464 * by the kernel. Whether this will ever overlap anything in
465 * /etc/services is anybody's guess... Returns 0 on success, -1 on
470 int rxinit_status = 1;
471 #ifdef AFS_PTHREAD_ENV
473 * This mutex protects the following global variables:
477 #define LOCK_RX_INIT MUTEX_ENTER(&rx_init_mutex)
478 #define UNLOCK_RX_INIT MUTEX_EXIT(&rx_init_mutex)
481 #define UNLOCK_RX_INIT
485 rx_InitHost(u_int host, u_int port)
492 char *htable, *ptable;
499 if (rxinit_status == 0) {
500 tmp_status = rxinit_status;
502 return tmp_status; /* Already started; return previous error code. */
508 if (afs_winsockInit() < 0)
514 * Initialize anything necessary to provide a non-premptive threading
517 rxi_InitializeThreadSupport();
520 /* Allocate and initialize a socket for client and perhaps server
523 rx_socket = rxi_GetHostUDPSocket(host, (u_short) port);
524 if (rx_socket == OSI_NULLSOCKET) {
528 #if defined(RX_ENABLE_LOCKS) && defined(KERNEL)
531 #endif /* RX_LOCKS_DB */
532 MUTEX_INIT(&rx_stats_mutex, "rx_stats_mutex", MUTEX_DEFAULT, 0);
533 MUTEX_INIT(&rx_quota_mutex, "rx_quota_mutex", MUTEX_DEFAULT, 0);
534 MUTEX_INIT(&rx_atomic_mutex, "rx_atomic_mutex", MUTEX_DEFAULT, 0);
535 MUTEX_INIT(&rx_pthread_mutex, "rx_pthread_mutex", MUTEX_DEFAULT, 0);
536 MUTEX_INIT(&rx_packets_mutex, "rx_packets_mutex", MUTEX_DEFAULT, 0);
537 MUTEX_INIT(&rx_refcnt_mutex, "rx_refcnt_mutex", MUTEX_DEFAULT, 0);
538 MUTEX_INIT(&rx_rpc_stats, "rx_rpc_stats", MUTEX_DEFAULT, 0);
539 MUTEX_INIT(&rx_freePktQ_lock, "rx_freePktQ_lock", MUTEX_DEFAULT, 0);
540 MUTEX_INIT(&freeSQEList_lock, "freeSQEList lock", MUTEX_DEFAULT, 0);
541 MUTEX_INIT(&rx_freeCallQueue_lock, "rx_freeCallQueue_lock", MUTEX_DEFAULT,
543 CV_INIT(&rx_waitingForPackets_cv, "rx_waitingForPackets_cv", CV_DEFAULT,
545 MUTEX_INIT(&rx_peerHashTable_lock, "rx_peerHashTable_lock", MUTEX_DEFAULT,
547 MUTEX_INIT(&rx_connHashTable_lock, "rx_connHashTable_lock", MUTEX_DEFAULT,
549 MUTEX_INIT(&rx_serverPool_lock, "rx_serverPool_lock", MUTEX_DEFAULT, 0);
550 #if defined(AFS_HPUX110_ENV)
552 rx_sleepLock = alloc_spinlock(LAST_HELD_ORDER - 10, "rx_sleepLock");
553 #endif /* AFS_HPUX110_ENV */
554 #endif /* RX_ENABLE_LOCKS && KERNEL */
557 rx_connDeadTime = 12;
558 rx_tranquil = 0; /* reset flag */
559 rxi_ResetStatistics();
560 htable = osi_Alloc(rx_hashTableSize * sizeof(struct rx_connection *));
561 PIN(htable, rx_hashTableSize * sizeof(struct rx_connection *)); /* XXXXX */
562 memset(htable, 0, rx_hashTableSize * sizeof(struct rx_connection *));
563 ptable = osi_Alloc(rx_hashTableSize * sizeof(struct rx_peer *));
564 PIN(ptable, rx_hashTableSize * sizeof(struct rx_peer *)); /* XXXXX */
565 memset(ptable, 0, rx_hashTableSize * sizeof(struct rx_peer *));
567 /* Malloc up a bunch of packets & buffers */
569 queue_Init(&rx_freePacketQueue);
570 rxi_NeedMorePackets = FALSE;
571 rx_nPackets = 0; /* rx_nPackets is managed by rxi_MorePackets* */
573 /* enforce a minimum number of allocated packets */
574 if (rx_extraPackets < rxi_nSendFrags * rx_maxSendWindow)
575 rx_extraPackets = rxi_nSendFrags * rx_maxSendWindow;
577 /* allocate the initial free packet pool */
578 #ifdef RX_ENABLE_TSFPQ
579 rxi_MorePacketsTSFPQ(rx_extraPackets + RX_MAX_QUOTA + 2, RX_TS_FPQ_FLUSH_GLOBAL, 0);
580 #else /* RX_ENABLE_TSFPQ */
581 rxi_MorePackets(rx_extraPackets + RX_MAX_QUOTA + 2); /* fudge */
582 #endif /* RX_ENABLE_TSFPQ */
589 #if defined(AFS_NT40_ENV) && !defined(AFS_PTHREAD_ENV)
590 tv.tv_sec = clock_now.sec;
591 tv.tv_usec = clock_now.usec;
592 srand((unsigned int)tv.tv_usec);
599 #if defined(KERNEL) && !defined(UKERNEL)
600 /* Really, this should never happen in a real kernel */
603 struct sockaddr_in addr;
605 int addrlen = sizeof(addr);
607 socklen_t addrlen = sizeof(addr);
609 if (getsockname((intptr_t)rx_socket, (struct sockaddr *)&addr, &addrlen)) {
611 osi_Free(htable, rx_hashTableSize * sizeof(struct rx_connection *));
614 rx_port = addr.sin_port;
617 rx_stats.minRtt.sec = 9999999;
619 rx_SetEpoch(tv.tv_sec | 0x80000000);
621 rx_SetEpoch(tv.tv_sec); /* Start time of this package, rxkad
622 * will provide a randomer value. */
624 MUTEX_ENTER(&rx_quota_mutex);
625 rxi_dataQuota += rx_extraQuota; /* + extra pkts caller asked to rsrv */
626 MUTEX_EXIT(&rx_quota_mutex);
627 /* *Slightly* random start time for the cid. This is just to help
628 * out with the hashing function at the peer */
629 rx_nextCid = ((tv.tv_sec ^ tv.tv_usec) << RX_CIDSHIFT);
630 rx_connHashTable = (struct rx_connection **)htable;
631 rx_peerHashTable = (struct rx_peer **)ptable;
633 rx_hardAckDelay.sec = 0;
634 rx_hardAckDelay.usec = 100000; /* 100 milliseconds */
636 rxevent_Init(20, rxi_ReScheduleEvents);
638 /* Initialize various global queues */
639 queue_Init(&rx_idleServerQueue);
640 queue_Init(&rx_incomingCallQueue);
641 queue_Init(&rx_freeCallQueue);
643 #if defined(AFS_NT40_ENV) && !defined(KERNEL)
644 /* Initialize our list of usable IP addresses. */
648 #if defined(RXK_LISTENER_ENV) || !defined(KERNEL)
649 /* Start listener process (exact function is dependent on the
650 * implementation environment--kernel or user space) */
655 tmp_status = rxinit_status = 0;
663 return rx_InitHost(htonl(INADDR_ANY), port);
669 * The rxi_rto functions implement a TCP (RFC2988) style algorithm for
670 * maintaing the round trip timer.
675 * Start a new RTT timer for a given call and packet.
677 * There must be no resendEvent already listed for this call, otherwise this
678 * will leak events - intended for internal use within the RTO code only
681 * the RX call to start the timer for
682 * @param[in] lastPacket
683 * a flag indicating whether the last packet has been sent or not
685 * @pre call must be locked before calling this function
689 rxi_rto_startTimer(struct rx_call *call, int lastPacket, int istack)
691 struct clock now, retryTime;
696 clock_Add(&retryTime, &call->rto);
698 /* If we're sending the last packet, and we're the client, then the server
699 * may wait for an additional 400ms before returning the ACK, wait for it
700 * rather than hitting a timeout */
701 if (lastPacket && call->conn->type == RX_CLIENT_CONNECTION)
702 clock_Addmsec(&retryTime, 400);
704 CALL_HOLD(call, RX_CALL_REFCOUNT_RESEND);
705 call->resendEvent = rxevent_Post(&retryTime, &now, rxi_Resend,
710 * Cancel an RTT timer for a given call.
714 * the RX call to cancel the timer for
716 * @pre call must be locked before calling this function
721 rxi_rto_cancel(struct rx_call *call)
723 rxevent_Cancel(&call->resendEvent, call, RX_CALL_REFCOUNT_RESEND);
727 * Tell the RTO timer that we have sent a packet.
729 * If the timer isn't already running, then start it. If the timer is running,
733 * the RX call that the packet has been sent on
734 * @param[in] lastPacket
735 * A flag which is true if this is the last packet for the call
737 * @pre The call must be locked before calling this function
742 rxi_rto_packet_sent(struct rx_call *call, int lastPacket, int istack)
744 if (call->resendEvent)
747 rxi_rto_startTimer(call, lastPacket, istack);
751 * Tell the RTO timer that we have received an new ACK message
753 * This function should be called whenever a call receives an ACK that
754 * acknowledges new packets. Whatever happens, we stop the current timer.
755 * If there are unacked packets in the queue which have been sent, then
756 * we restart the timer from now. Otherwise, we leave it stopped.
759 * the RX call that the ACK has been received on
763 rxi_rto_packet_acked(struct rx_call *call, int istack)
765 struct rx_packet *p, *nxp;
767 rxi_rto_cancel(call);
769 if (queue_IsEmpty(&call->tq))
772 for (queue_Scan(&call->tq, p, nxp, rx_packet)) {
773 if (p->header.seq > call->tfirst + call->twind)
776 if (!(p->flags & RX_PKTFLAG_ACKED) && p->flags & RX_PKTFLAG_SENT) {
777 rxi_rto_startTimer(call, p->header.flags & RX_LAST_PACKET, istack);
785 * Set an initial round trip timeout for a peer connection
787 * @param[in] secs The timeout to set in seconds
791 rx_rto_setPeerTimeoutSecs(struct rx_peer *peer, int secs) {
792 peer->rtt = secs * 8000;
796 * Enables or disables the busy call channel error (RX_CALL_BUSY).
798 * @param[in] onoff Non-zero to enable busy call channel errors.
800 * @pre Neither rx_Init nor rx_InitHost have been called yet
803 rx_SetBusyChannelError(afs_int32 onoff)
805 osi_Assert(rxinit_status != 0);
806 rxi_busyChannelError = onoff ? 1 : 0;
810 * Set a delayed ack event on the specified call for the given time
812 * @param[in] call - the call on which to set the event
813 * @param[in] offset - the delay from now after which the event fires
816 rxi_PostDelayedAckEvent(struct rx_call *call, struct clock *offset)
818 struct clock now, when;
822 clock_Add(&when, offset);
824 if (!call->delayedAckEvent
825 || clock_Gt(&call->delayedAckTime, &when)) {
827 rxevent_Cancel(&call->delayedAckEvent, call,
828 RX_CALL_REFCOUNT_DELAY);
829 CALL_HOLD(call, RX_CALL_REFCOUNT_DELAY);
831 call->delayedAckEvent = rxevent_Post(&when, &now,
834 call->delayedAckTime = when;
838 /* called with unincremented nRequestsRunning to see if it is OK to start
839 * a new thread in this service. Could be "no" for two reasons: over the
840 * max quota, or would prevent others from reaching their min quota.
842 #ifdef RX_ENABLE_LOCKS
843 /* This verion of QuotaOK reserves quota if it's ok while the
844 * rx_serverPool_lock is held. Return quota using ReturnToServerPool().
847 QuotaOK(struct rx_service *aservice)
849 /* check if over max quota */
850 if (aservice->nRequestsRunning >= aservice->maxProcs) {
854 /* under min quota, we're OK */
855 /* otherwise, can use only if there are enough to allow everyone
856 * to go to their min quota after this guy starts.
859 MUTEX_ENTER(&rx_quota_mutex);
860 if ((aservice->nRequestsRunning < aservice->minProcs)
861 || (rxi_availProcs > rxi_minDeficit)) {
862 aservice->nRequestsRunning++;
863 /* just started call in minProcs pool, need fewer to maintain
865 if (aservice->nRequestsRunning <= aservice->minProcs)
868 MUTEX_EXIT(&rx_quota_mutex);
871 MUTEX_EXIT(&rx_quota_mutex);
877 ReturnToServerPool(struct rx_service *aservice)
879 aservice->nRequestsRunning--;
880 MUTEX_ENTER(&rx_quota_mutex);
881 if (aservice->nRequestsRunning < aservice->minProcs)
884 MUTEX_EXIT(&rx_quota_mutex);
887 #else /* RX_ENABLE_LOCKS */
889 QuotaOK(struct rx_service *aservice)
892 /* under min quota, we're OK */
893 if (aservice->nRequestsRunning < aservice->minProcs)
896 /* check if over max quota */
897 if (aservice->nRequestsRunning >= aservice->maxProcs)
900 /* otherwise, can use only if there are enough to allow everyone
901 * to go to their min quota after this guy starts.
903 MUTEX_ENTER(&rx_quota_mutex);
904 if (rxi_availProcs > rxi_minDeficit)
906 MUTEX_EXIT(&rx_quota_mutex);
909 #endif /* RX_ENABLE_LOCKS */
912 /* Called by rx_StartServer to start up lwp's to service calls.
913 NExistingProcs gives the number of procs already existing, and which
914 therefore needn't be created. */
916 rxi_StartServerProcs(int nExistingProcs)
918 struct rx_service *service;
923 /* For each service, reserve N processes, where N is the "minimum"
924 * number of processes that MUST be able to execute a request in parallel,
925 * at any time, for that process. Also compute the maximum difference
926 * between any service's maximum number of processes that can run
927 * (i.e. the maximum number that ever will be run, and a guarantee
928 * that this number will run if other services aren't running), and its
929 * minimum number. The result is the extra number of processes that
930 * we need in order to provide the latter guarantee */
931 for (i = 0; i < RX_MAX_SERVICES; i++) {
933 service = rx_services[i];
934 if (service == (struct rx_service *)0)
936 nProcs += service->minProcs;
937 diff = service->maxProcs - service->minProcs;
941 nProcs += maxdiff; /* Extra processes needed to allow max number requested to run in any given service, under good conditions */
942 nProcs -= nExistingProcs; /* Subtract the number of procs that were previously created for use as server procs */
943 for (i = 0; i < nProcs; i++) {
944 rxi_StartServerProc(rx_ServerProc, rx_stackSize);
950 /* This routine is only required on Windows */
952 rx_StartClientThread(void)
954 #ifdef AFS_PTHREAD_ENV
956 pid = pthread_self();
957 #endif /* AFS_PTHREAD_ENV */
959 #endif /* AFS_NT40_ENV */
961 /* This routine must be called if any services are exported. If the
962 * donateMe flag is set, the calling process is donated to the server
965 rx_StartServer(int donateMe)
967 struct rx_service *service;
973 /* Start server processes, if necessary (exact function is dependent
974 * on the implementation environment--kernel or user space). DonateMe
975 * will be 1 if there is 1 pre-existing proc, i.e. this one. In this
976 * case, one less new proc will be created rx_StartServerProcs.
978 rxi_StartServerProcs(donateMe);
980 /* count up the # of threads in minProcs, and add set the min deficit to
981 * be that value, too.
983 for (i = 0; i < RX_MAX_SERVICES; i++) {
984 service = rx_services[i];
985 if (service == (struct rx_service *)0)
987 MUTEX_ENTER(&rx_quota_mutex);
988 rxi_totalMin += service->minProcs;
989 /* below works even if a thread is running, since minDeficit would
990 * still have been decremented and later re-incremented.
992 rxi_minDeficit += service->minProcs;
993 MUTEX_EXIT(&rx_quota_mutex);
996 /* Turn on reaping of idle server connections */
997 rxi_ReapConnections(NULL, NULL, NULL, 0);
1002 #ifndef AFS_NT40_ENV
1006 #ifdef AFS_PTHREAD_ENV
1008 pid = afs_pointer_to_int(pthread_self());
1009 #else /* AFS_PTHREAD_ENV */
1011 LWP_CurrentProcess(&pid);
1012 #endif /* AFS_PTHREAD_ENV */
1014 sprintf(name, "srv_%d", ++nProcs);
1015 if (registerProgram)
1016 (*registerProgram) (pid, name);
1018 #endif /* AFS_NT40_ENV */
1019 rx_ServerProc(NULL); /* Never returns */
1021 #ifdef RX_ENABLE_TSFPQ
1022 /* no use leaving packets around in this thread's local queue if
1023 * it isn't getting donated to the server thread pool.
1025 rxi_FlushLocalPacketsTSFPQ();
1026 #endif /* RX_ENABLE_TSFPQ */
1030 /* Create a new client connection to the specified service, using the
1031 * specified security object to implement the security model for this
1033 struct rx_connection *
1034 rx_NewConnection(afs_uint32 shost, u_short sport, u_short sservice,
1035 struct rx_securityClass *securityObject,
1036 int serviceSecurityIndex)
1040 struct rx_connection *conn;
1045 dpf(("rx_NewConnection(host %x, port %u, service %u, securityObject %p, "
1046 "serviceSecurityIndex %d)\n",
1047 ntohl(shost), ntohs(sport), sservice, securityObject,
1048 serviceSecurityIndex));
1050 /* Vasilsi said: "NETPRI protects Cid and Alloc", but can this be true in
1051 * the case of kmem_alloc? */
1052 conn = rxi_AllocConnection();
1053 #ifdef RX_ENABLE_LOCKS
1054 MUTEX_INIT(&conn->conn_call_lock, "conn call lock", MUTEX_DEFAULT, 0);
1055 MUTEX_INIT(&conn->conn_data_lock, "conn data lock", MUTEX_DEFAULT, 0);
1056 CV_INIT(&conn->conn_call_cv, "conn call cv", CV_DEFAULT, 0);
1059 MUTEX_ENTER(&rx_connHashTable_lock);
1060 cid = (rx_nextCid += RX_MAXCALLS);
1061 conn->type = RX_CLIENT_CONNECTION;
1063 conn->epoch = rx_epoch;
1064 conn->peer = rxi_FindPeer(shost, sport, 0, 1);
1065 conn->serviceId = sservice;
1066 conn->securityObject = securityObject;
1067 conn->securityData = (void *) 0;
1068 conn->securityIndex = serviceSecurityIndex;
1069 rx_SetConnDeadTime(conn, rx_connDeadTime);
1070 rx_SetConnSecondsUntilNatPing(conn, 0);
1071 conn->ackRate = RX_FAST_ACK_RATE;
1072 conn->nSpecific = 0;
1073 conn->specific = NULL;
1074 conn->challengeEvent = NULL;
1075 conn->delayedAbortEvent = NULL;
1076 conn->abortCount = 0;
1078 for (i = 0; i < RX_MAXCALLS; i++) {
1079 conn->twind[i] = rx_initSendWindow;
1080 conn->rwind[i] = rx_initReceiveWindow;
1081 conn->lastBusy[i] = 0;
1084 RXS_NewConnection(securityObject, conn);
1086 CONN_HASH(shost, sport, conn->cid, conn->epoch, RX_CLIENT_CONNECTION);
1088 conn->refCount++; /* no lock required since only this thread knows... */
1089 conn->next = rx_connHashTable[hashindex];
1090 rx_connHashTable[hashindex] = conn;
1091 if (rx_stats_active)
1092 rx_atomic_inc(&rx_stats.nClientConns);
1093 MUTEX_EXIT(&rx_connHashTable_lock);
1099 * Ensure a connection's timeout values are valid.
1101 * @param[in] conn The connection to check
1103 * @post conn->secondUntilDead <= conn->idleDeadTime <= conn->hardDeadTime,
1104 * unless idleDeadTime and/or hardDeadTime are not set
1108 rxi_CheckConnTimeouts(struct rx_connection *conn)
1110 /* a connection's timeouts must have the relationship
1111 * deadTime <= idleDeadTime <= hardDeadTime. Otherwise, for example, a
1112 * total loss of network to a peer may cause an idle timeout instead of a
1113 * dead timeout, simply because the idle timeout gets hit first. Also set
1114 * a minimum deadTime of 6, just to ensure it doesn't get set too low. */
1115 /* this logic is slightly complicated by the fact that
1116 * idleDeadTime/hardDeadTime may not be set at all, but it's not too bad.
1118 conn->secondsUntilDead = MAX(conn->secondsUntilDead, 6);
1119 if (conn->idleDeadTime) {
1120 conn->idleDeadTime = MAX(conn->idleDeadTime, conn->secondsUntilDead);
1122 if (conn->hardDeadTime) {
1123 if (conn->idleDeadTime) {
1124 conn->hardDeadTime = MAX(conn->idleDeadTime, conn->hardDeadTime);
1126 conn->hardDeadTime = MAX(conn->secondsUntilDead, conn->hardDeadTime);
1132 rx_SetConnDeadTime(struct rx_connection *conn, int seconds)
1134 /* The idea is to set the dead time to a value that allows several
1135 * keepalives to be dropped without timing out the connection. */
1136 conn->secondsUntilDead = seconds;
1137 rxi_CheckConnTimeouts(conn);
1138 conn->secondsUntilPing = conn->secondsUntilDead / 6;
1142 rx_SetConnHardDeadTime(struct rx_connection *conn, int seconds)
1144 conn->hardDeadTime = seconds;
1145 rxi_CheckConnTimeouts(conn);
1149 rx_SetConnIdleDeadTime(struct rx_connection *conn, int seconds)
1151 conn->idleDeadTime = seconds;
1152 conn->idleDeadDetection = (seconds ? 1 : 0);
1153 rxi_CheckConnTimeouts(conn);
1156 int rxi_lowPeerRefCount = 0;
1157 int rxi_lowConnRefCount = 0;
1160 * Cleanup a connection that was destroyed in rxi_DestroyConnectioNoLock.
1161 * NOTE: must not be called with rx_connHashTable_lock held.
1164 rxi_CleanupConnection(struct rx_connection *conn)
1166 /* Notify the service exporter, if requested, that this connection
1167 * is being destroyed */
1168 if (conn->type == RX_SERVER_CONNECTION && conn->service->destroyConnProc)
1169 (*conn->service->destroyConnProc) (conn);
1171 /* Notify the security module that this connection is being destroyed */
1172 RXS_DestroyConnection(conn->securityObject, conn);
1174 /* If this is the last connection using the rx_peer struct, set its
1175 * idle time to now. rxi_ReapConnections will reap it if it's still
1176 * idle (refCount == 0) after rx_idlePeerTime (60 seconds) have passed.
1178 MUTEX_ENTER(&rx_peerHashTable_lock);
1179 if (conn->peer->refCount < 2) {
1180 conn->peer->idleWhen = clock_Sec();
1181 if (conn->peer->refCount < 1) {
1182 conn->peer->refCount = 1;
1183 if (rx_stats_active) {
1184 MUTEX_ENTER(&rx_stats_mutex);
1185 rxi_lowPeerRefCount++;
1186 MUTEX_EXIT(&rx_stats_mutex);
1190 conn->peer->refCount--;
1191 MUTEX_EXIT(&rx_peerHashTable_lock);
1193 if (rx_stats_active)
1195 if (conn->type == RX_SERVER_CONNECTION)
1196 rx_atomic_dec(&rx_stats.nServerConns);
1198 rx_atomic_dec(&rx_stats.nClientConns);
1201 if (conn->specific) {
1203 for (i = 0; i < conn->nSpecific; i++) {
1204 if (conn->specific[i] && rxi_keyCreate_destructor[i])
1205 (*rxi_keyCreate_destructor[i]) (conn->specific[i]);
1206 conn->specific[i] = NULL;
1208 free(conn->specific);
1210 conn->specific = NULL;
1211 conn->nSpecific = 0;
1212 #endif /* !KERNEL */
1214 MUTEX_DESTROY(&conn->conn_call_lock);
1215 MUTEX_DESTROY(&conn->conn_data_lock);
1216 CV_DESTROY(&conn->conn_call_cv);
1218 rxi_FreeConnection(conn);
1221 /* Destroy the specified connection */
1223 rxi_DestroyConnection(struct rx_connection *conn)
1225 MUTEX_ENTER(&rx_connHashTable_lock);
1226 rxi_DestroyConnectionNoLock(conn);
1227 /* conn should be at the head of the cleanup list */
1228 if (conn == rx_connCleanup_list) {
1229 rx_connCleanup_list = rx_connCleanup_list->next;
1230 MUTEX_EXIT(&rx_connHashTable_lock);
1231 rxi_CleanupConnection(conn);
1233 #ifdef RX_ENABLE_LOCKS
1235 MUTEX_EXIT(&rx_connHashTable_lock);
1237 #endif /* RX_ENABLE_LOCKS */
1241 rxi_DestroyConnectionNoLock(struct rx_connection *conn)
1243 struct rx_connection **conn_ptr;
1245 struct rx_packet *packet;
1252 MUTEX_ENTER(&conn->conn_data_lock);
1253 MUTEX_ENTER(&rx_refcnt_mutex);
1254 if (conn->refCount > 0)
1257 if (rx_stats_active) {
1258 MUTEX_ENTER(&rx_stats_mutex);
1259 rxi_lowConnRefCount++;
1260 MUTEX_EXIT(&rx_stats_mutex);
1264 if ((conn->refCount > 0) || (conn->flags & RX_CONN_BUSY)) {
1265 /* Busy; wait till the last guy before proceeding */
1266 MUTEX_EXIT(&rx_refcnt_mutex);
1267 MUTEX_EXIT(&conn->conn_data_lock);
1272 /* If the client previously called rx_NewCall, but it is still
1273 * waiting, treat this as a running call, and wait to destroy the
1274 * connection later when the call completes. */
1275 if ((conn->type == RX_CLIENT_CONNECTION)
1276 && (conn->flags & (RX_CONN_MAKECALL_WAITING|RX_CONN_MAKECALL_ACTIVE))) {
1277 conn->flags |= RX_CONN_DESTROY_ME;
1278 MUTEX_EXIT(&conn->conn_data_lock);
1282 MUTEX_EXIT(&rx_refcnt_mutex);
1283 MUTEX_EXIT(&conn->conn_data_lock);
1285 /* Check for extant references to this connection */
1286 MUTEX_ENTER(&conn->conn_call_lock);
1287 for (i = 0; i < RX_MAXCALLS; i++) {
1288 struct rx_call *call = conn->call[i];
1291 if (conn->type == RX_CLIENT_CONNECTION) {
1292 MUTEX_ENTER(&call->lock);
1293 if (call->delayedAckEvent) {
1294 /* Push the final acknowledgment out now--there
1295 * won't be a subsequent call to acknowledge the
1296 * last reply packets */
1297 rxevent_Cancel(&call->delayedAckEvent, call,
1298 RX_CALL_REFCOUNT_DELAY);
1299 if (call->state == RX_STATE_PRECALL
1300 || call->state == RX_STATE_ACTIVE) {
1301 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
1306 MUTEX_EXIT(&call->lock);
1310 MUTEX_EXIT(&conn->conn_call_lock);
1312 #ifdef RX_ENABLE_LOCKS
1314 if (MUTEX_TRYENTER(&conn->conn_data_lock)) {
1315 MUTEX_EXIT(&conn->conn_data_lock);
1317 /* Someone is accessing a packet right now. */
1321 #endif /* RX_ENABLE_LOCKS */
1324 /* Don't destroy the connection if there are any call
1325 * structures still in use */
1326 MUTEX_ENTER(&conn->conn_data_lock);
1327 conn->flags |= RX_CONN_DESTROY_ME;
1328 MUTEX_EXIT(&conn->conn_data_lock);
1333 if (conn->natKeepAliveEvent) {
1334 rxi_NatKeepAliveOff(conn);
1337 if (conn->delayedAbortEvent) {
1338 rxevent_Cancel(&conn->delayedAbortEvent, NULL, 0);
1339 packet = rxi_AllocPacket(RX_PACKET_CLASS_SPECIAL);
1341 MUTEX_ENTER(&conn->conn_data_lock);
1342 rxi_SendConnectionAbort(conn, packet, 0, 1);
1343 MUTEX_EXIT(&conn->conn_data_lock);
1344 rxi_FreePacket(packet);
1348 /* Remove from connection hash table before proceeding */
1350 &rx_connHashTable[CONN_HASH
1351 (peer->host, peer->port, conn->cid, conn->epoch,
1353 for (; *conn_ptr; conn_ptr = &(*conn_ptr)->next) {
1354 if (*conn_ptr == conn) {
1355 *conn_ptr = conn->next;
1359 /* if the conn that we are destroying was the last connection, then we
1360 * clear rxLastConn as well */
1361 if (rxLastConn == conn)
1364 /* Make sure the connection is completely reset before deleting it. */
1365 /* get rid of pending events that could zap us later */
1366 rxevent_Cancel(&conn->challengeEvent, NULL, 0);
1367 rxevent_Cancel(&conn->checkReachEvent, NULL, 0);
1368 rxevent_Cancel(&conn->natKeepAliveEvent, NULL, 0);
1370 /* Add the connection to the list of destroyed connections that
1371 * need to be cleaned up. This is necessary to avoid deadlocks
1372 * in the routines we call to inform others that this connection is
1373 * being destroyed. */
1374 conn->next = rx_connCleanup_list;
1375 rx_connCleanup_list = conn;
1378 /* Externally available version */
1380 rx_DestroyConnection(struct rx_connection *conn)
1385 rxi_DestroyConnection(conn);
1390 rx_GetConnection(struct rx_connection *conn)
1395 MUTEX_ENTER(&rx_refcnt_mutex);
1397 MUTEX_EXIT(&rx_refcnt_mutex);
1401 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
1402 /* Wait for the transmit queue to no longer be busy.
1403 * requires the call->lock to be held */
1405 rxi_WaitforTQBusy(struct rx_call *call) {
1406 while (!call->error && (call->flags & RX_CALL_TQ_BUSY)) {
1407 call->flags |= RX_CALL_TQ_WAIT;
1409 #ifdef RX_ENABLE_LOCKS
1410 osirx_AssertMine(&call->lock, "rxi_WaitforTQ lock");
1411 CV_WAIT(&call->cv_tq, &call->lock);
1412 #else /* RX_ENABLE_LOCKS */
1413 osi_rxSleep(&call->tq);
1414 #endif /* RX_ENABLE_LOCKS */
1416 if (call->tqWaiters == 0) {
1417 call->flags &= ~RX_CALL_TQ_WAIT;
1424 rxi_WakeUpTransmitQueue(struct rx_call *call)
1426 if (call->tqWaiters || (call->flags & RX_CALL_TQ_WAIT)) {
1427 dpf(("call %"AFS_PTR_FMT" has %d waiters and flags %d\n",
1428 call, call->tqWaiters, call->flags));
1429 #ifdef RX_ENABLE_LOCKS
1430 osirx_AssertMine(&call->lock, "rxi_Start start");
1431 CV_BROADCAST(&call->cv_tq);
1432 #else /* RX_ENABLE_LOCKS */
1433 osi_rxWakeup(&call->tq);
1434 #endif /* RX_ENABLE_LOCKS */
1438 /* Start a new rx remote procedure call, on the specified connection.
1439 * If wait is set to 1, wait for a free call channel; otherwise return
1440 * 0. Maxtime gives the maximum number of seconds this call may take,
1441 * after rx_NewCall returns. After this time interval, a call to any
1442 * of rx_SendData, rx_ReadData, etc. will fail with RX_CALL_TIMEOUT.
1443 * For fine grain locking, we hold the conn_call_lock in order to
1444 * to ensure that we don't get signalle after we found a call in an active
1445 * state and before we go to sleep.
1448 rx_NewCall(struct rx_connection *conn)
1450 int i, wait, ignoreBusy = 1;
1451 struct rx_call *call;
1452 struct clock queueTime;
1453 afs_uint32 leastBusy = 0;
1457 dpf(("rx_NewCall(conn %"AFS_PTR_FMT")\n", conn));
1460 clock_GetTime(&queueTime);
1462 * Check if there are others waiting for a new call.
1463 * If so, let them go first to avoid starving them.
1464 * This is a fairly simple scheme, and might not be
1465 * a complete solution for large numbers of waiters.
1467 * makeCallWaiters keeps track of the number of
1468 * threads waiting to make calls and the
1469 * RX_CONN_MAKECALL_WAITING flag bit is used to
1470 * indicate that there are indeed calls waiting.
1471 * The flag is set when the waiter is incremented.
1472 * It is only cleared when makeCallWaiters is 0.
1473 * This prevents us from accidently destroying the
1474 * connection while it is potentially about to be used.
1476 MUTEX_ENTER(&conn->conn_call_lock);
1477 MUTEX_ENTER(&conn->conn_data_lock);
1478 while (conn->flags & RX_CONN_MAKECALL_ACTIVE) {
1479 conn->flags |= RX_CONN_MAKECALL_WAITING;
1480 conn->makeCallWaiters++;
1481 MUTEX_EXIT(&conn->conn_data_lock);
1483 #ifdef RX_ENABLE_LOCKS
1484 CV_WAIT(&conn->conn_call_cv, &conn->conn_call_lock);
1488 MUTEX_ENTER(&conn->conn_data_lock);
1489 conn->makeCallWaiters--;
1490 if (conn->makeCallWaiters == 0)
1491 conn->flags &= ~RX_CONN_MAKECALL_WAITING;
1494 /* We are now the active thread in rx_NewCall */
1495 conn->flags |= RX_CONN_MAKECALL_ACTIVE;
1496 MUTEX_EXIT(&conn->conn_data_lock);
1501 for (i = 0; i < RX_MAXCALLS; i++) {
1502 call = conn->call[i];
1504 if (!ignoreBusy && conn->lastBusy[i] != leastBusy) {
1505 /* we're not ignoring busy call slots; only look at the
1506 * call slot that is the "least" busy */
1510 if (call->state == RX_STATE_DALLY) {
1511 MUTEX_ENTER(&call->lock);
1512 if (call->state == RX_STATE_DALLY) {
1513 if (ignoreBusy && conn->lastBusy[i]) {
1514 /* if we're ignoring busy call slots, skip any ones that
1515 * have lastBusy set */
1516 if (leastBusy == 0 || conn->lastBusy[i] < leastBusy) {
1517 leastBusy = conn->lastBusy[i];
1519 MUTEX_EXIT(&call->lock);
1524 * We are setting the state to RX_STATE_RESET to
1525 * ensure that no one else will attempt to use this
1526 * call once we drop the conn->conn_call_lock and
1527 * call->lock. We must drop the conn->conn_call_lock
1528 * before calling rxi_ResetCall because the process
1529 * of clearing the transmit queue can block for an
1530 * extended period of time. If we block while holding
1531 * the conn->conn_call_lock, then all rx_EndCall
1532 * processing will block as well. This has a detrimental
1533 * effect on overall system performance.
1535 call->state = RX_STATE_RESET;
1536 (*call->callNumber)++;
1537 MUTEX_EXIT(&conn->conn_call_lock);
1538 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
1539 rxi_ResetCall(call, 0);
1540 if (MUTEX_TRYENTER(&conn->conn_call_lock))
1544 * If we failed to be able to safely obtain the
1545 * conn->conn_call_lock we will have to drop the
1546 * call->lock to avoid a deadlock. When the call->lock
1547 * is released the state of the call can change. If it
1548 * is no longer RX_STATE_RESET then some other thread is
1551 MUTEX_EXIT(&call->lock);
1552 MUTEX_ENTER(&conn->conn_call_lock);
1553 MUTEX_ENTER(&call->lock);
1555 if (call->state == RX_STATE_RESET)
1559 * If we get here it means that after dropping
1560 * the conn->conn_call_lock and call->lock that
1561 * the call is no longer ours. If we can't find
1562 * a free call in the remaining slots we should
1563 * not go immediately to RX_CONN_MAKECALL_WAITING
1564 * because by dropping the conn->conn_call_lock
1565 * we have given up synchronization with rx_EndCall.
1566 * Instead, cycle through one more time to see if
1567 * we can find a call that can call our own.
1569 CALL_RELE(call, RX_CALL_REFCOUNT_BEGIN);
1572 MUTEX_EXIT(&call->lock);
1575 if (ignoreBusy && conn->lastBusy[i]) {
1576 /* if we're ignoring busy call slots, skip any ones that
1577 * have lastBusy set */
1578 if (leastBusy == 0 || conn->lastBusy[i] < leastBusy) {
1579 leastBusy = conn->lastBusy[i];
1584 /* rxi_NewCall returns with mutex locked */
1585 call = rxi_NewCall(conn, i);
1586 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
1590 if (i < RX_MAXCALLS) {
1591 conn->lastBusy[i] = 0;
1592 call->flags &= ~RX_CALL_PEER_BUSY;
1597 if (leastBusy && ignoreBusy) {
1598 /* we didn't find a useable call slot, but we did see at least one
1599 * 'busy' slot; look again and only use a slot with the 'least
1605 MUTEX_ENTER(&conn->conn_data_lock);
1606 conn->flags |= RX_CONN_MAKECALL_WAITING;
1607 conn->makeCallWaiters++;
1608 MUTEX_EXIT(&conn->conn_data_lock);
1610 #ifdef RX_ENABLE_LOCKS
1611 CV_WAIT(&conn->conn_call_cv, &conn->conn_call_lock);
1615 MUTEX_ENTER(&conn->conn_data_lock);
1616 conn->makeCallWaiters--;
1617 if (conn->makeCallWaiters == 0)
1618 conn->flags &= ~RX_CONN_MAKECALL_WAITING;
1619 MUTEX_EXIT(&conn->conn_data_lock);
1621 /* Client is initially in send mode */
1622 call->state = RX_STATE_ACTIVE;
1623 call->error = conn->error;
1625 call->mode = RX_MODE_ERROR;
1627 call->mode = RX_MODE_SENDING;
1629 /* remember start time for call in case we have hard dead time limit */
1630 call->queueTime = queueTime;
1631 clock_GetTime(&call->startTime);
1632 call->bytesSent = 0;
1633 call->bytesRcvd = 0;
1635 /* Turn on busy protocol. */
1636 rxi_KeepAliveOn(call);
1638 /* Attempt MTU discovery */
1639 rxi_GrowMTUOn(call);
1642 * We are no longer the active thread in rx_NewCall
1644 MUTEX_ENTER(&conn->conn_data_lock);
1645 conn->flags &= ~RX_CONN_MAKECALL_ACTIVE;
1646 MUTEX_EXIT(&conn->conn_data_lock);
1649 * Wake up anyone else who might be giving us a chance to
1650 * run (see code above that avoids resource starvation).
1652 #ifdef RX_ENABLE_LOCKS
1653 CV_BROADCAST(&conn->conn_call_cv);
1657 MUTEX_EXIT(&conn->conn_call_lock);
1659 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
1660 if (call->flags & (RX_CALL_TQ_BUSY | RX_CALL_TQ_CLEARME)) {
1661 osi_Panic("rx_NewCall call about to be used without an empty tq");
1663 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
1665 MUTEX_EXIT(&call->lock);
1668 dpf(("rx_NewCall(call %"AFS_PTR_FMT")\n", call));
1673 rxi_HasActiveCalls(struct rx_connection *aconn)
1676 struct rx_call *tcall;
1680 for (i = 0; i < RX_MAXCALLS; i++) {
1681 if ((tcall = aconn->call[i])) {
1682 if ((tcall->state == RX_STATE_ACTIVE)
1683 || (tcall->state == RX_STATE_PRECALL)) {
1694 rxi_GetCallNumberVector(struct rx_connection *aconn,
1695 afs_int32 * aint32s)
1698 struct rx_call *tcall;
1702 MUTEX_ENTER(&aconn->conn_call_lock);
1703 for (i = 0; i < RX_MAXCALLS; i++) {
1704 if ((tcall = aconn->call[i]) && (tcall->state == RX_STATE_DALLY))
1705 aint32s[i] = aconn->callNumber[i] + 1;
1707 aint32s[i] = aconn->callNumber[i];
1709 MUTEX_EXIT(&aconn->conn_call_lock);
1715 rxi_SetCallNumberVector(struct rx_connection *aconn,
1716 afs_int32 * aint32s)
1719 struct rx_call *tcall;
1723 MUTEX_ENTER(&aconn->conn_call_lock);
1724 for (i = 0; i < RX_MAXCALLS; i++) {
1725 if ((tcall = aconn->call[i]) && (tcall->state == RX_STATE_DALLY))
1726 aconn->callNumber[i] = aint32s[i] - 1;
1728 aconn->callNumber[i] = aint32s[i];
1730 MUTEX_EXIT(&aconn->conn_call_lock);
1735 /* Advertise a new service. A service is named locally by a UDP port
1736 * number plus a 16-bit service id. Returns (struct rx_service *) 0
1739 char *serviceName; Name for identification purposes (e.g. the
1740 service name might be used for probing for
1743 rx_NewServiceHost(afs_uint32 host, u_short port, u_short serviceId,
1744 char *serviceName, struct rx_securityClass **securityObjects,
1745 int nSecurityObjects,
1746 afs_int32(*serviceProc) (struct rx_call * acall))
1748 osi_socket socket = OSI_NULLSOCKET;
1749 struct rx_service *tservice;
1755 if (serviceId == 0) {
1757 "rx_NewService: service id for service %s is not non-zero.\n",
1764 "rx_NewService: A non-zero port must be specified on this call if a non-zero port was not provided at Rx initialization (service %s).\n",
1772 tservice = rxi_AllocService();
1775 #ifdef RX_ENABLE_LOCKS
1776 MUTEX_INIT(&tservice->svc_data_lock, "svc data lock", MUTEX_DEFAULT, 0);
1779 for (i = 0; i < RX_MAX_SERVICES; i++) {
1780 struct rx_service *service = rx_services[i];
1782 if (port == service->servicePort && host == service->serviceHost) {
1783 if (service->serviceId == serviceId) {
1784 /* The identical service has already been
1785 * installed; if the caller was intending to
1786 * change the security classes used by this
1787 * service, he/she loses. */
1789 "rx_NewService: tried to install service %s with service id %d, which is already in use for service %s\n",
1790 serviceName, serviceId, service->serviceName);
1792 rxi_FreeService(tservice);
1795 /* Different service, same port: re-use the socket
1796 * which is bound to the same port */
1797 socket = service->socket;
1800 if (socket == OSI_NULLSOCKET) {
1801 /* If we don't already have a socket (from another
1802 * service on same port) get a new one */
1803 socket = rxi_GetHostUDPSocket(host, port);
1804 if (socket == OSI_NULLSOCKET) {
1806 rxi_FreeService(tservice);
1811 service->socket = socket;
1812 service->serviceHost = host;
1813 service->servicePort = port;
1814 service->serviceId = serviceId;
1815 service->serviceName = serviceName;
1816 service->nSecurityObjects = nSecurityObjects;
1817 service->securityObjects = securityObjects;
1818 service->minProcs = 0;
1819 service->maxProcs = 1;
1820 service->idleDeadTime = 60;
1821 service->idleDeadErr = 0;
1822 service->connDeadTime = rx_connDeadTime;
1823 service->executeRequestProc = serviceProc;
1824 service->checkReach = 0;
1825 service->nSpecific = 0;
1826 service->specific = NULL;
1827 rx_services[i] = service; /* not visible until now */
1833 rxi_FreeService(tservice);
1834 (osi_Msg "rx_NewService: cannot support > %d services\n",
1839 /* Set configuration options for all of a service's security objects */
1842 rx_SetSecurityConfiguration(struct rx_service *service,
1843 rx_securityConfigVariables type,
1847 for (i = 0; i<service->nSecurityObjects; i++) {
1848 if (service->securityObjects[i]) {
1849 RXS_SetConfiguration(service->securityObjects[i], NULL, type,
1857 rx_NewService(u_short port, u_short serviceId, char *serviceName,
1858 struct rx_securityClass **securityObjects, int nSecurityObjects,
1859 afs_int32(*serviceProc) (struct rx_call * acall))
1861 return rx_NewServiceHost(htonl(INADDR_ANY), port, serviceId, serviceName, securityObjects, nSecurityObjects, serviceProc);
1864 /* Generic request processing loop. This routine should be called
1865 * by the implementation dependent rx_ServerProc. If socketp is
1866 * non-null, it will be set to the file descriptor that this thread
1867 * is now listening on. If socketp is null, this routine will never
1870 rxi_ServerProc(int threadID, struct rx_call *newcall, osi_socket * socketp)
1872 struct rx_call *call;
1874 struct rx_service *tservice = NULL;
1881 call = rx_GetCall(threadID, tservice, socketp);
1882 if (socketp && *socketp != OSI_NULLSOCKET) {
1883 /* We are now a listener thread */
1889 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
1890 #ifdef RX_ENABLE_LOCKS
1892 #endif /* RX_ENABLE_LOCKS */
1893 afs_termState = AFSOP_STOP_AFS;
1894 afs_osi_Wakeup(&afs_termState);
1895 #ifdef RX_ENABLE_LOCKS
1897 #endif /* RX_ENABLE_LOCKS */
1902 /* if server is restarting( typically smooth shutdown) then do not
1903 * allow any new calls.
1906 if (rx_tranquil && (call != NULL)) {
1910 MUTEX_ENTER(&call->lock);
1912 rxi_CallError(call, RX_RESTARTING);
1913 rxi_SendCallAbort(call, (struct rx_packet *)0, 0, 0);
1915 MUTEX_EXIT(&call->lock);
1920 tservice = call->conn->service;
1922 if (tservice->beforeProc)
1923 (*tservice->beforeProc) (call);
1925 code = tservice->executeRequestProc(call);
1927 if (tservice->afterProc)
1928 (*tservice->afterProc) (call, code);
1930 rx_EndCall(call, code);
1932 if (tservice->postProc)
1933 (*tservice->postProc) (code);
1935 if (rx_stats_active) {
1936 MUTEX_ENTER(&rx_stats_mutex);
1938 MUTEX_EXIT(&rx_stats_mutex);
1945 rx_WakeupServerProcs(void)
1947 struct rx_serverQueueEntry *np, *tqp;
1951 MUTEX_ENTER(&rx_serverPool_lock);
1953 #ifdef RX_ENABLE_LOCKS
1954 if (rx_waitForPacket)
1955 CV_BROADCAST(&rx_waitForPacket->cv);
1956 #else /* RX_ENABLE_LOCKS */
1957 if (rx_waitForPacket)
1958 osi_rxWakeup(rx_waitForPacket);
1959 #endif /* RX_ENABLE_LOCKS */
1960 MUTEX_ENTER(&freeSQEList_lock);
1961 for (np = rx_FreeSQEList; np; np = tqp) {
1962 tqp = *(struct rx_serverQueueEntry **)np;
1963 #ifdef RX_ENABLE_LOCKS
1964 CV_BROADCAST(&np->cv);
1965 #else /* RX_ENABLE_LOCKS */
1967 #endif /* RX_ENABLE_LOCKS */
1969 MUTEX_EXIT(&freeSQEList_lock);
1970 for (queue_Scan(&rx_idleServerQueue, np, tqp, rx_serverQueueEntry)) {
1971 #ifdef RX_ENABLE_LOCKS
1972 CV_BROADCAST(&np->cv);
1973 #else /* RX_ENABLE_LOCKS */
1975 #endif /* RX_ENABLE_LOCKS */
1977 MUTEX_EXIT(&rx_serverPool_lock);
1982 * One thing that seems to happen is that all the server threads get
1983 * tied up on some empty or slow call, and then a whole bunch of calls
1984 * arrive at once, using up the packet pool, so now there are more
1985 * empty calls. The most critical resources here are server threads
1986 * and the free packet pool. The "doreclaim" code seems to help in
1987 * general. I think that eventually we arrive in this state: there
1988 * are lots of pending calls which do have all their packets present,
1989 * so they won't be reclaimed, are multi-packet calls, so they won't
1990 * be scheduled until later, and thus are tying up most of the free
1991 * packet pool for a very long time.
1993 * 1. schedule multi-packet calls if all the packets are present.
1994 * Probably CPU-bound operation, useful to return packets to pool.
1995 * Do what if there is a full window, but the last packet isn't here?
1996 * 3. preserve one thread which *only* runs "best" calls, otherwise
1997 * it sleeps and waits for that type of call.
1998 * 4. Don't necessarily reserve a whole window for each thread. In fact,
1999 * the current dataquota business is badly broken. The quota isn't adjusted
2000 * to reflect how many packets are presently queued for a running call.
2001 * So, when we schedule a queued call with a full window of packets queued
2002 * up for it, that *should* free up a window full of packets for other 2d-class
2003 * calls to be able to use from the packet pool. But it doesn't.
2005 * NB. Most of the time, this code doesn't run -- since idle server threads
2006 * sit on the idle server queue and are assigned by "...ReceivePacket" as soon
2007 * as a new call arrives.
2009 /* Sleep until a call arrives. Returns a pointer to the call, ready
2010 * for an rx_Read. */
2011 #ifdef RX_ENABLE_LOCKS
2013 rx_GetCall(int tno, struct rx_service *cur_service, osi_socket * socketp)
2015 struct rx_serverQueueEntry *sq;
2016 struct rx_call *call = (struct rx_call *)0;
2017 struct rx_service *service = NULL;
2019 MUTEX_ENTER(&freeSQEList_lock);
2021 if ((sq = rx_FreeSQEList)) {
2022 rx_FreeSQEList = *(struct rx_serverQueueEntry **)sq;
2023 MUTEX_EXIT(&freeSQEList_lock);
2024 } else { /* otherwise allocate a new one and return that */
2025 MUTEX_EXIT(&freeSQEList_lock);
2026 sq = rxi_Alloc(sizeof(struct rx_serverQueueEntry));
2027 MUTEX_INIT(&sq->lock, "server Queue lock", MUTEX_DEFAULT, 0);
2028 CV_INIT(&sq->cv, "server Queue lock", CV_DEFAULT, 0);
2031 MUTEX_ENTER(&rx_serverPool_lock);
2032 if (cur_service != NULL) {
2033 ReturnToServerPool(cur_service);
2036 if (queue_IsNotEmpty(&rx_incomingCallQueue)) {
2037 struct rx_call *tcall, *ncall, *choice2 = NULL;
2039 /* Scan for eligible incoming calls. A call is not eligible
2040 * if the maximum number of calls for its service type are
2041 * already executing */
2042 /* One thread will process calls FCFS (to prevent starvation),
2043 * while the other threads may run ahead looking for calls which
2044 * have all their input data available immediately. This helps
2045 * keep threads from blocking, waiting for data from the client. */
2046 for (queue_Scan(&rx_incomingCallQueue, tcall, ncall, rx_call)) {
2047 service = tcall->conn->service;
2048 if (!QuotaOK(service)) {
2051 MUTEX_ENTER(&rx_pthread_mutex);
2052 if (tno == rxi_fcfs_thread_num
2053 || queue_IsLast(&rx_incomingCallQueue, tcall)) {
2054 MUTEX_EXIT(&rx_pthread_mutex);
2055 /* If we're the fcfs thread , then we'll just use
2056 * this call. If we haven't been able to find an optimal
2057 * choice, and we're at the end of the list, then use a
2058 * 2d choice if one has been identified. Otherwise... */
2059 call = (choice2 ? choice2 : tcall);
2060 service = call->conn->service;
2062 MUTEX_EXIT(&rx_pthread_mutex);
2063 if (!queue_IsEmpty(&tcall->rq)) {
2064 struct rx_packet *rp;
2065 rp = queue_First(&tcall->rq, rx_packet);
2066 if (rp->header.seq == 1) {
2068 || (rp->header.flags & RX_LAST_PACKET)) {
2070 } else if (rxi_2dchoice && !choice2
2071 && !(tcall->flags & RX_CALL_CLEARED)
2072 && (tcall->rprev > rxi_HardAckRate)) {
2082 ReturnToServerPool(service);
2089 MUTEX_EXIT(&rx_serverPool_lock);
2090 MUTEX_ENTER(&call->lock);
2092 if (call->flags & RX_CALL_WAIT_PROC) {
2093 call->flags &= ~RX_CALL_WAIT_PROC;
2094 rx_atomic_dec(&rx_nWaiting);
2097 if (call->state != RX_STATE_PRECALL || call->error) {
2098 MUTEX_EXIT(&call->lock);
2099 MUTEX_ENTER(&rx_serverPool_lock);
2100 ReturnToServerPool(service);
2105 if (queue_IsEmpty(&call->rq)
2106 || queue_First(&call->rq, rx_packet)->header.seq != 1)
2107 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
2109 CLEAR_CALL_QUEUE_LOCK(call);
2112 /* If there are no eligible incoming calls, add this process
2113 * to the idle server queue, to wait for one */
2117 *socketp = OSI_NULLSOCKET;
2119 sq->socketp = socketp;
2120 queue_Append(&rx_idleServerQueue, sq);
2121 #ifndef AFS_AIX41_ENV
2122 rx_waitForPacket = sq;
2124 rx_waitingForPacket = sq;
2125 #endif /* AFS_AIX41_ENV */
2127 CV_WAIT(&sq->cv, &rx_serverPool_lock);
2129 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
2130 MUTEX_EXIT(&rx_serverPool_lock);
2131 return (struct rx_call *)0;
2134 } while (!(call = sq->newcall)
2135 && !(socketp && *socketp != OSI_NULLSOCKET));
2136 MUTEX_EXIT(&rx_serverPool_lock);
2138 MUTEX_ENTER(&call->lock);
2144 MUTEX_ENTER(&freeSQEList_lock);
2145 *(struct rx_serverQueueEntry **)sq = rx_FreeSQEList;
2146 rx_FreeSQEList = sq;
2147 MUTEX_EXIT(&freeSQEList_lock);
2150 clock_GetTime(&call->startTime);
2151 call->state = RX_STATE_ACTIVE;
2152 call->mode = RX_MODE_RECEIVING;
2153 #ifdef RX_KERNEL_TRACE
2154 if (ICL_SETACTIVE(afs_iclSetp)) {
2155 int glockOwner = ISAFS_GLOCK();
2158 afs_Trace3(afs_iclSetp, CM_TRACE_WASHERE, ICL_TYPE_STRING,
2159 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
2166 rxi_calltrace(RX_CALL_START, call);
2167 dpf(("rx_GetCall(port=%d, service=%d) ==> call %"AFS_PTR_FMT"\n",
2168 call->conn->service->servicePort, call->conn->service->serviceId,
2171 MUTEX_EXIT(&call->lock);
2172 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
2174 dpf(("rx_GetCall(socketp=%p, *socketp=0x%x)\n", socketp, *socketp));
2179 #else /* RX_ENABLE_LOCKS */
2181 rx_GetCall(int tno, struct rx_service *cur_service, osi_socket * socketp)
2183 struct rx_serverQueueEntry *sq;
2184 struct rx_call *call = (struct rx_call *)0, *choice2;
2185 struct rx_service *service = NULL;
2189 MUTEX_ENTER(&freeSQEList_lock);
2191 if ((sq = rx_FreeSQEList)) {
2192 rx_FreeSQEList = *(struct rx_serverQueueEntry **)sq;
2193 MUTEX_EXIT(&freeSQEList_lock);
2194 } else { /* otherwise allocate a new one and return that */
2195 MUTEX_EXIT(&freeSQEList_lock);
2196 sq = rxi_Alloc(sizeof(struct rx_serverQueueEntry));
2197 MUTEX_INIT(&sq->lock, "server Queue lock", MUTEX_DEFAULT, 0);
2198 CV_INIT(&sq->cv, "server Queue lock", CV_DEFAULT, 0);
2200 MUTEX_ENTER(&sq->lock);
2202 if (cur_service != NULL) {
2203 cur_service->nRequestsRunning--;
2204 MUTEX_ENTER(&rx_quota_mutex);
2205 if (cur_service->nRequestsRunning < cur_service->minProcs)
2208 MUTEX_EXIT(&rx_quota_mutex);
2210 if (queue_IsNotEmpty(&rx_incomingCallQueue)) {
2211 struct rx_call *tcall, *ncall;
2212 /* Scan for eligible incoming calls. A call is not eligible
2213 * if the maximum number of calls for its service type are
2214 * already executing */
2215 /* One thread will process calls FCFS (to prevent starvation),
2216 * while the other threads may run ahead looking for calls which
2217 * have all their input data available immediately. This helps
2218 * keep threads from blocking, waiting for data from the client. */
2219 choice2 = (struct rx_call *)0;
2220 for (queue_Scan(&rx_incomingCallQueue, tcall, ncall, rx_call)) {
2221 service = tcall->conn->service;
2222 if (QuotaOK(service)) {
2223 MUTEX_ENTER(&rx_pthread_mutex);
2224 if (tno == rxi_fcfs_thread_num
2225 || !tcall->queue_item_header.next) {
2226 MUTEX_EXIT(&rx_pthread_mutex);
2227 /* If we're the fcfs thread, then we'll just use
2228 * this call. If we haven't been able to find an optimal
2229 * choice, and we're at the end of the list, then use a
2230 * 2d choice if one has been identified. Otherwise... */
2231 call = (choice2 ? choice2 : tcall);
2232 service = call->conn->service;
2234 MUTEX_EXIT(&rx_pthread_mutex);
2235 if (!queue_IsEmpty(&tcall->rq)) {
2236 struct rx_packet *rp;
2237 rp = queue_First(&tcall->rq, rx_packet);
2238 if (rp->header.seq == 1
2240 || (rp->header.flags & RX_LAST_PACKET))) {
2242 } else if (rxi_2dchoice && !choice2
2243 && !(tcall->flags & RX_CALL_CLEARED)
2244 && (tcall->rprev > rxi_HardAckRate)) {
2258 /* we can't schedule a call if there's no data!!! */
2259 /* send an ack if there's no data, if we're missing the
2260 * first packet, or we're missing something between first
2261 * and last -- there's a "hole" in the incoming data. */
2262 if (queue_IsEmpty(&call->rq)
2263 || queue_First(&call->rq, rx_packet)->header.seq != 1
2264 || call->rprev != queue_Last(&call->rq, rx_packet)->header.seq)
2265 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
2267 call->flags &= (~RX_CALL_WAIT_PROC);
2268 service->nRequestsRunning++;
2269 /* just started call in minProcs pool, need fewer to maintain
2271 MUTEX_ENTER(&rx_quota_mutex);
2272 if (service->nRequestsRunning <= service->minProcs)
2275 MUTEX_EXIT(&rx_quota_mutex);
2276 rx_atomic_dec(&rx_nWaiting);
2277 /* MUTEX_EXIT(&call->lock); */
2279 /* If there are no eligible incoming calls, add this process
2280 * to the idle server queue, to wait for one */
2283 *socketp = OSI_NULLSOCKET;
2285 sq->socketp = socketp;
2286 queue_Append(&rx_idleServerQueue, sq);
2290 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
2292 rxi_Free(sq, sizeof(struct rx_serverQueueEntry));
2293 return (struct rx_call *)0;
2296 } while (!(call = sq->newcall)
2297 && !(socketp && *socketp != OSI_NULLSOCKET));
2299 MUTEX_EXIT(&sq->lock);
2301 MUTEX_ENTER(&freeSQEList_lock);
2302 *(struct rx_serverQueueEntry **)sq = rx_FreeSQEList;
2303 rx_FreeSQEList = sq;
2304 MUTEX_EXIT(&freeSQEList_lock);
2307 clock_GetTime(&call->startTime);
2308 call->state = RX_STATE_ACTIVE;
2309 call->mode = RX_MODE_RECEIVING;
2310 #ifdef RX_KERNEL_TRACE
2311 if (ICL_SETACTIVE(afs_iclSetp)) {
2312 int glockOwner = ISAFS_GLOCK();
2315 afs_Trace3(afs_iclSetp, CM_TRACE_WASHERE, ICL_TYPE_STRING,
2316 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
2323 rxi_calltrace(RX_CALL_START, call);
2324 dpf(("rx_GetCall(port=%d, service=%d) ==> call %p\n",
2325 call->conn->service->servicePort, call->conn->service->serviceId,
2328 dpf(("rx_GetCall(socketp=%p, *socketp=0x%x)\n", socketp, *socketp));
2335 #endif /* RX_ENABLE_LOCKS */
2339 /* Establish a procedure to be called when a packet arrives for a
2340 * call. This routine will be called at most once after each call,
2341 * and will also be called if there is an error condition on the or
2342 * the call is complete. Used by multi rx to build a selection
2343 * function which determines which of several calls is likely to be a
2344 * good one to read from.
2345 * NOTE: the way this is currently implemented it is probably only a
2346 * good idea to (1) use it immediately after a newcall (clients only)
2347 * and (2) only use it once. Other uses currently void your warranty
2350 rx_SetArrivalProc(struct rx_call *call,
2351 void (*proc) (struct rx_call * call,
2354 void * handle, int arg)
2356 call->arrivalProc = proc;
2357 call->arrivalProcHandle = handle;
2358 call->arrivalProcArg = arg;
2361 /* Call is finished (possibly prematurely). Return rc to the peer, if
2362 * appropriate, and return the final error code from the conversation
2366 rx_EndCall(struct rx_call *call, afs_int32 rc)
2368 struct rx_connection *conn = call->conn;
2372 dpf(("rx_EndCall(call %"AFS_PTR_FMT" rc %d error %d abortCode %d)\n",
2373 call, rc, call->error, call->abortCode));
2376 MUTEX_ENTER(&call->lock);
2378 if (rc == 0 && call->error == 0) {
2379 call->abortCode = 0;
2380 call->abortCount = 0;
2383 call->arrivalProc = (void (*)())0;
2384 if (rc && call->error == 0) {
2385 rxi_CallError(call, rc);
2386 call->mode = RX_MODE_ERROR;
2387 /* Send an abort message to the peer if this error code has
2388 * only just been set. If it was set previously, assume the
2389 * peer has already been sent the error code or will request it
2391 rxi_SendCallAbort(call, (struct rx_packet *)0, 0, 0);
2393 if (conn->type == RX_SERVER_CONNECTION) {
2394 /* Make sure reply or at least dummy reply is sent */
2395 if (call->mode == RX_MODE_RECEIVING) {
2396 MUTEX_EXIT(&call->lock);
2397 rxi_WriteProc(call, 0, 0);
2398 MUTEX_ENTER(&call->lock);
2400 if (call->mode == RX_MODE_SENDING) {
2401 MUTEX_EXIT(&call->lock);
2402 rxi_FlushWrite(call);
2403 MUTEX_ENTER(&call->lock);
2405 rxi_calltrace(RX_CALL_END, call);
2406 /* Call goes to hold state until reply packets are acknowledged */
2407 if (call->tfirst + call->nSoftAcked < call->tnext) {
2408 call->state = RX_STATE_HOLD;
2410 call->state = RX_STATE_DALLY;
2411 rxi_ClearTransmitQueue(call, 0);
2412 rxi_rto_cancel(call);
2413 rxevent_Cancel(&call->keepAliveEvent, call,
2414 RX_CALL_REFCOUNT_ALIVE);
2416 } else { /* Client connection */
2418 /* Make sure server receives input packets, in the case where
2419 * no reply arguments are expected */
2420 if ((call->mode == RX_MODE_SENDING)
2421 || (call->mode == RX_MODE_RECEIVING && call->rnext == 1)) {
2422 MUTEX_EXIT(&call->lock);
2423 (void)rxi_ReadProc(call, &dummy, 1);
2424 MUTEX_ENTER(&call->lock);
2427 /* If we had an outstanding delayed ack, be nice to the server
2428 * and force-send it now.
2430 if (call->delayedAckEvent) {
2431 rxevent_Cancel(&call->delayedAckEvent, call,
2432 RX_CALL_REFCOUNT_DELAY);
2433 rxi_SendDelayedAck(NULL, call, NULL, 0);
2436 /* We need to release the call lock since it's lower than the
2437 * conn_call_lock and we don't want to hold the conn_call_lock
2438 * over the rx_ReadProc call. The conn_call_lock needs to be held
2439 * here for the case where rx_NewCall is perusing the calls on
2440 * the connection structure. We don't want to signal until
2441 * rx_NewCall is in a stable state. Otherwise, rx_NewCall may
2442 * have checked this call, found it active and by the time it
2443 * goes to sleep, will have missed the signal.
2445 MUTEX_EXIT(&call->lock);
2446 MUTEX_ENTER(&conn->conn_call_lock);
2447 MUTEX_ENTER(&call->lock);
2449 if (!(call->flags & RX_CALL_PEER_BUSY)) {
2450 conn->lastBusy[call->channel] = 0;
2453 MUTEX_ENTER(&conn->conn_data_lock);
2454 conn->flags |= RX_CONN_BUSY;
2455 if (conn->flags & RX_CONN_MAKECALL_WAITING) {
2456 MUTEX_EXIT(&conn->conn_data_lock);
2457 #ifdef RX_ENABLE_LOCKS
2458 CV_BROADCAST(&conn->conn_call_cv);
2463 #ifdef RX_ENABLE_LOCKS
2465 MUTEX_EXIT(&conn->conn_data_lock);
2467 #endif /* RX_ENABLE_LOCKS */
2468 call->state = RX_STATE_DALLY;
2470 error = call->error;
2472 /* currentPacket, nLeft, and NFree must be zeroed here, because
2473 * ResetCall cannot: ResetCall may be called at splnet(), in the
2474 * kernel version, and may interrupt the macros rx_Read or
2475 * rx_Write, which run at normal priority for efficiency. */
2476 if (call->currentPacket) {
2477 #ifdef RX_TRACK_PACKETS
2478 call->currentPacket->flags &= ~RX_PKTFLAG_CP;
2480 rxi_FreePacket(call->currentPacket);
2481 call->currentPacket = (struct rx_packet *)0;
2484 call->nLeft = call->nFree = call->curlen = 0;
2486 /* Free any packets from the last call to ReadvProc/WritevProc */
2487 #ifdef RXDEBUG_PACKET
2489 #endif /* RXDEBUG_PACKET */
2490 rxi_FreePackets(0, &call->iovq);
2491 MUTEX_EXIT(&call->lock);
2493 CALL_RELE(call, RX_CALL_REFCOUNT_BEGIN);
2494 if (conn->type == RX_CLIENT_CONNECTION) {
2495 MUTEX_ENTER(&conn->conn_data_lock);
2496 conn->flags &= ~RX_CONN_BUSY;
2497 MUTEX_EXIT(&conn->conn_data_lock);
2498 MUTEX_EXIT(&conn->conn_call_lock);
2502 * Map errors to the local host's errno.h format.
2504 error = ntoh_syserr_conv(error);
2508 #if !defined(KERNEL)
2510 /* Call this routine when shutting down a server or client (especially
2511 * clients). This will allow Rx to gracefully garbage collect server
2512 * connections, and reduce the number of retries that a server might
2513 * make to a dead client.
2514 * This is not quite right, since some calls may still be ongoing and
2515 * we can't lock them to destroy them. */
2519 struct rx_connection **conn_ptr, **conn_end;
2523 if (rxinit_status == 1) {
2525 return; /* Already shutdown. */
2527 rxi_DeleteCachedConnections();
2528 if (rx_connHashTable) {
2529 MUTEX_ENTER(&rx_connHashTable_lock);
2530 for (conn_ptr = &rx_connHashTable[0], conn_end =
2531 &rx_connHashTable[rx_hashTableSize]; conn_ptr < conn_end;
2533 struct rx_connection *conn, *next;
2534 for (conn = *conn_ptr; conn; conn = next) {
2536 if (conn->type == RX_CLIENT_CONNECTION) {
2537 MUTEX_ENTER(&rx_refcnt_mutex);
2539 MUTEX_EXIT(&rx_refcnt_mutex);
2540 #ifdef RX_ENABLE_LOCKS
2541 rxi_DestroyConnectionNoLock(conn);
2542 #else /* RX_ENABLE_LOCKS */
2543 rxi_DestroyConnection(conn);
2544 #endif /* RX_ENABLE_LOCKS */
2548 #ifdef RX_ENABLE_LOCKS
2549 while (rx_connCleanup_list) {
2550 struct rx_connection *conn;
2551 conn = rx_connCleanup_list;
2552 rx_connCleanup_list = rx_connCleanup_list->next;
2553 MUTEX_EXIT(&rx_connHashTable_lock);
2554 rxi_CleanupConnection(conn);
2555 MUTEX_ENTER(&rx_connHashTable_lock);
2557 MUTEX_EXIT(&rx_connHashTable_lock);
2558 #endif /* RX_ENABLE_LOCKS */
2563 afs_winsockCleanup();
2571 /* if we wakeup packet waiter too often, can get in loop with two
2572 AllocSendPackets each waking each other up (from ReclaimPacket calls) */
2574 rxi_PacketsUnWait(void)
2576 if (!rx_waitingForPackets) {
2580 if (rxi_OverQuota(RX_PACKET_CLASS_SEND)) {
2581 return; /* still over quota */
2584 rx_waitingForPackets = 0;
2585 #ifdef RX_ENABLE_LOCKS
2586 CV_BROADCAST(&rx_waitingForPackets_cv);
2588 osi_rxWakeup(&rx_waitingForPackets);
2594 /* ------------------Internal interfaces------------------------- */
2596 /* Return this process's service structure for the
2597 * specified socket and service */
2598 static struct rx_service *
2599 rxi_FindService(osi_socket socket, u_short serviceId)
2601 struct rx_service **sp;
2602 for (sp = &rx_services[0]; *sp; sp++) {
2603 if ((*sp)->serviceId == serviceId && (*sp)->socket == socket)
2609 #ifdef RXDEBUG_PACKET
2610 #ifdef KDUMP_RX_LOCK
2611 static struct rx_call_rx_lock *rx_allCallsp = 0;
2613 static struct rx_call *rx_allCallsp = 0;
2615 #endif /* RXDEBUG_PACKET */
2617 /* Allocate a call structure, for the indicated channel of the
2618 * supplied connection. The mode and state of the call must be set by
2619 * the caller. Returns the call with mutex locked. */
2620 static struct rx_call *
2621 rxi_NewCall(struct rx_connection *conn, int channel)
2623 struct rx_call *call;
2624 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2625 struct rx_call *cp; /* Call pointer temp */
2626 struct rx_call *nxp; /* Next call pointer, for queue_Scan */
2627 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2629 dpf(("rxi_NewCall(conn %"AFS_PTR_FMT", channel %d)\n", conn, channel));
2631 /* Grab an existing call structure, or allocate a new one.
2632 * Existing call structures are assumed to have been left reset by
2634 MUTEX_ENTER(&rx_freeCallQueue_lock);
2636 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2638 * EXCEPT that the TQ might not yet be cleared out.
2639 * Skip over those with in-use TQs.
2642 for (queue_Scan(&rx_freeCallQueue, cp, nxp, rx_call)) {
2643 if (!(cp->flags & RX_CALL_TQ_BUSY)) {
2649 #else /* AFS_GLOBAL_RXLOCK_KERNEL */
2650 if (queue_IsNotEmpty(&rx_freeCallQueue)) {
2651 call = queue_First(&rx_freeCallQueue, rx_call);
2652 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2654 if (rx_stats_active)
2655 rx_atomic_dec(&rx_stats.nFreeCallStructs);
2656 MUTEX_EXIT(&rx_freeCallQueue_lock);
2657 MUTEX_ENTER(&call->lock);
2658 CLEAR_CALL_QUEUE_LOCK(call);
2659 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2660 /* Now, if TQ wasn't cleared earlier, do it now. */
2661 rxi_WaitforTQBusy(call);
2662 if (call->flags & RX_CALL_TQ_CLEARME) {
2663 rxi_ClearTransmitQueue(call, 1);
2664 /*queue_Init(&call->tq);*/
2666 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2667 /* Bind the call to its connection structure */
2669 rxi_ResetCall(call, 1);
2672 call = rxi_Alloc(sizeof(struct rx_call));
2673 #ifdef RXDEBUG_PACKET
2674 call->allNextp = rx_allCallsp;
2675 rx_allCallsp = call;
2677 rx_atomic_inc_and_read(&rx_stats.nCallStructs);
2678 #else /* RXDEBUG_PACKET */
2679 rx_atomic_inc(&rx_stats.nCallStructs);
2680 #endif /* RXDEBUG_PACKET */
2682 MUTEX_EXIT(&rx_freeCallQueue_lock);
2683 MUTEX_INIT(&call->lock, "call lock", MUTEX_DEFAULT, NULL);
2684 MUTEX_ENTER(&call->lock);
2685 CV_INIT(&call->cv_twind, "call twind", CV_DEFAULT, 0);
2686 CV_INIT(&call->cv_rq, "call rq", CV_DEFAULT, 0);
2687 CV_INIT(&call->cv_tq, "call tq", CV_DEFAULT, 0);
2689 /* Initialize once-only items */
2690 queue_Init(&call->tq);
2691 queue_Init(&call->rq);
2692 queue_Init(&call->iovq);
2693 #ifdef RXDEBUG_PACKET
2694 call->rqc = call->tqc = call->iovqc = 0;
2695 #endif /* RXDEBUG_PACKET */
2696 /* Bind the call to its connection structure (prereq for reset) */
2698 rxi_ResetCall(call, 1);
2700 call->channel = channel;
2701 call->callNumber = &conn->callNumber[channel];
2702 call->rwind = conn->rwind[channel];
2703 call->twind = conn->twind[channel];
2704 /* Note that the next expected call number is retained (in
2705 * conn->callNumber[i]), even if we reallocate the call structure
2707 conn->call[channel] = call;
2708 /* if the channel's never been used (== 0), we should start at 1, otherwise
2709 * the call number is valid from the last time this channel was used */
2710 if (*call->callNumber == 0)
2711 *call->callNumber = 1;
2716 /* A call has been inactive long enough that so we can throw away
2717 * state, including the call structure, which is placed on the call
2720 * call->lock amd rx_refcnt_mutex are held upon entry.
2721 * haveCTLock is set when called from rxi_ReapConnections.
2723 * return 1 if the call is freed, 0 if not.
2726 rxi_FreeCall(struct rx_call *call, int haveCTLock)
2728 int channel = call->channel;
2729 struct rx_connection *conn = call->conn;
2730 u_char state = call->state;
2733 * We are setting the state to RX_STATE_RESET to
2734 * ensure that no one else will attempt to use this
2735 * call once we drop the refcnt lock. We must drop
2736 * the refcnt lock before calling rxi_ResetCall
2737 * because it cannot be held across acquiring the
2738 * freepktQ lock. NewCall does the same.
2740 call->state = RX_STATE_RESET;
2741 MUTEX_EXIT(&rx_refcnt_mutex);
2742 rxi_ResetCall(call, 0);
2744 if (MUTEX_TRYENTER(&conn->conn_call_lock))
2746 if (state == RX_STATE_DALLY || state == RX_STATE_HOLD)
2747 (*call->callNumber)++;
2749 if (call->conn->call[channel] == call)
2750 call->conn->call[channel] = 0;
2751 MUTEX_EXIT(&conn->conn_call_lock);
2754 * We couldn't obtain the conn_call_lock so we can't
2755 * disconnect the call from the connection. Set the
2756 * call state to dally so that the call can be reused.
2758 MUTEX_ENTER(&rx_refcnt_mutex);
2759 call->state = RX_STATE_DALLY;
2763 MUTEX_ENTER(&rx_freeCallQueue_lock);
2764 SET_CALL_QUEUE_LOCK(call, &rx_freeCallQueue_lock);
2765 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2766 /* A call may be free even though its transmit queue is still in use.
2767 * Since we search the call list from head to tail, put busy calls at
2768 * the head of the list, and idle calls at the tail.
2770 if (call->flags & RX_CALL_TQ_BUSY)
2771 queue_Prepend(&rx_freeCallQueue, call);
2773 queue_Append(&rx_freeCallQueue, call);
2774 #else /* AFS_GLOBAL_RXLOCK_KERNEL */
2775 queue_Append(&rx_freeCallQueue, call);
2776 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2777 if (rx_stats_active)
2778 rx_atomic_inc(&rx_stats.nFreeCallStructs);
2779 MUTEX_EXIT(&rx_freeCallQueue_lock);
2781 /* Destroy the connection if it was previously slated for
2782 * destruction, i.e. the Rx client code previously called
2783 * rx_DestroyConnection (client connections), or
2784 * rxi_ReapConnections called the same routine (server
2785 * connections). Only do this, however, if there are no
2786 * outstanding calls. Note that for fine grain locking, there appears
2787 * to be a deadlock in that rxi_FreeCall has a call locked and
2788 * DestroyConnectionNoLock locks each call in the conn. But note a
2789 * few lines up where we have removed this call from the conn.
2790 * If someone else destroys a connection, they either have no
2791 * call lock held or are going through this section of code.
2793 MUTEX_ENTER(&conn->conn_data_lock);
2794 if (conn->flags & RX_CONN_DESTROY_ME && !(conn->flags & RX_CONN_MAKECALL_WAITING)) {
2795 MUTEX_ENTER(&rx_refcnt_mutex);
2797 MUTEX_EXIT(&rx_refcnt_mutex);
2798 MUTEX_EXIT(&conn->conn_data_lock);
2799 #ifdef RX_ENABLE_LOCKS
2801 rxi_DestroyConnectionNoLock(conn);
2803 rxi_DestroyConnection(conn);
2804 #else /* RX_ENABLE_LOCKS */
2805 rxi_DestroyConnection(conn);
2806 #endif /* RX_ENABLE_LOCKS */
2808 MUTEX_EXIT(&conn->conn_data_lock);
2810 MUTEX_ENTER(&rx_refcnt_mutex);
2814 rx_atomic_t rxi_Allocsize = RX_ATOMIC_INIT(0);
2815 rx_atomic_t rxi_Alloccnt = RX_ATOMIC_INIT(0);
2818 rxi_Alloc(size_t size)
2822 if (rx_stats_active) {
2823 rx_atomic_add(&rxi_Allocsize, (int) size);
2824 rx_atomic_inc(&rxi_Alloccnt);
2828 #if defined(KERNEL) && !defined(UKERNEL) && defined(AFS_FBSD80_ENV)
2829 afs_osi_Alloc_NoSleep(size);
2834 osi_Panic("rxi_Alloc error");
2840 rxi_Free(void *addr, size_t size)
2842 if (rx_stats_active) {
2843 rx_atomic_sub(&rxi_Allocsize, (int) size);
2844 rx_atomic_dec(&rxi_Alloccnt);
2846 osi_Free(addr, size);
2850 rxi_SetPeerMtu(struct rx_peer *peer, afs_uint32 host, afs_uint32 port, int mtu)
2852 struct rx_peer **peer_ptr = NULL, **peer_end = NULL;
2853 struct rx_peer *next = NULL;
2857 MUTEX_ENTER(&rx_peerHashTable_lock);
2859 peer_ptr = &rx_peerHashTable[0];
2860 peer_end = &rx_peerHashTable[rx_hashTableSize];
2863 for ( ; peer_ptr < peer_end; peer_ptr++) {
2866 for ( ; peer; peer = next) {
2868 if (host == peer->host)
2873 hashIndex = PEER_HASH(host, port);
2874 for (peer = rx_peerHashTable[hashIndex]; peer; peer = peer->next) {
2875 if ((peer->host == host) && (peer->port == port))
2880 MUTEX_ENTER(&rx_peerHashTable_lock);
2885 MUTEX_EXIT(&rx_peerHashTable_lock);
2887 MUTEX_ENTER(&peer->peer_lock);
2888 /* We don't handle dropping below min, so don't */
2889 mtu = MAX(mtu, RX_MIN_PACKET_SIZE);
2890 peer->ifMTU=MIN(mtu, peer->ifMTU);
2891 peer->natMTU = rxi_AdjustIfMTU(peer->ifMTU);
2892 /* if we tweaked this down, need to tune our peer MTU too */
2893 peer->MTU = MIN(peer->MTU, peer->natMTU);
2894 /* if we discovered a sub-1500 mtu, degrade */
2895 if (peer->ifMTU < OLD_MAX_PACKET_SIZE)
2896 peer->maxDgramPackets = 1;
2897 /* We no longer have valid peer packet information */
2898 if (peer->maxPacketSize-RX_IPUDP_SIZE > peer->ifMTU)
2899 peer->maxPacketSize = 0;
2900 MUTEX_EXIT(&peer->peer_lock);
2902 MUTEX_ENTER(&rx_peerHashTable_lock);
2904 if (host && !port) {
2906 /* pick up where we left off */
2910 MUTEX_EXIT(&rx_peerHashTable_lock);
2913 /* Find the peer process represented by the supplied (host,port)
2914 * combination. If there is no appropriate active peer structure, a
2915 * new one will be allocated and initialized
2916 * The origPeer, if set, is a pointer to a peer structure on which the
2917 * refcount will be be decremented. This is used to replace the peer
2918 * structure hanging off a connection structure */
2920 rxi_FindPeer(afs_uint32 host, u_short port,
2921 struct rx_peer *origPeer, int create)
2925 hashIndex = PEER_HASH(host, port);
2926 MUTEX_ENTER(&rx_peerHashTable_lock);
2927 for (pp = rx_peerHashTable[hashIndex]; pp; pp = pp->next) {
2928 if ((pp->host == host) && (pp->port == port))
2933 pp = rxi_AllocPeer(); /* This bzero's *pp */
2934 pp->host = host; /* set here or in InitPeerParams is zero */
2936 MUTEX_INIT(&pp->peer_lock, "peer_lock", MUTEX_DEFAULT, 0);
2937 queue_Init(&pp->rpcStats);
2938 pp->next = rx_peerHashTable[hashIndex];
2939 rx_peerHashTable[hashIndex] = pp;
2940 rxi_InitPeerParams(pp);
2941 if (rx_stats_active)
2942 rx_atomic_inc(&rx_stats.nPeerStructs);
2949 origPeer->refCount--;
2950 MUTEX_EXIT(&rx_peerHashTable_lock);
2955 /* Find the connection at (host, port) started at epoch, and with the
2956 * given connection id. Creates the server connection if necessary.
2957 * The type specifies whether a client connection or a server
2958 * connection is desired. In both cases, (host, port) specify the
2959 * peer's (host, pair) pair. Client connections are not made
2960 * automatically by this routine. The parameter socket gives the
2961 * socket descriptor on which the packet was received. This is used,
2962 * in the case of server connections, to check that *new* connections
2963 * come via a valid (port, serviceId). Finally, the securityIndex
2964 * parameter must match the existing index for the connection. If a
2965 * server connection is created, it will be created using the supplied
2966 * index, if the index is valid for this service */
2967 static struct rx_connection *
2968 rxi_FindConnection(osi_socket socket, afs_uint32 host,
2969 u_short port, u_short serviceId, afs_uint32 cid,
2970 afs_uint32 epoch, int type, u_int securityIndex)
2972 int hashindex, flag, i;
2973 struct rx_connection *conn;
2974 hashindex = CONN_HASH(host, port, cid, epoch, type);
2975 MUTEX_ENTER(&rx_connHashTable_lock);
2976 rxLastConn ? (conn = rxLastConn, flag = 0) : (conn =
2977 rx_connHashTable[hashindex],
2980 if ((conn->type == type) && ((cid & RX_CIDMASK) == conn->cid)
2981 && (epoch == conn->epoch)) {
2982 struct rx_peer *pp = conn->peer;
2983 if (securityIndex != conn->securityIndex) {
2984 /* this isn't supposed to happen, but someone could forge a packet
2985 * like this, and there seems to be some CM bug that makes this
2986 * happen from time to time -- in which case, the fileserver
2988 MUTEX_EXIT(&rx_connHashTable_lock);
2989 return (struct rx_connection *)0;
2991 if (pp->host == host && pp->port == port)
2993 if (type == RX_CLIENT_CONNECTION && pp->port == port)
2995 /* So what happens when it's a callback connection? */
2996 if ( /*type == RX_CLIENT_CONNECTION && */
2997 (conn->epoch & 0x80000000))
3001 /* the connection rxLastConn that was used the last time is not the
3002 ** one we are looking for now. Hence, start searching in the hash */
3004 conn = rx_connHashTable[hashindex];
3009 struct rx_service *service;
3010 if (type == RX_CLIENT_CONNECTION) {
3011 MUTEX_EXIT(&rx_connHashTable_lock);
3012 return (struct rx_connection *)0;
3014 service = rxi_FindService(socket, serviceId);
3015 if (!service || (securityIndex >= service->nSecurityObjects)
3016 || (service->securityObjects[securityIndex] == 0)) {
3017 MUTEX_EXIT(&rx_connHashTable_lock);
3018 return (struct rx_connection *)0;
3020 conn = rxi_AllocConnection(); /* This bzero's the connection */
3021 MUTEX_INIT(&conn->conn_call_lock, "conn call lock", MUTEX_DEFAULT, 0);
3022 MUTEX_INIT(&conn->conn_data_lock, "conn data lock", MUTEX_DEFAULT, 0);
3023 CV_INIT(&conn->conn_call_cv, "conn call cv", CV_DEFAULT, 0);
3024 conn->next = rx_connHashTable[hashindex];
3025 rx_connHashTable[hashindex] = conn;
3026 conn->peer = rxi_FindPeer(host, port, 0, 1);
3027 conn->type = RX_SERVER_CONNECTION;
3028 conn->lastSendTime = clock_Sec(); /* don't GC immediately */
3029 conn->epoch = epoch;
3030 conn->cid = cid & RX_CIDMASK;
3031 conn->ackRate = RX_FAST_ACK_RATE;
3032 conn->service = service;
3033 conn->serviceId = serviceId;
3034 conn->securityIndex = securityIndex;
3035 conn->securityObject = service->securityObjects[securityIndex];
3036 conn->nSpecific = 0;
3037 conn->specific = NULL;
3038 rx_SetConnDeadTime(conn, service->connDeadTime);
3039 conn->idleDeadTime = service->idleDeadTime;
3040 conn->idleDeadDetection = service->idleDeadErr ? 1 : 0;
3041 for (i = 0; i < RX_MAXCALLS; i++) {
3042 conn->twind[i] = rx_initSendWindow;
3043 conn->rwind[i] = rx_initReceiveWindow;
3045 /* Notify security object of the new connection */
3046 RXS_NewConnection(conn->securityObject, conn);
3047 /* XXXX Connection timeout? */
3048 if (service->newConnProc)
3049 (*service->newConnProc) (conn);
3050 if (rx_stats_active)
3051 rx_atomic_inc(&rx_stats.nServerConns);
3054 MUTEX_ENTER(&rx_refcnt_mutex);
3056 MUTEX_EXIT(&rx_refcnt_mutex);
3058 rxLastConn = conn; /* store this connection as the last conn used */
3059 MUTEX_EXIT(&rx_connHashTable_lock);
3064 * Timeout a call on a busy call channel if appropriate.
3066 * @param[in] call The busy call.
3068 * @pre 'call' is marked as busy (namely,
3069 * call->conn->lastBusy[call->channel] != 0)
3071 * @pre call->lock is held
3072 * @pre rxi_busyChannelError is nonzero
3074 * @note call->lock is dropped and reacquired
3077 rxi_CheckBusy(struct rx_call *call)
3079 struct rx_connection *conn = call->conn;
3080 int channel = call->channel;
3081 int freechannel = 0;
3083 afs_uint32 callNumber;
3085 MUTEX_EXIT(&call->lock);
3087 MUTEX_ENTER(&conn->conn_call_lock);
3088 callNumber = *call->callNumber;
3090 /* Are there any other call slots on this conn that we should try? Look for
3091 * slots that are empty and are either non-busy, or were marked as busy
3092 * longer than conn->secondsUntilDead seconds before this call started. */
3094 for (i = 0; i < RX_MAXCALLS && !freechannel; i++) {
3096 /* only look at channels that aren't us */
3100 if (conn->lastBusy[i]) {
3101 /* if this channel looked busy too recently, don't look at it */
3102 if (conn->lastBusy[i] >= call->startTime.sec) {
3105 if (call->startTime.sec - conn->lastBusy[i] < conn->secondsUntilDead) {
3110 if (conn->call[i]) {
3111 struct rx_call *tcall = conn->call[i];
3112 MUTEX_ENTER(&tcall->lock);
3113 if (tcall->state == RX_STATE_DALLY) {
3116 MUTEX_EXIT(&tcall->lock);
3122 MUTEX_ENTER(&call->lock);
3124 /* Since the call->lock and conn->conn_call_lock have been released it is
3125 * possible that (1) the call may no longer be busy and/or (2) the call may
3126 * have been reused by another waiting thread. Therefore, we must confirm
3127 * that the call state has not changed when deciding whether or not to
3128 * force this application thread to retry by forcing a Timeout error. */
3130 if (freechannel && *call->callNumber == callNumber &&
3131 (call->flags & RX_CALL_PEER_BUSY)) {
3132 /* Since 'freechannel' is set, there exists another channel in this
3133 * rx_conn that the application thread might be able to use. We know
3134 * that we have the correct call since callNumber is unchanged, and we
3135 * know that the call is still busy. So, set the call error state to
3136 * rxi_busyChannelError so the application can retry the request,
3137 * presumably on a less-busy call channel. */
3139 rxi_CallError(call, RX_CALL_BUSY);
3141 MUTEX_EXIT(&conn->conn_call_lock);
3144 /* There are two packet tracing routines available for testing and monitoring
3145 * Rx. One is called just after every packet is received and the other is
3146 * called just before every packet is sent. Received packets, have had their
3147 * headers decoded, and packets to be sent have not yet had their headers
3148 * encoded. Both take two parameters: a pointer to the packet and a sockaddr
3149 * containing the network address. Both can be modified. The return value, if
3150 * non-zero, indicates that the packet should be dropped. */
3152 int (*rx_justReceived) (struct rx_packet *, struct sockaddr_in *) = 0;
3153 int (*rx_almostSent) (struct rx_packet *, struct sockaddr_in *) = 0;
3155 /* A packet has been received off the interface. Np is the packet, socket is
3156 * the socket number it was received from (useful in determining which service
3157 * this packet corresponds to), and (host, port) reflect the host,port of the
3158 * sender. This call returns the packet to the caller if it is finished with
3159 * it, rather than de-allocating it, just as a small performance hack */
3162 rxi_ReceivePacket(struct rx_packet *np, osi_socket socket,
3163 afs_uint32 host, u_short port, int *tnop,
3164 struct rx_call **newcallp)
3166 struct rx_call *call;
3167 struct rx_connection *conn;
3169 afs_uint32 currentCallNumber;
3174 struct rx_packet *tnp;
3177 /* We don't print out the packet until now because (1) the time may not be
3178 * accurate enough until now in the lwp implementation (rx_Listener only gets
3179 * the time after the packet is read) and (2) from a protocol point of view,
3180 * this is the first time the packet has been seen */
3181 packetType = (np->header.type > 0 && np->header.type < RX_N_PACKET_TYPES)
3182 ? rx_packetTypes[np->header.type - 1] : "*UNKNOWN*";
3183 dpf(("R %d %s: %x.%d.%d.%d.%d.%d.%d flags %d, packet %"AFS_PTR_FMT"\n",
3184 np->header.serial, packetType, ntohl(host), ntohs(port), np->header.serviceId,
3185 np->header.epoch, np->header.cid, np->header.callNumber,
3186 np->header.seq, np->header.flags, np));
3189 /* Account for connectionless packets */
3190 if (rx_stats_active &&
3191 ((np->header.type == RX_PACKET_TYPE_VERSION) ||
3192 (np->header.type == RX_PACKET_TYPE_DEBUG))) {
3193 struct rx_peer *peer;
3195 /* Try to look up the peer structure, but don't create one */
3196 peer = rxi_FindPeer(host, port, 0, 0);
3198 /* Since this may not be associated with a connection, it may have
3199 * no refCount, meaning we could race with ReapConnections
3202 if (peer && (peer->refCount > 0)) {
3203 MUTEX_ENTER(&peer->peer_lock);
3204 peer->bytesReceived += np->length;
3205 MUTEX_EXIT(&peer->peer_lock);
3209 if (np->header.type == RX_PACKET_TYPE_VERSION) {
3210 return rxi_ReceiveVersionPacket(np, socket, host, port, 1);
3213 if (np->header.type == RX_PACKET_TYPE_DEBUG) {
3214 return rxi_ReceiveDebugPacket(np, socket, host, port, 1);
3217 /* If an input tracer function is defined, call it with the packet and
3218 * network address. Note this function may modify its arguments. */
3219 if (rx_justReceived) {
3220 struct sockaddr_in addr;
3222 addr.sin_family = AF_INET;
3223 addr.sin_port = port;
3224 addr.sin_addr.s_addr = host;
3225 #ifdef STRUCT_SOCKADDR_HAS_SA_LEN
3226 addr.sin_len = sizeof(addr);
3227 #endif /* AFS_OSF_ENV */
3228 drop = (*rx_justReceived) (np, &addr);
3229 /* drop packet if return value is non-zero */
3232 port = addr.sin_port; /* in case fcn changed addr */
3233 host = addr.sin_addr.s_addr;
3237 /* If packet was not sent by the client, then *we* must be the client */
3238 type = ((np->header.flags & RX_CLIENT_INITIATED) != RX_CLIENT_INITIATED)
3239 ? RX_CLIENT_CONNECTION : RX_SERVER_CONNECTION;
3241 /* Find the connection (or fabricate one, if we're the server & if
3242 * necessary) associated with this packet */
3244 rxi_FindConnection(socket, host, port, np->header.serviceId,
3245 np->header.cid, np->header.epoch, type,
3246 np->header.securityIndex);
3248 /* To avoid having 2 connections just abort at each other,
3249 don't abort an abort. */
3251 if (np->header.type != RX_PACKET_TYPE_ABORT)
3252 rxi_SendRawAbort(socket, host, port, RX_INVALID_OPERATION,
3257 /* If we're doing statistics, then account for the incoming packet */
3258 if (rx_stats_active) {
3259 MUTEX_ENTER(&conn->peer->peer_lock);
3260 conn->peer->bytesReceived += np->length;
3261 MUTEX_EXIT(&conn->peer->peer_lock);
3264 /* If the connection is in an error state, send an abort packet and ignore
3265 * the incoming packet */
3267 /* Don't respond to an abort packet--we don't want loops! */
3268 MUTEX_ENTER(&conn->conn_data_lock);
3269 if (np->header.type != RX_PACKET_TYPE_ABORT)
3270 np = rxi_SendConnectionAbort(conn, np, 1, 0);
3271 putConnection(conn);
3272 MUTEX_EXIT(&conn->conn_data_lock);
3276 /* Check for connection-only requests (i.e. not call specific). */
3277 if (np->header.callNumber == 0) {
3278 switch (np->header.type) {
3279 case RX_PACKET_TYPE_ABORT: {
3280 /* What if the supplied error is zero? */
3281 afs_int32 errcode = ntohl(rx_GetInt32(np, 0));
3282 dpf(("rxi_ReceivePacket ABORT rx_GetInt32 = %d\n", errcode));
3283 rxi_ConnectionError(conn, errcode);
3284 putConnection(conn);
3287 case RX_PACKET_TYPE_CHALLENGE:
3288 tnp = rxi_ReceiveChallengePacket(conn, np, 1);
3289 putConnection(conn);
3291 case RX_PACKET_TYPE_RESPONSE:
3292 tnp = rxi_ReceiveResponsePacket(conn, np, 1);
3293 putConnection(conn);
3295 case RX_PACKET_TYPE_PARAMS:
3296 case RX_PACKET_TYPE_PARAMS + 1:
3297 case RX_PACKET_TYPE_PARAMS + 2:
3298 /* ignore these packet types for now */
3299 putConnection(conn);
3303 /* Should not reach here, unless the peer is broken: send an
3305 rxi_ConnectionError(conn, RX_PROTOCOL_ERROR);
3306 MUTEX_ENTER(&conn->conn_data_lock);
3307 tnp = rxi_SendConnectionAbort(conn, np, 1, 0);
3308 putConnection(conn);
3309 MUTEX_EXIT(&conn->conn_data_lock);
3314 channel = np->header.cid & RX_CHANNELMASK;
3315 MUTEX_ENTER(&conn->conn_call_lock);
3316 call = conn->call[channel];
3319 MUTEX_ENTER(&call->lock);
3320 currentCallNumber = conn->callNumber[channel];
3321 MUTEX_EXIT(&conn->conn_call_lock);
3322 } else if (type == RX_SERVER_CONNECTION) { /* No call allocated */
3323 call = conn->call[channel];
3325 MUTEX_ENTER(&call->lock);
3326 currentCallNumber = conn->callNumber[channel];
3327 MUTEX_EXIT(&conn->conn_call_lock);
3329 call = rxi_NewCall(conn, channel); /* returns locked call */
3330 *call->callNumber = currentCallNumber = np->header.callNumber;
3331 MUTEX_EXIT(&conn->conn_call_lock);
3333 if (np->header.callNumber == 0)
3334 dpf(("RecPacket call 0 %d %s: %x.%u.%u.%u.%u.%u.%u flags %d, packet %"AFS_PTR_FMT" len %d\n",
3335 np->header.serial, rx_packetTypes[np->header.type - 1], ntohl(conn->peer->host), ntohs(conn->peer->port),
3336 np->header.serial, np->header.epoch, np->header.cid, np->header.callNumber, np->header.seq,
3337 np->header.flags, np, np->length));
3339 call->state = RX_STATE_PRECALL;
3340 clock_GetTime(&call->queueTime);
3341 call->bytesSent = 0;
3342 call->bytesRcvd = 0;
3344 * If the number of queued calls exceeds the overload
3345 * threshold then abort this call.
3347 if ((rx_BusyThreshold > 0) &&
3348 (rx_atomic_read(&rx_nWaiting) > rx_BusyThreshold)) {
3349 struct rx_packet *tp;
3351 rxi_CallError(call, rx_BusyError);
3352 tp = rxi_SendCallAbort(call, np, 1, 0);
3353 MUTEX_EXIT(&call->lock);
3354 putConnection(conn);
3355 if (rx_stats_active)
3356 rx_atomic_inc(&rx_stats.nBusies);
3359 rxi_KeepAliveOn(call);
3361 } else { /* RX_CLIENT_CONNECTION and No call allocated */
3362 /* This packet can't be for this call. If the new call address is
3363 * 0 then no call is running on this channel. If there is a call
3364 * then, since this is a client connection we're getting data for
3365 * it must be for the previous call.
3367 MUTEX_EXIT(&conn->conn_call_lock);
3368 if (rx_stats_active)
3369 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3370 putConnection(conn);
3374 /* There is a non-NULL locked call at this point */
3375 if (type == RX_SERVER_CONNECTION) { /* We're the server */
3376 if (np->header.callNumber < currentCallNumber) {
3377 MUTEX_EXIT(&call->lock);
3378 if (rx_stats_active)
3379 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3380 putConnection(conn);
3382 } else if (np->header.callNumber != currentCallNumber) {
3383 /* Wait until the transmit queue is idle before deciding
3384 * whether to reset the current call. Chances are that the
3385 * call will be in ether DALLY or HOLD state once the TQ_BUSY
3388 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
3389 if (call->state == RX_STATE_ACTIVE) {
3390 rxi_WaitforTQBusy(call);
3392 * If we entered error state while waiting,
3393 * must call rxi_CallError to permit rxi_ResetCall
3394 * to processed when the tqWaiter count hits zero.
3397 rxi_CallError(call, call->error);
3398 MUTEX_EXIT(&call->lock);
3399 putConnection(conn);
3403 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
3404 /* If the new call cannot be taken right now send a busy and set
3405 * the error condition in this call, so that it terminates as
3406 * quickly as possible */
3407 if (call->state == RX_STATE_ACTIVE) {
3408 struct rx_packet *tp;
3410 rxi_CallError(call, RX_CALL_DEAD);
3411 tp = rxi_SendSpecial(call, conn, np, RX_PACKET_TYPE_BUSY,
3413 MUTEX_EXIT(&call->lock);
3414 putConnection(conn);
3417 rxi_ResetCall(call, 0);
3419 * The conn_call_lock is not held but no one else should be
3420 * using this call channel while we are processing this incoming
3421 * packet. This assignment should be safe.
3423 *call->callNumber = np->header.callNumber;
3425 if (np->header.callNumber == 0)
3426 dpf(("RecPacket call 0 %d %s: %x.%u.%u.%u.%u.%u.%u flags %d, packet %"AFS_PTR_FMT" len %d\n",
3427 np->header.serial, rx_packetTypes[np->header.type - 1], ntohl(conn->peer->host), ntohs(conn->peer->port),
3428 np->header.serial, np->header.epoch, np->header.cid, np->header.callNumber, np->header.seq,
3429 np->header.flags, np, np->length));
3431 call->state = RX_STATE_PRECALL;
3432 clock_GetTime(&call->queueTime);
3433 call->bytesSent = 0;
3434 call->bytesRcvd = 0;
3436 * If the number of queued calls exceeds the overload
3437 * threshold then abort this call.
3439 if ((rx_BusyThreshold > 0) &&
3440 (rx_atomic_read(&rx_nWaiting) > rx_BusyThreshold)) {
3441 struct rx_packet *tp;
3443 rxi_CallError(call, rx_BusyError);
3444 tp = rxi_SendCallAbort(call, np, 1, 0);
3445 MUTEX_EXIT(&call->lock);
3446 putConnection(conn);
3447 if (rx_stats_active)
3448 rx_atomic_inc(&rx_stats.nBusies);
3451 rxi_KeepAliveOn(call);
3453 /* Continuing call; do nothing here. */
3455 } else { /* we're the client */
3456 /* Ignore all incoming acknowledgements for calls in DALLY state */
3457 if ((call->state == RX_STATE_DALLY)
3458 && (np->header.type == RX_PACKET_TYPE_ACK)) {
3459 if (rx_stats_active)
3460 rx_atomic_inc(&rx_stats.ignorePacketDally);
3461 MUTEX_EXIT(&call->lock);
3462 putConnection(conn);
3466 /* Ignore anything that's not relevant to the current call. If there
3467 * isn't a current call, then no packet is relevant. */
3468 if (np->header.callNumber != currentCallNumber) {
3469 if (rx_stats_active)
3470 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3471 MUTEX_EXIT(&call->lock);
3472 putConnection(conn);
3475 /* If the service security object index stamped in the packet does not
3476 * match the connection's security index, ignore the packet */
3477 if (np->header.securityIndex != conn->securityIndex) {
3478 MUTEX_EXIT(&call->lock);
3479 putConnection(conn);
3483 /* If we're receiving the response, then all transmit packets are
3484 * implicitly acknowledged. Get rid of them. */
3485 if (np->header.type == RX_PACKET_TYPE_DATA) {
3486 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
3487 /* XXX Hack. Because we must release the global rx lock when
3488 * sending packets (osi_NetSend) we drop all acks while we're
3489 * traversing the tq in rxi_Start sending packets out because
3490 * packets may move to the freePacketQueue as result of being here!
3491 * So we drop these packets until we're safely out of the
3492 * traversing. Really ugly!
3493 * For fine grain RX locking, we set the acked field in the
3494 * packets and let rxi_Start remove them from the transmit queue.
3496 if (call->flags & RX_CALL_TQ_BUSY) {
3497 #ifdef RX_ENABLE_LOCKS
3498 rxi_SetAcksInTransmitQueue(call);
3500 putConnection(conn);
3501 return np; /* xmitting; drop packet */
3504 rxi_ClearTransmitQueue(call, 0);
3506 #else /* AFS_GLOBAL_RXLOCK_KERNEL */
3507 rxi_ClearTransmitQueue(call, 0);
3508 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
3510 if (np->header.type == RX_PACKET_TYPE_ACK) {
3511 /* now check to see if this is an ack packet acknowledging that the
3512 * server actually *lost* some hard-acked data. If this happens we
3513 * ignore this packet, as it may indicate that the server restarted in
3514 * the middle of a call. It is also possible that this is an old ack
3515 * packet. We don't abort the connection in this case, because this
3516 * *might* just be an old ack packet. The right way to detect a server
3517 * restart in the midst of a call is to notice that the server epoch
3519 /* XXX I'm not sure this is exactly right, since tfirst **IS**
3520 * XXX unacknowledged. I think that this is off-by-one, but
3521 * XXX I don't dare change it just yet, since it will
3522 * XXX interact badly with the server-restart detection
3523 * XXX code in receiveackpacket. */
3524 if (ntohl(rx_GetInt32(np, FIRSTACKOFFSET)) < call->tfirst) {
3525 if (rx_stats_active)
3526 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3527 MUTEX_EXIT(&call->lock);
3528 putConnection(conn);
3532 } /* else not a data packet */
3535 osirx_AssertMine(&call->lock, "rxi_ReceivePacket middle");
3536 /* Set remote user defined status from packet */
3537 call->remoteStatus = np->header.userStatus;
3539 /* Now do packet type-specific processing */
3540 switch (np->header.type) {
3541 case RX_PACKET_TYPE_DATA:
3542 np = rxi_ReceiveDataPacket(call, np, 1, socket, host, port, tnop,
3545 case RX_PACKET_TYPE_ACK:
3546 /* Respond immediately to ack packets requesting acknowledgement
3548 if (np->header.flags & RX_REQUEST_ACK) {
3550 (void)rxi_SendCallAbort(call, 0, 1, 0);
3552 (void)rxi_SendAck(call, 0, np->header.serial,
3553 RX_ACK_PING_RESPONSE, 1);
3555 np = rxi_ReceiveAckPacket(call, np, 1);
3557 case RX_PACKET_TYPE_ABORT: {
3558 /* An abort packet: reset the call, passing the error up to the user. */
3559 /* What if error is zero? */
3560 /* What if the error is -1? the application will treat it as a timeout. */
3561 afs_int32 errdata = ntohl(*(afs_int32 *) rx_DataOf(np));
3562 dpf(("rxi_ReceivePacket ABORT rx_DataOf = %d\n", errdata));
3563 rxi_CallError(call, errdata);
3564 MUTEX_EXIT(&call->lock);
3565 putConnection(conn);
3566 return np; /* xmitting; drop packet */
3568 case RX_PACKET_TYPE_BUSY: {
3569 struct clock busyTime;
3571 clock_GetTime(&busyTime);
3573 MUTEX_EXIT(&call->lock);
3575 MUTEX_ENTER(&conn->conn_call_lock);
3576 MUTEX_ENTER(&call->lock);
3577 conn->lastBusy[call->channel] = busyTime.sec;
3578 call->flags |= RX_CALL_PEER_BUSY;
3579 MUTEX_EXIT(&call->lock);
3580 MUTEX_EXIT(&conn->conn_call_lock);
3582 putConnection(conn);
3586 case RX_PACKET_TYPE_ACKALL:
3587 /* All packets acknowledged, so we can drop all packets previously
3588 * readied for sending */
3589 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
3590 /* XXX Hack. We because we can't release the global rx lock when
3591 * sending packets (osi_NetSend) we drop all ack pkts while we're
3592 * traversing the tq in rxi_Start sending packets out because
3593 * packets may move to the freePacketQueue as result of being
3594 * here! So we drop these packets until we're safely out of the
3595 * traversing. Really ugly!
3596 * For fine grain RX locking, we set the acked field in the packets
3597 * and let rxi_Start remove the packets from the transmit queue.
3599 if (call->flags & RX_CALL_TQ_BUSY) {
3600 #ifdef RX_ENABLE_LOCKS
3601 rxi_SetAcksInTransmitQueue(call);
3603 #else /* RX_ENABLE_LOCKS */
3604 MUTEX_EXIT(&call->lock);
3605 putConnection(conn);
3606 return np; /* xmitting; drop packet */
3607 #endif /* RX_ENABLE_LOCKS */
3609 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
3610 rxi_ClearTransmitQueue(call, 0);
3613 /* Should not reach here, unless the peer is broken: send an abort
3615 rxi_CallError(call, RX_PROTOCOL_ERROR);
3616 np = rxi_SendCallAbort(call, np, 1, 0);
3619 /* Note when this last legitimate packet was received, for keep-alive
3620 * processing. Note, we delay getting the time until now in the hope that
3621 * the packet will be delivered to the user before any get time is required
3622 * (if not, then the time won't actually be re-evaluated here). */
3623 call->lastReceiveTime = clock_Sec();
3624 /* we've received a legit packet, so the channel is not busy */
3625 call->flags &= ~RX_CALL_PEER_BUSY;
3626 MUTEX_EXIT(&call->lock);
3627 putConnection(conn);
3631 /* return true if this is an "interesting" connection from the point of view
3632 of someone trying to debug the system */
3634 rxi_IsConnInteresting(struct rx_connection *aconn)
3637 struct rx_call *tcall;
3639 if (aconn->flags & (RX_CONN_MAKECALL_WAITING | RX_CONN_DESTROY_ME))
3642 for (i = 0; i < RX_MAXCALLS; i++) {
3643 tcall = aconn->call[i];
3645 if ((tcall->state == RX_STATE_PRECALL)
3646 || (tcall->state == RX_STATE_ACTIVE))
3648 if ((tcall->mode == RX_MODE_SENDING)
3649 || (tcall->mode == RX_MODE_RECEIVING))
3657 /* if this is one of the last few packets AND it wouldn't be used by the
3658 receiving call to immediately satisfy a read request, then drop it on
3659 the floor, since accepting it might prevent a lock-holding thread from
3660 making progress in its reading. If a call has been cleared while in
3661 the precall state then ignore all subsequent packets until the call
3662 is assigned to a thread. */
3665 TooLow(struct rx_packet *ap, struct rx_call *acall)
3669 MUTEX_ENTER(&rx_quota_mutex);
3670 if (((ap->header.seq != 1) && (acall->flags & RX_CALL_CLEARED)
3671 && (acall->state == RX_STATE_PRECALL))
3672 || ((rx_nFreePackets < rxi_dataQuota + 2)
3673 && !((ap->header.seq < acall->rnext + rx_initSendWindow)
3674 && (acall->flags & RX_CALL_READER_WAIT)))) {
3677 MUTEX_EXIT(&rx_quota_mutex);
3683 * Clear the attach wait flag on a connection and proceed.
3685 * Any processing waiting for a connection to be attached should be
3686 * unblocked. We clear the flag and do any other needed tasks.
3689 * the conn to unmark waiting for attach
3691 * @pre conn's conn_data_lock must be locked before calling this function
3695 rxi_ConnClearAttachWait(struct rx_connection *conn)
3697 /* Indicate that rxi_CheckReachEvent is no longer running by
3698 * clearing the flag. Must be atomic under conn_data_lock to
3699 * avoid a new call slipping by: rxi_CheckConnReach holds
3700 * conn_data_lock while checking RX_CONN_ATTACHWAIT.
3702 conn->flags &= ~RX_CONN_ATTACHWAIT;
3703 if (conn->flags & RX_CONN_NAT_PING) {
3704 conn->flags &= ~RX_CONN_NAT_PING;
3705 rxi_ScheduleNatKeepAliveEvent(conn);
3710 rxi_CheckReachEvent(struct rxevent *event, void *arg1, void *arg2, int dummy)
3712 struct rx_connection *conn = arg1;
3713 struct rx_call *acall = arg2;
3714 struct rx_call *call = acall;
3715 struct clock when, now;
3718 MUTEX_ENTER(&conn->conn_data_lock);
3721 rxevent_Put(conn->checkReachEvent);
3722 conn->checkReachEvent = NULL;
3725 waiting = conn->flags & RX_CONN_ATTACHWAIT;
3727 putConnection(conn);
3729 MUTEX_EXIT(&conn->conn_data_lock);
3733 MUTEX_ENTER(&conn->conn_call_lock);
3734 MUTEX_ENTER(&conn->conn_data_lock);
3735 for (i = 0; i < RX_MAXCALLS; i++) {
3736 struct rx_call *tc = conn->call[i];
3737 if (tc && tc->state == RX_STATE_PRECALL) {
3743 rxi_ConnClearAttachWait(conn);
3744 MUTEX_EXIT(&conn->conn_data_lock);
3745 MUTEX_EXIT(&conn->conn_call_lock);
3750 MUTEX_ENTER(&call->lock);
3751 rxi_SendAck(call, NULL, 0, RX_ACK_PING, 0);
3753 MUTEX_EXIT(&call->lock);
3755 clock_GetTime(&now);
3757 when.sec += RX_CHECKREACH_TIMEOUT;
3758 MUTEX_ENTER(&conn->conn_data_lock);
3759 if (!conn->checkReachEvent) {
3760 MUTEX_ENTER(&rx_refcnt_mutex);
3762 MUTEX_EXIT(&rx_refcnt_mutex);
3763 conn->checkReachEvent = rxevent_Post(&when, &now,
3764 rxi_CheckReachEvent, conn,
3767 MUTEX_EXIT(&conn->conn_data_lock);
3773 rxi_CheckConnReach(struct rx_connection *conn, struct rx_call *call)
3775 struct rx_service *service = conn->service;
3776 struct rx_peer *peer = conn->peer;
3777 afs_uint32 now, lastReach;
3779 if (service->checkReach == 0)
3783 MUTEX_ENTER(&peer->peer_lock);
3784 lastReach = peer->lastReachTime;
3785 MUTEX_EXIT(&peer->peer_lock);
3786 if (now - lastReach < RX_CHECKREACH_TTL)
3789 MUTEX_ENTER(&conn->conn_data_lock);
3790 if (conn->flags & RX_CONN_ATTACHWAIT) {
3791 MUTEX_EXIT(&conn->conn_data_lock);
3794 conn->flags |= RX_CONN_ATTACHWAIT;
3795 MUTEX_EXIT(&conn->conn_data_lock);
3796 if (!conn->checkReachEvent)
3797 rxi_CheckReachEvent(NULL, conn, call, 0);
3802 /* try to attach call, if authentication is complete */
3804 TryAttach(struct rx_call *acall, osi_socket socket,
3805 int *tnop, struct rx_call **newcallp,
3808 struct rx_connection *conn = acall->conn;
3810 if (conn->type == RX_SERVER_CONNECTION
3811 && acall->state == RX_STATE_PRECALL) {
3812 /* Don't attach until we have any req'd. authentication. */
3813 if (RXS_CheckAuthentication(conn->securityObject, conn) == 0) {
3814 if (reachOverride || rxi_CheckConnReach(conn, acall) == 0)
3815 rxi_AttachServerProc(acall, socket, tnop, newcallp);
3816 /* Note: this does not necessarily succeed; there
3817 * may not any proc available
3820 rxi_ChallengeOn(acall->conn);
3825 /* A data packet has been received off the interface. This packet is
3826 * appropriate to the call (the call is in the right state, etc.). This
3827 * routine can return a packet to the caller, for re-use */
3829 static struct rx_packet *
3830 rxi_ReceiveDataPacket(struct rx_call *call,
3831 struct rx_packet *np, int istack,
3832 osi_socket socket, afs_uint32 host, u_short port,
3833 int *tnop, struct rx_call **newcallp)
3835 int ackNeeded = 0; /* 0 means no, otherwise ack_reason */
3840 afs_uint32 serial=0, flags=0;
3842 struct rx_packet *tnp;
3843 if (rx_stats_active)
3844 rx_atomic_inc(&rx_stats.dataPacketsRead);
3847 /* If there are no packet buffers, drop this new packet, unless we can find
3848 * packet buffers from inactive calls */
3850 && (rxi_OverQuota(RX_PACKET_CLASS_RECEIVE) || TooLow(np, call))) {
3851 MUTEX_ENTER(&rx_freePktQ_lock);
3852 rxi_NeedMorePackets = TRUE;
3853 MUTEX_EXIT(&rx_freePktQ_lock);
3854 if (rx_stats_active)
3855 rx_atomic_inc(&rx_stats.noPacketBuffersOnRead);
3856 rxi_calltrace(RX_TRACE_DROP, call);
3857 dpf(("packet %"AFS_PTR_FMT" dropped on receipt - quota problems\n", np));
3858 /* We used to clear the receive queue here, in an attempt to free
3859 * packets. However this is unsafe if the queue has received a
3860 * soft ACK for the final packet */
3861 rxi_PostDelayedAckEvent(call, &rx_softAckDelay);
3867 * New in AFS 3.5, if the RX_JUMBO_PACKET flag is set then this
3868 * packet is one of several packets transmitted as a single
3869 * datagram. Do not send any soft or hard acks until all packets
3870 * in a jumbogram have been processed. Send negative acks right away.
3872 for (isFirst = 1, tnp = NULL; isFirst || tnp; isFirst = 0) {
3873 /* tnp is non-null when there are more packets in the
3874 * current jumbo gram */
3881 seq = np->header.seq;
3882 serial = np->header.serial;
3883 flags = np->header.flags;
3885 /* If the call is in an error state, send an abort message */
3887 return rxi_SendCallAbort(call, np, istack, 0);
3889 /* The RX_JUMBO_PACKET is set in all but the last packet in each
3890 * AFS 3.5 jumbogram. */
3891 if (flags & RX_JUMBO_PACKET) {
3892 tnp = rxi_SplitJumboPacket(np, host, port, isFirst);
3897 if (np->header.spare != 0) {
3898 MUTEX_ENTER(&call->conn->conn_data_lock);
3899 call->conn->flags |= RX_CONN_USING_PACKET_CKSUM;
3900 MUTEX_EXIT(&call->conn->conn_data_lock);
3903 /* The usual case is that this is the expected next packet */
3904 if (seq == call->rnext) {
3906 /* Check to make sure it is not a duplicate of one already queued */
3907 if (queue_IsNotEmpty(&call->rq)
3908 && queue_First(&call->rq, rx_packet)->header.seq == seq) {
3909 if (rx_stats_active)
3910 rx_atomic_inc(&rx_stats.dupPacketsRead);
3911 dpf(("packet %"AFS_PTR_FMT" dropped on receipt - duplicate\n", np));
3912 rxevent_Cancel(&call->delayedAckEvent, call,
3913 RX_CALL_REFCOUNT_DELAY);
3914 np = rxi_SendAck(call, np, serial, RX_ACK_DUPLICATE, istack);
3920 /* It's the next packet. Stick it on the receive queue
3921 * for this call. Set newPackets to make sure we wake
3922 * the reader once all packets have been processed */
3923 #ifdef RX_TRACK_PACKETS
3924 np->flags |= RX_PKTFLAG_RQ;
3926 queue_Prepend(&call->rq, np);
3927 #ifdef RXDEBUG_PACKET
3929 #endif /* RXDEBUG_PACKET */
3931 np = NULL; /* We can't use this anymore */
3934 /* If an ack is requested then set a flag to make sure we
3935 * send an acknowledgement for this packet */
3936 if (flags & RX_REQUEST_ACK) {
3937 ackNeeded = RX_ACK_REQUESTED;
3940 /* Keep track of whether we have received the last packet */
3941 if (flags & RX_LAST_PACKET) {
3942 call->flags |= RX_CALL_HAVE_LAST;
3946 /* Check whether we have all of the packets for this call */
3947 if (call->flags & RX_CALL_HAVE_LAST) {
3948 afs_uint32 tseq; /* temporary sequence number */
3949 struct rx_packet *tp; /* Temporary packet pointer */
3950 struct rx_packet *nxp; /* Next pointer, for queue_Scan */
3952 for (tseq = seq, queue_Scan(&call->rq, tp, nxp, rx_packet)) {
3953 if (tseq != tp->header.seq)
3955 if (tp->header.flags & RX_LAST_PACKET) {
3956 call->flags |= RX_CALL_RECEIVE_DONE;
3963 /* Provide asynchronous notification for those who want it
3964 * (e.g. multi rx) */
3965 if (call->arrivalProc) {
3966 (*call->arrivalProc) (call, call->arrivalProcHandle,
3967 call->arrivalProcArg);
3968 call->arrivalProc = (void (*)())0;
3971 /* Update last packet received */
3974 /* If there is no server process serving this call, grab
3975 * one, if available. We only need to do this once. If a
3976 * server thread is available, this thread becomes a server
3977 * thread and the server thread becomes a listener thread. */
3979 TryAttach(call, socket, tnop, newcallp, 0);
3982 /* This is not the expected next packet. */
3984 /* Determine whether this is a new or old packet, and if it's
3985 * a new one, whether it fits into the current receive window.
3986 * Also figure out whether the packet was delivered in sequence.
3987 * We use the prev variable to determine whether the new packet
3988 * is the successor of its immediate predecessor in the
3989 * receive queue, and the missing flag to determine whether
3990 * any of this packets predecessors are missing. */
3992 afs_uint32 prev; /* "Previous packet" sequence number */
3993 struct rx_packet *tp; /* Temporary packet pointer */
3994 struct rx_packet *nxp; /* Next pointer, for queue_Scan */
3995 int missing; /* Are any predecessors missing? */
3997 /* If the new packet's sequence number has been sent to the
3998 * application already, then this is a duplicate */
3999 if (seq < call->rnext) {
4000 if (rx_stats_active)
4001 rx_atomic_inc(&rx_stats.dupPacketsRead);
4002 rxevent_Cancel(&call->delayedAckEvent, call,
4003 RX_CALL_REFCOUNT_DELAY);
4004 np = rxi_SendAck(call, np, serial, RX_ACK_DUPLICATE, istack);
4010 /* If the sequence number is greater than what can be
4011 * accomodated by the current window, then send a negative
4012 * acknowledge and drop the packet */
4013 if ((call->rnext + call->rwind) <= seq) {
4014 rxevent_Cancel(&call->delayedAckEvent, call,
4015 RX_CALL_REFCOUNT_DELAY);
4016 np = rxi_SendAck(call, np, serial, RX_ACK_EXCEEDS_WINDOW,
4023 /* Look for the packet in the queue of old received packets */
4024 for (prev = call->rnext - 1, missing =
4025 0, queue_Scan(&call->rq, tp, nxp, rx_packet)) {
4026 /*Check for duplicate packet */
4027 if (seq == tp->header.seq) {
4028 if (rx_stats_active)
4029 rx_atomic_inc(&rx_stats.dupPacketsRead);
4030 rxevent_Cancel(&call->delayedAckEvent, call,
4031 RX_CALL_REFCOUNT_DELAY);
4032 np = rxi_SendAck(call, np, serial, RX_ACK_DUPLICATE,
4038 /* If we find a higher sequence packet, break out and
4039 * insert the new packet here. */
4040 if (seq < tp->header.seq)
4042 /* Check for missing packet */
4043 if (tp->header.seq != prev + 1) {
4047 prev = tp->header.seq;
4050 /* Keep track of whether we have received the last packet. */
4051 if (flags & RX_LAST_PACKET) {
4052 call->flags |= RX_CALL_HAVE_LAST;
4055 /* It's within the window: add it to the the receive queue.
4056 * tp is left by the previous loop either pointing at the
4057 * packet before which to insert the new packet, or at the
4058 * queue head if the queue is empty or the packet should be
4060 #ifdef RX_TRACK_PACKETS
4061 np->flags |= RX_PKTFLAG_RQ;
4063 #ifdef RXDEBUG_PACKET
4065 #endif /* RXDEBUG_PACKET */
4066 queue_InsertBefore(tp, np);
4070 /* Check whether we have all of the packets for this call */
4071 if ((call->flags & RX_CALL_HAVE_LAST)
4072 && !(call->flags & RX_CALL_RECEIVE_DONE)) {
4073 afs_uint32 tseq; /* temporary sequence number */
4076 call->rnext, queue_Scan(&call->rq, tp, nxp, rx_packet)) {
4077 if (tseq != tp->header.seq)
4079 if (tp->header.flags & RX_LAST_PACKET) {
4080 call->flags |= RX_CALL_RECEIVE_DONE;
4087 /* We need to send an ack of the packet is out of sequence,
4088 * or if an ack was requested by the peer. */
4089 if (seq != prev + 1 || missing) {
4090 ackNeeded = RX_ACK_OUT_OF_SEQUENCE;
4091 } else if (flags & RX_REQUEST_ACK) {
4092 ackNeeded = RX_ACK_REQUESTED;
4095 /* Acknowledge the last packet for each call */
4096 if (flags & RX_LAST_PACKET) {
4107 * If the receiver is waiting for an iovec, fill the iovec
4108 * using the data from the receive queue */
4109 if (call->flags & RX_CALL_IOVEC_WAIT) {
4110 didHardAck = rxi_FillReadVec(call, serial);
4111 /* the call may have been aborted */
4120 /* Wakeup the reader if any */
4121 if ((call->flags & RX_CALL_READER_WAIT)
4122 && (!(call->flags & RX_CALL_IOVEC_WAIT) || !(call->iovNBytes)
4123 || (call->iovNext >= call->iovMax)
4124 || (call->flags & RX_CALL_RECEIVE_DONE))) {
4125 call->flags &= ~RX_CALL_READER_WAIT;
4126 #ifdef RX_ENABLE_LOCKS
4127 CV_BROADCAST(&call->cv_rq);
4129 osi_rxWakeup(&call->rq);
4135 * Send an ack when requested by the peer, or once every
4136 * rxi_SoftAckRate packets until the last packet has been
4137 * received. Always send a soft ack for the last packet in
4138 * the server's reply. */
4140 rxevent_Cancel(&call->delayedAckEvent, call, RX_CALL_REFCOUNT_DELAY);
4141 np = rxi_SendAck(call, np, serial, ackNeeded, istack);
4142 } else if (call->nSoftAcks > (u_short) rxi_SoftAckRate) {
4143 rxevent_Cancel(&call->delayedAckEvent, call, RX_CALL_REFCOUNT_DELAY);
4144 np = rxi_SendAck(call, np, serial, RX_ACK_IDLE, istack);
4145 } else if (call->nSoftAcks) {
4146 if (haveLast && !(flags & RX_CLIENT_INITIATED))
4147 rxi_PostDelayedAckEvent(call, &rx_lastAckDelay);
4149 rxi_PostDelayedAckEvent(call, &rx_softAckDelay);
4150 } else if (call->flags & RX_CALL_RECEIVE_DONE) {
4151 rxevent_Cancel(&call->delayedAckEvent, call, RX_CALL_REFCOUNT_DELAY);
4158 rxi_UpdatePeerReach(struct rx_connection *conn, struct rx_call *acall)
4160 struct rx_peer *peer = conn->peer;
4162 MUTEX_ENTER(&peer->peer_lock);
4163 peer->lastReachTime = clock_Sec();
4164 MUTEX_EXIT(&peer->peer_lock);
4166 MUTEX_ENTER(&conn->conn_data_lock);
4167 if (conn->flags & RX_CONN_ATTACHWAIT) {
4170 rxi_ConnClearAttachWait(conn);
4171 MUTEX_EXIT(&conn->conn_data_lock);
4173 for (i = 0; i < RX_MAXCALLS; i++) {
4174 struct rx_call *call = conn->call[i];
4177 MUTEX_ENTER(&call->lock);
4178 /* tnop can be null if newcallp is null */
4179 TryAttach(call, (osi_socket) - 1, NULL, NULL, 1);
4181 MUTEX_EXIT(&call->lock);
4185 MUTEX_EXIT(&conn->conn_data_lock);
4188 #if defined(RXDEBUG) && defined(AFS_NT40_ENV)
4190 rx_ack_reason(int reason)
4193 case RX_ACK_REQUESTED:
4195 case RX_ACK_DUPLICATE:
4197 case RX_ACK_OUT_OF_SEQUENCE:
4199 case RX_ACK_EXCEEDS_WINDOW:
4201 case RX_ACK_NOSPACE:
4205 case RX_ACK_PING_RESPONSE:
4218 /* The real smarts of the whole thing. */
4219 static struct rx_packet *
4220 rxi_ReceiveAckPacket(struct rx_call *call, struct rx_packet *np,
4223 struct rx_ackPacket *ap;
4225 struct rx_packet *tp;
4226 struct rx_packet *nxp; /* Next packet pointer for queue_Scan */
4227 struct rx_connection *conn = call->conn;
4228 struct rx_peer *peer = conn->peer;
4229 struct clock now; /* Current time, for RTT calculations */
4237 int newAckCount = 0;
4238 int maxDgramPackets = 0; /* Set if peer supports AFS 3.5 jumbo datagrams */
4239 int pktsize = 0; /* Set if we need to update the peer mtu */
4240 int conn_data_locked = 0;
4242 if (rx_stats_active)
4243 rx_atomic_inc(&rx_stats.ackPacketsRead);
4244 ap = (struct rx_ackPacket *)rx_DataOf(np);
4245 nbytes = rx_Contiguous(np) - (int)((ap->acks) - (u_char *) ap);
4247 return np; /* truncated ack packet */
4249 /* depends on ack packet struct */
4250 nAcks = MIN((unsigned)nbytes, (unsigned)ap->nAcks);
4251 first = ntohl(ap->firstPacket);
4252 prev = ntohl(ap->previousPacket);
4253 serial = ntohl(ap->serial);
4255 /* Ignore ack packets received out of order */
4256 if (first < call->tfirst ||
4257 (first == call->tfirst && prev < call->tprev)) {
4263 if (np->header.flags & RX_SLOW_START_OK) {
4264 call->flags |= RX_CALL_SLOW_START_OK;
4267 if (ap->reason == RX_ACK_PING_RESPONSE)
4268 rxi_UpdatePeerReach(conn, call);
4270 if (conn->lastPacketSizeSeq) {
4271 MUTEX_ENTER(&conn->conn_data_lock);
4272 conn_data_locked = 1;
4273 if ((first > conn->lastPacketSizeSeq) && (conn->lastPacketSize)) {
4274 pktsize = conn->lastPacketSize;
4275 conn->lastPacketSize = conn->lastPacketSizeSeq = 0;
4278 if ((ap->reason == RX_ACK_PING_RESPONSE) && (conn->lastPingSizeSer)) {
4279 if (!conn_data_locked) {
4280 MUTEX_ENTER(&conn->conn_data_lock);
4281 conn_data_locked = 1;
4283 if ((conn->lastPingSizeSer == serial) && (conn->lastPingSize)) {
4284 /* process mtu ping ack */
4285 pktsize = conn->lastPingSize;
4286 conn->lastPingSizeSer = conn->lastPingSize = 0;
4290 if (conn_data_locked) {
4291 MUTEX_EXIT(&conn->conn_data_lock);
4292 conn_data_locked = 0;
4296 if (rxdebug_active) {
4300 len = _snprintf(msg, sizeof(msg),
4301 "tid[%d] RACK: reason %s serial %u previous %u seq %u first %u acks %u space %u ",
4302 GetCurrentThreadId(), rx_ack_reason(ap->reason),
4303 ntohl(ap->serial), ntohl(ap->previousPacket),
4304 (unsigned int)np->header.seq, ntohl(ap->firstPacket),
4305 ap->nAcks, ntohs(ap->bufferSpace) );
4309 for (offset = 0; offset < nAcks && len < sizeof(msg); offset++)
4310 msg[len++] = (ap->acks[offset] == RX_ACK_TYPE_NACK ? '-' : '*');
4314 OutputDebugString(msg);
4316 #else /* AFS_NT40_ENV */
4319 "RACK: reason %x previous %u seq %u serial %u first %u",
4320 ap->reason, ntohl(ap->previousPacket),
4321 (unsigned int)np->header.seq, (unsigned int)serial,
4322 ntohl(ap->firstPacket));
4325 for (offset = 0; offset < nAcks; offset++)
4326 putc(ap->acks[offset] == RX_ACK_TYPE_NACK ? '-' : '*',
4331 #endif /* AFS_NT40_ENV */
4334 MUTEX_ENTER(&peer->peer_lock);
4337 * Start somewhere. Can't assume we can send what we can receive,
4338 * but we are clearly receiving.
4340 if (!peer->maxPacketSize)
4341 peer->maxPacketSize = RX_MIN_PACKET_SIZE+RX_IPUDP_SIZE;
4343 if (pktsize > peer->maxPacketSize) {
4344 peer->maxPacketSize = pktsize;
4345 if ((pktsize-RX_IPUDP_SIZE > peer->ifMTU)) {
4346 peer->ifMTU=pktsize-RX_IPUDP_SIZE;
4347 peer->natMTU = rxi_AdjustIfMTU(peer->ifMTU);
4348 rxi_ScheduleGrowMTUEvent(call, 1);
4353 clock_GetTime(&now);
4355 /* The transmit queue splits into 4 sections.
4357 * The first section is packets which have now been acknowledged
4358 * by a window size change in the ack. These have reached the
4359 * application layer, and may be discarded. These are packets
4360 * with sequence numbers < ap->firstPacket.
4362 * The second section is packets which have sequence numbers in
4363 * the range ap->firstPacket to ap->firstPacket + ap->nAcks. The
4364 * contents of the packet's ack array determines whether these
4365 * packets are acknowledged or not.
4367 * The third section is packets which fall above the range
4368 * addressed in the ack packet. These have not yet been received
4371 * The four section is packets which have not yet been transmitted.
4372 * These packets will have a header.serial of 0.
4375 /* First section - implicitly acknowledged packets that can be
4379 tp = queue_First(&call->tq, rx_packet);
4380 while(!queue_IsEnd(&call->tq, tp) && tp->header.seq < first) {
4381 struct rx_packet *next;
4383 next = queue_Next(tp, rx_packet);
4384 call->tfirst = tp->header.seq + 1;
4386 if (!(tp->flags & RX_PKTFLAG_ACKED)) {
4388 rxi_ComputeRoundTripTime(tp, ap, call, peer, &now);
4391 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
4392 /* XXX Hack. Because we have to release the global rx lock when sending
4393 * packets (osi_NetSend) we drop all acks while we're traversing the tq
4394 * in rxi_Start sending packets out because packets may move to the
4395 * freePacketQueue as result of being here! So we drop these packets until
4396 * we're safely out of the&