
AFS Programmer’s Reference:

Authentication Server Interface

Transarc Corporation

April 12, 1993

c©Copyright 1993 Transarc Corporation

All Rights Reserved

FS-00-D166

Authentication Server Interface

Contents

1 Overview . 1
1.1 Introduction . 1
1.2 Scope of this Document . 1
1.3 Document Layout . 2

1.3.1 Related Documents . 2

2 Authentication Server Architecture . 4
2.1 Encryption Key . 4

2.1.1 Overview . 4
2.1.2 Mutual Authentication . 4
2.1.3 System Design . 6

2.2 Assumptions . 6
2.2.1 Introduction . 6
2.2.2 Physical Security . 6
2.2.3 Time Synchrony . 7
2.2.4 Passwords . 7

2.3 Security . 8
2.3.1 Introduction . 8
2.3.2 Security through Encryption . 8
2.3.3 Methods of Attack . 9

3 Authentication Server Interface . 12
3.1 Introduction . 12
3.2 Constants . 12

3.2.1 Interface Function Opcodes . 13
3.2.2 Constants . 13
3.2.3 Miscellaneous . 14

3.3 Structures . 15
3.3.1 struct ka CBS . 15
3.3.2 struct ka BBS . 15
3.3.3 struct EncryptionKey . 16
3.3.4 struct kaident . 16

Table of Contents i April 12, 1993 14:48

Authentication Server Interface

3.3.5 struct kaentryinfo . 16
3.3.6 struct kasstats . 17
3.3.7 struct kadstats . 18
3.3.8 struct ka kcInfo . 19
3.3.9 struct ka debugInfo . 19

3.4 User-Level Library Interface . 20
3.5 RPC Function Calls . 22

3.5.1 KAA Authenticate . 23
3.5.2 KAA ChangePassword . 23
3.5.3 KAT GetTicket . 23
3.5.4 KAM SetPassword . 24
3.5.5 KAM SetFields . 24
3.5.6 KAM CreateUser . 25
3.5.7 KAM DeleteUser . 25
3.5.8 KAM GetEntry . 26
3.5.9 KAM ListEntry . 26
3.5.10 KAM GetStats . 26
3.5.11 KAM Debug . 27
3.5.12 KAM GetPassword . 27
3.5.13 KAM GetRandomKey . 27

3.6 User-Level Library Functions . 28
3.6.1 ka UserAuthenticateGeneral . 28
3.6.2 ka UserReadPassword . 29

3.7 Cell Related Functions . 29
3.7.1 ka CellConfig . 29
3.7.2 ka LocalCell . 29
3.7.3 ka ExpandCell . 30
3.7.4 ka CellToRealm . 30

3.8 Miscellaneous Client-Side Functions . 31
3.8.1 ka Andrew StringToKey . 31
3.8.2 StringToKey . 31
3.8.3 ka StringToKey . 31
3.8.4 ka ReadPassword . 32
3.8.5 ka ParseLoginName . 32
3.8.6 ka Init . 33
3.8.7 ka ExplicitCell . 33
3.8.8 ka GetServers . 33
3.8.9 ka GetSecurity . 34
3.8.10 ka SingleServerConn . 34
3.8.11 ka AuthServerConn . 34
3.8.12 ka Authenticate . 35

Table of Contents ii April 12, 1993 14:48

Authentication Server Interface

3.8.13 ka ChangePassword . 35
3.8.14 ka GetToken . 36
3.8.15 ka GetAdminToken . 36
3.8.16 ka GetAuthToken . 36
3.8.17 ka GetServerToken . 37

3.9 Command Line Interface . 37

Index . i

Table of Contents iii April 12, 1993 14:48

Authentication Server Interface

Chapter 1

Overview

1.1 Introduction

The Authentication Server, or AuthServer, is a program that runs on one or more ma-
chines in a distributed workstation environment. In such an environment, it is common
for a collection of server processes to provide facilities to the network community that
are not available to individual workstations. In a large community, a formal mechanism
to confidently identify clients to servers and vice versa is necessary. The AuthServer
mediates this identification process. It provides information to the server that allows it
to name its client. Conversely, the client can be confident it is in communication with
the desired server and not with a Trojan Horse. This identification is not perfect but can
be relied upon given certain assumptions about the security of the network, the integrity
of the human administrators, and the cryptographic effort that might be expended to
forge an identification.

1.2 Scope of this Document

This paper describes the design and structure of the AFS Authentication Server. The
scope of this work is to provide readers with a sufficiently detailed description of the
AuthServer so that they may construct client applications that call the server’s RPC
interface.

Overview 1 April 12, 1993 14:48

Authentication Server Interface

1.3 Document Layout

The second chapter discusses various aspects of the Auth Server’s architecture. The
basis of authentication in this system is a shared secret known by both parties in a
communication. This secret is usually called a key or sometimes an Encryption Key.
After this is discussed, the security issue is considered and assumptions made. Chapter
three discusses the Auth Server’s API in detail.

1.3.1 Related Documents

This document is a member of a documentation suite providing programmer level speci-
fications for the operations of the various AFS servers and agents and the interfaces they
export, as well as the underlying RPC system they use to communicate. The full suite
of related AFS specification documents is listed below:

• AFS Programmer’s Reference: Architectural Overview: This paper provides an
architectural overview of the AFS distributed file system, describing the full set of
servers and agents in a coherent way, illustrating their relationships to each other
and, examining their interactions.

• AFS Programmer’s Reference: Specification for the Rx Remote Procedure Call Fa-
cility: This document specifies the design and operation of the remote procedure
call and lightweight process packages used by AFS.

• AFS Programmer’s Reference: BOS Server Interface: This paper describes the
“nanny” service which assists in the administrability of the AFS environment.

• AFS Programmer’s Reference: File Server/Cache Manager Interface: This docu-
ment describes the workings and interfaces of the two primary AFS agents: the File
Server and Cache Manager. The File Server provides a centralized disk repository
for sets of files, regulating access to them. End users sitting on client machines
rely on the Cache Manager agent, running in their kernel, to act as their agent in
accessing the files stored on File Server machines, making those files appear as if
they were really housed locally.

• AFS Programmer’s Reference: Protection Server Interface: This paper describes
the server responsible for providing two-way mappings between printable user
names and their internal AFS identifiers. The Protection Server also allows users to
create, destroy, and manipulate “groups” of users suitable for placement on ACLs.

Overview 2 April 12, 1993 14:48

Authentication Server Interface

• AFS Programmer’s Reference:Volume Server/Volume Location Server Interface:
This document describes the services through which “containers” of related user
data are located and managed.

In addition to these papers, the AFS product is delivered with its own user, administra-
tor, installation, and command reference documents.

Overview 3 April 12, 1993 14:48

Authentication Server Interface

Chapter 2

Authentication Server Architecture

This chapter presents the general architecture of the Authentication Server. First, mu-
tual authentication is discussed in detail. Following this, some assumptions such as
physical security and passwords are discussed. Finally, the security issue is discussed.

2.1 Encryption Key

2.1.1 Overview

The basis of authentication in this system is a shared secret known by both parties in a
communication. This secret is usually called a key or sometimes an Encryption Key or
password. A simple protocol can be used by each side to determine whether the other
truly does know the correct key without actually sending the key across the network.
The Data Encryption Standard (DES) is used to provide this determination, although
other key-based encryption systems could be used. The AuthServer provides the client,
directly, and the server, indirectly, with the shared secret which they use to identify each
other.

2.1.2 Mutual Authentication

To deliver keys to the client and server, the AuthServer must use an untrustworthy
communication channel. Because of this fundamental problem, each identity, including
both clients and servers, must be registered with the AuthServer through secure means.
Generally, this involves a face-to-face meeting with a new user and a system administrator

Authentication Server Architecture 4 April 12, 1993 14:48

Authentication Server Interface

to establish a user name and initial password. Such a registered user is called a principal
identity or just a principal. The user’s password is used to generate an encryption key
which is used in all further transactions; the password itself is discarded. The user
should change his password periodically and can do so without the intervention of a
system administrator.

The key, generated from the user’s password and stored in the AuthServer, is then used
to mutually authenticate any client-server pair. The basic algorithm is quite simple. The
client calls the AuthServer with the name of the server it wishes to contact and a random
number which has been encrypted with the client’s key. The AuthServer decrypts the
packet with the client’s key, which it knows, to obtain the random number. It then looks
up the key of the server and creates a ticket encrypted with the server key and containing
the client’s name and a session key. Then the AuthServer creates a packet for return to
the client which contains the random number, the session key, and the ticket prepared
for the desired server all encrypted with the client’s key. This packet contains two copies
of the session key: one encrypted with the client’s key and one encrypted two times:
first with the server’s key then with the client’s key. This session key will be the secret
shared by the client and server when they establish communications.

The client decrypts the packet returned from the AuthServer and checks the random
number to see that it matches the one sent. If the number matches, it can be sure the
AuthServer is genuine and really knows the client’s key. The client saves the session key
and delivers the ticket, which it can not interpret, to the server when the connection
is opened. The server decrypts the ticket and verifies that the user name it contains
is allowed to use its service. The session key can be used to encrypt communication
between the two. The server knows who this user is because the name was in the ticket
encrypted by the AuthServer. The client knows it is in communication with the real
server since the server was able to obtain the session key from the the ticket created by
the AuthServer. The parties can work in privacy, both confident of the identity of the
other. This is secure mutually authenticated communication.

In practice a slightly more complicated system is employed for creating server tickets.
The process of getting a ticket for a server is divided into two steps. The first involves
contacting the AuthServer using the protocol outlined above. The AuthServer produces
a ticket, called the AuthTicket, which is given to an intermediate server called the Ticket
Granting Service (TGS). The second step is to contact the TGS, using the AuthTicket
as proof of authentication, to obtain a ticket for the desired server. This second step may
be repeated many times during a login session to get tickets for various servers as they
are needed. The advantage of dividing the process this way is that the user’s password
is used only for the first step. Since the AuthTicket has a lifetime of a few hours, it is
a smaller security risk to keep it in memory for the duration of a login session than to
keep a password for the same period.

Authentication Server Architecture 5 April 12, 1993 14:48

Authentication Server Interface

2.1.3 System Design

The design of this system borrows heavily from the work Needham and Schroeder[7] did
on using encryption in an insecure network environment. Many ideas have been adapted
from their work, especially the format of the tickets and much of their terminology.

A good deal of effort has gone into making the system compatible with Kerberos[6].
In this paper we refer to cells which are broadly equivalent to the realms of Kerberos.
We have mostly adopted the name ticket, but earlier descriptions of the Andrew system
referred to them as tokens. The term tokens is used here to refer to a structure containing
a ticket and the associated session key.

2.2 Assumptions

2.2.1 Introduction

The security and reliability of the AuthServer depends on several assumptions about its
environment. Making these assumptions explicit should help prevent security violations
or other problems caused by inadvertently changing some aspect of the system on which
the AuthServer relies. In this section we cover all the parts of the system that are unusual
or critical to correct operation.

2.2.2 Physical Security

It is critical to the secure operation of the AuthServer that the computer on which it
runs is a physically secure machine. There are many ways to compromise the integrity
of the AuthServer if access to the hardware is possible. Many of these are difficult to
combat or even detect. Providing physical security is an established technique with well
known advantages and well understood weaknesses.

To obtain the many advantages of multiprocessing, the AuthServer is usually run as
a distributed process on several machines. Each of these machines must be physically
secure. The connection between the AuthServer’s machines and the rest of the system,
including both servers and clients, does not have to be secure. The protocols used to
establish and maintain communication between the AuthServer and clients and between
clients and servers attempt to protect against all types of attacks on the network. In
addition, the physical security of neither the client nor other server machines is depended
upon, as they may be owned and operated by individuals or groups throughout the user

Authentication Server Architecture 6 April 12, 1993 14:48

Authentication Server Interface

community.

2.2.3 Time Synchrony

The protocols depend upon a degree of time synchrony to detect stale or replayed mes-
sages which may be used in an attack on system security. Because perfect synchronization
is unrealistic, this protocol assumes that clocks on different machines are within fifteen
minutes of each other. This requirement is only important for changing passwords, be-
cause this is an operation with a side-effect. This synchronization limit means that a
user who changes his or her password twice within fifteen minutes could have it changed
back by an attacker replaying the first change request.

2.2.4 Passwords

The security of the system critically depends on the security of user passwords. Most
users do not keep their password’s safe or choose appropriate passwords. This is usually
the largest source of security problems in any system. These problems, however, are lim-
ited to the compromise of individual users, although individuals with access to sensitive
data need to be careful about their passwords.

The problem of managing server passwords is much more critical. The ability to reboot
a server and have the server’s password entered without human intervention is important
for large systems that need to provide a high level of availability. To accomplish this,
server passwords are stored on the local, physically secure disk. This approach is a
reasonable interim solution but one which has many potential risks. The AuthServer
simply assumes that all passwords are safe.

Another problem is the possibility of a Trojan Horse replacing the standard login pro-
gram. Because fetching the login program over the network usually precedes the authen-
tication process, there is no protection from having a rogue file server supply a copy of
login that steals passwords. The same general problem applies to booting a workstation
from a network server. These problems are not addressed by the AuthServer and are
assumed to be controlled in other ways.

Authentication Server Architecture 7 April 12, 1993 14:48

Authentication Server Interface

2.3 Security

2.3.1 Introduction

The basic authentication problem has two parts: establishing identity and defeating
attempts to forge identities. The latter almost totally dictates the details of the solution.
The job of establishing the identity of the user is simply a matter of determining whether
or not a user knows the password associated with a principal. This could be as simple as
having the user sit down at a terminal and type in his name and password which is then
sent over the network to the AuthServer. To provide security in a potentially hostile
environment, various counter-measures must be taken to prevent a user’s password from
being revealed and to prevent one user from masquerading as another. The basic source of
security loopholes comes from the fact that both the local workstations and the network
that connects them to the AuthServer are easily accessible to an attacker. However,
these weaknesses are an intrinsic part of a distributed workstation environment so the
design of the protocols takes them into account.

2.3.2 Security through Encryption

Security problems are primarily addressed by encrypting sensitive messages with DES.
The choice of key and the details of the message contents vary according to the situation.
The DES algorithm has several features that are important to its use in authentication
[8].

• It has a relatively compact, eight byte key that can be formed from several conve-
nient sources such as passwords or random numbers.

• Data of any length can be encrypted and decrypted given the key, but it is very
difficult to do either without the key. The data must be padded to a multiple of
eight bytes. The standard method of encrypting a sequence of data longer than
eight bytes is called cipher block chaining. This method uses some data from the
encryption of the previous eight byte chunk to encrypt the current chunk. This
means that a change to a message will affect the translation of all subsequent data
in the message.

• The key must be kept hidden.

The basic paradigm for achieving mutual authentication involves exchanging messages
that can be recognized as correct when decrypted using the shared secret as the key.

Authentication Server Architecture 8 April 12, 1993 14:48

Authentication Server Interface

The properties of DES are such that without knowledge of the key it is not feasible to
create a properly encrypted message or to decrypt a message. The choice of the message
contents results from a consideration of the various methods of attack that the system
must protect itself against.

2.3.3 Methods of Attack

The attacks that the design attempts to cope with fall into these categories:

• eavesdropping - This attack assumes that someone can listen in on a conversation
and obtain private information. It includes both intercepting keys or passwords,
which would be very serious and simple snooping on the contents of personal files.

• tampering - In this type of attack, data is modified, either in transit or by inter-
cepting a packet, altered, and reinjected into the network.

• replay - This is reinsertion of old packets into the network in an attempt to deceive
the recipient. The advantage of this approach is that the attacker does not need full
knowledge of the contents of the packets. It is conceptually similar to tampering
except that it assumes that the original packet was received or that the delay
between interception and reinjection is relatively long.

• server misrepresentation - This is a specific case of a Trojan Horse where an attacker
pretends to be a server. Mutual authentication is important in this case.

• cryptographic attack - This is an attempt to decrypt the encryption algorithm.
Apart from using a encryption algorithm blessed by the National Security Agency
(DES), little attempt is made to worry about this.

Eavesdropping implies that anything sent over the network can be read. This means that
sensitive data must be encrypted when sent over the network. This primarily affects keys.

Encryptions can be used to detect tampering. The data to be protected must be en-
crypted even though the data itself may not be sensitive. If an encrypted message is
tampered with, the decryption process will scramble it in ways impossible for the attacker
to predict. With suitable consistency checks on the decrypted message, tampering can
be detected and such messages rejected. By using encryption to prevent tampering, the
recipient can assume that the data in a message is internally consistent.

Replay attacks can be defeated in one of two ways. Either by including a timestamp that
causes old messages to be rejected or by including an identifier specified by the recipient

Authentication Server Architecture 9 April 12, 1993 14:48

Authentication Server Interface

in an earlier message. The advantage of timestamps is that they are easy to use; a single
test by the server can detect a replayed message. The disadvantage is that the inevitable
skew between the clocks of different machines and the routing delays imposed by the
network puts a lower bound on the delay that can be detected by rejecting messages
with “old” timestamps. Because many systems contain clock skews of several minutes,
this test cannot be made very rigorous.

Using a handshaking algorithm that exchanges identifiers has the advantage that the
identifiers are only used once. If the identifier is encountered in a replayed message after
the original transaction has completed, the message will always be rejected. The problem
is that the protocol for exchanging identifiers is more complex. The basic scenario is as
follows:

client: {r 1 = random()}key −− >

< −− {r 1+1, r 2 = random()}key :server

At this point the client knows that the server is real, but the server is still not sure about
the client. Since the transaction is initiated by the client it gets the first information
back. It takes one more message

client: {r 2+1}key −− >

to convince the server and complete the mutual authentication.

An additional safeguard against replay is to test the source of each packet against the
host the previous packet came from and make sure that all packets are from the same
host. This makes hijacking an ongoing connection more difficult. There are two problems
with using the host address:

• The hardware that inserts the host address may be altered to fake any desired
return address.

• The user may intentionally change hosts from time to time which limits the strict-
ness of this test to the lifetime of a single connection.

The problem of server misrepresentation is resolved whenever mutual authentication
happens before sensitive data is exchanged. Alternatively, if sensitive data is encrypted,
and assuming incorrect decryption can be detected with consistency checks, illegitimate
servers can be rejected without authentication. In this case the encrypted data transfer
accomplishes the authentication.

Protection from cryptographic attack is beyond the scope of this mechanism. It is
implicitly assumed that anyone prepared to do a serious cryptographic attack on DES
encrypted data in this system can have whatever he or she can get. Any data so sensitive

Authentication Server Architecture 10 April 12, 1993 14:48

Authentication Server Interface

that this might be a problem should be subject to additional safety measures. No such
data should be stored in the Andrew File System.

Several simple design rules should serve to make such attacks more difficult. The goal
of these rules is to not give away any more information than necessary.

• Keep messages short.

• Make the contents of an encrypted message as difficult to predict as possible.

• Put the most random data at the front of the message so that the cipher block
chaining will randomize the encrypted text as much as possible.

• Do not repeat an encrypted message more often that strictly necessary.

• Do not provide “free” samples of encrypted text.

Authentication Server Architecture 11 April 12, 1993 14:48

Authentication Server Interface

Chapter 3

Authentication Server Interface

3.1 Introduction

This chapter documents the API for the Authentication Server facility, as defined by
the kauth.rg Rxgen interface file and the kaserver.h include file. Descriptions of all
the constants, structures, macros, and interface functions available to the application
programmer are included.

3.2 Constants

This section covers the basic constant definitions of interest to the AuthServer applica-
tion programmer. These definitions appear in the kaserver.h file which is automatically
generated from kauth.rg, the RPC interface definition file. See Chapter 6 of the AFS
Programmer’s Reference: Specification for the Rx Remote Procedure Call Facility for an
example of an RPC interface definition file.

The subsections describe constants in the following categories:

• Interface function opcodes
• Constants
• Micellaneous

Authentication Server Interface 12 April 12, 1993 14:48

Authentication Server Interface

3.2.1 Interface Function Opcodes

These constants, appearing in the kauth.rg Rxgen interface file for the AuthServer, define
the opcodes for the RPC routines. Every Rx call to this interface contains this opcode.
The thread dispatcher uses it to select the proper code at the server site to carry out the
call.

The functions are described in section 3.5.

Name Value Description

AUTHENTICATE OLD 1 Opcode for

KAA Authenticate old()
CHANGEPASSWORD 2 Opcode for

KAA ChangePassword()
GETTICKET OLD 3 Opcode for

KAT GetTicket old()
SETPASSWORD 4 Opcode for

KAM SetPassword()
SETFIELDS 5 Opcode for KAM SetFields()
CREATEUSER 6 Opcode for

KAM CreateUser()
DELETEUSER 7 Opcode for

KAM DeleteUser()
GETENTRY 8 Opcode for KAM GetEntry()
LISTENTRY 9 Opcode for KAM ListEntry()
GETSTATS 10 Opcode for KAM GetStats()
DEBUG 11 Opcode for KAM Debug()
GETPASSWORD 12 Opcode for

KAM GetPassword()
GETRANDOMKEY 13 Opcode for

KAM GetRandomKey()
AUTHENTICATE 21 Opcode for

KAA Authenticate()
GETTICKET 23 Opcode for KAT GetTicket()

3.2.2 Constants

The following constants are required to properly use the AuthServer RPC interface, both
to provide values and to interpret information returned by the calls.

Authentication Server Interface 13 April 12, 1993 14:48

Authentication Server Interface

Name Value Description

MAXKAKVNO 127 The key version number must fit in a byte.

The next six constants are flags. NOTE: zero is an illegal value.

Name Value Description

KAFNORMAL 0x001 Set for all user entries.

If the normal flag is off, then one of the two flags below must be set.

Name Value Description

KAFFREE 0x002 Set if in free list.
KAFOLDKEYS 0x010 Set if entry used to store old keys.

Otherwise one of the following may be set to define the usage of the misc field.

Name Value Description

KAFSPECIAL 0x100 Set if special AuthServer principal.
KAFASSOCROOT 0x200 Set if root of associate tree.
KAFASSOC 0x400 Set if entry is an associate.

The following flags define special properties for normal users and are settable using
SetFields().

Name Value Description

KAFADMIN 0x004 An administrator.
KAFNOTGS 0x008 Don’t allow principal to get or use TGT.
KAFNOSEAL 0x020 Don’t allow principal as server in GetTicket.
KAFNOCPW 0x040 Don’t allow principal to change its own key.
KAFNEWASSOC 0x080 Allow user to create associates.

3.2.3 Miscellaneous

This section lists miscellaneous constants used in the structures described in the following
sections.

To make future revisions easy to accommodate they are assigned a major and minor
version number. Major version changes will require recompilation because the structures
have changed size. Minor version changes will be more or less upward compatible.

Authentication Server Interface 14 April 12, 1993 14:48

Authentication Server Interface

Name Value Description

KAMAJORVERSION 5
KAMINORVERSION 1
NEVERDATE 037777777777 Initial value used in date fields.
KADEBUGKCINFOSIZE 25 This returns information about the state of

the server for debugging problems remotely.

3.3 Structures

This section describes the major exported Authentication Server data structures of inter-
est to application programmers. These structures are returned by server RPC interface
routines.

3.3.1 struct ka CBS

This structure is used to specify input byte sequences in routines such as ChangePass-
word() and GetTicket(). Since the byte sequence is not NULL terminated, the number
of bytes in the sequence must be included in the structure.

Fields

long SeqLen - Number of bytes in character string.

char *SeqBody - A character string, not NULL terminated.

3.3.2 struct ka BBS

This structure is used to specify where a called function, such as ChangePassword()
and GetTicket(), should put a reply byte sequence and the maximum number of bytes
allowed in the reply. The called function specifies the number of bytes being returned.

Fields

long MaxSeqLen - Maximum number of bytes allowed in character string.

Authentication Server Interface 15 April 12, 1993 14:48

Authentication Server Interface

long SeqLen - Actual number of bytes in character string.

char *SeqBody - Character string, not NULL terminated.

3.3.3 struct EncryptionKey

This structure defines an encryption key that is bit level compatible with DES and
ktc encryptionKey, but that will have to be cast to the appropriate type in calls.

Fields

char key[8] - 16 hex digits.

3.3.4 struct kaident

This structure returns name and instance strings.

Fields

char name[MAXKANAMELEN] - The users name, NULL terminated, at most 63 char-
acters in name.

char instance[MAXKANAMELEN] - The group name, NULL terminated, at most 63
characters in group.

3.3.5 struct kaentryinfo

This structure is used to return the information stored in an entry in the authentication
database. For example, the calling sequence to GetEntry() specifies a pointer to one of
these. NOTE: Date is a synonym for unsigned long.

Authentication Server Interface 16 April 12, 1993 14:48

Authentication Server Interface

Fields

long minor version - The minor version number.

long flags - Holds flags described in section 3.2.2.

Date user expiration - User registration good until then.

Date modification time - Time of last update.

struct kaident modification user - User name and instance last modified.

Date change password time - Time user changed own password.

long max ticket lifetime - Maximum lifetime for tickets.

long key version - Version number of this key.

EncryptionKey key - The key to use.

unsigned long keyCheckSum - Crypto-cksum of key.

long reserved2 - Not used.

long reserved3 - Not used.

long reserved4 - Not used.

3.3.6 struct kasstats

These are (static) statistics kept in the database header. This structure can be examined
via a call to GetStats().

Fields

long minor version - The minor version number.

long allocs - Total number of calls to AllocBlock.

long frees - Total number of calls to FreeBlock.

long cpws - Number of user change password commands.

long reserved1 - Not used.

long reserved2 - Not used.

long reserved3 - Not used.

long reserved4 - Not used.

Authentication Server Interface 17 April 12, 1993 14:48

Authentication Server Interface

3.3.7 struct kadstats

These are dynamic statistics kept in each AuthServer process. The current values can
be examined via a call to GetStats().

Fields

long minor version - The minor version number.

long host - Server, in NW byte order.

Date start time - Time statistics were last cleared.

long hashTableUtilization - Use of non-empty hash table entries in parts per
10,000.

declare stat (Authenticate) - Count of requests and aborts for each RPC.

declare stat (ChangePassword) - Count of requests and aborts for each RPC.

declare stat (GetTicket) - Count of requests and aborts for each RPC.

declare stat (CreateUser) - Count of requests and aborts for each RPC.

declare stat (SetPassword) - Count of requests and aborts for each RPC.

declare stat (SetFields) - Count of requests and aborts for each RPC.

declare stat (DeleteUser) - Count of requests and aborts for each RPC.

declare stat (GetEntry) - Count of requests and aborts for each RPC.

declare stat (ListEntry) - Count of requests and aborts for each RPC.

declare stat (GetStats) - Count of requests and aborts for each RPC.

declare stat (GetPassword) - Count of requests and aborts for each RPC.

declare stat (GetRandomKey) - Count of requests and aborts for each RPC.

declare stat (Debug) - Count of requests and aborts for each RPC.

declare stat (UAuthenticate) - Count of requests and aborts for each RPC.

declare stat (UGetTicket) - Count of requests and aborts for each RPC.

long string checks - Errors detected in name and instance strings.

long reserved1 - Not used.

long reserved2 - Not used.

long reserved3 - Not used.

long reserved4 - Not used.

Authentication Server Interface 18 April 12, 1993 14:48

Authentication Server Interface

3.3.8 struct ka kcInfo

This structure describes an entry in the key cache in the AuthServer. This information
is visible as part of the ka debugInfo structure.

Fields

Date used - When key used last.

long kvno - Version number of this key.

char primary - Determines whether this key is due to be superseded.

char keycksum - The checksum for this key.

char principal[64] - Stores user name and group.

3.3.9 struct ka debugInfo

This structure describes the state of the AuthServer. The information is visible via a
call to Debug().

Fields

long minorVersion - The minor version number.

long host - Server in NW byte order.

Date startTime - Time server was started.

int noAuth - Running with authentication off.

Date lastTrans - Time of last transaction.

char lastOperation[16] - Name of last operation.

char lastAuth[256] - Last principal to authenticate.

char lastUAuth[256] - Last principal to authenticate via UDP.

char lastTGS[256] - Last principal to call ticket granting service.

char lastUTGS[256] - Last principal to call TGS via UDP.

char lastAdmin[256] - Last principal to call admin service.

char lastTGSServer[256] - Last server for which a ticket was requested.

char lastUTGSServer[256] - Last server for which a ticket was requested via UDP.

Date nextAutoCPW - When server password expires (probably NEVERDATE).

Authentication Server Interface 19 April 12, 1993 14:48

Authentication Server Interface

int updatesRemaining - Update necessary for next AutoCPW.

Date dbHeaderRead - Time cheader structure was last read in.

long dbVersion - Minor version number.

long dbFreePtr - Pointer to first free entry in the database file.

long dbEofPtr - Pointer to first free byte in the database file.

long dbKvnoPtr - Pointer to first key version number in the database.

long dbSpecialKeysVersion - Latest key version number.

long cheader lock - Lock for the key cache header.

long keycache lock - Lock for the key cache.

long kcVersion - Minor version number.

int kcSize - Size of key cache.

int kcUsed - Number of entries in key cache.

struct ka kcInfo kcInfo[KADEBUGKCINFOSIZE] - Describes the keys in the key
cache.

long reserved1 - Not used.

long reserved2 - Not used.

long reserved3 - Not used.

long reserved4 - Not used.

3.4 User-Level Library Interface

The authentication functions described in the following sections are made visible via
libkauth.a. This library in turn depends on two additional libraries: libauth.a and li-
brxkad.a. This section lists the routines that are visible in these libraries. The program-
mer should use the high level routines available in libkauth.a.

libkauth.a
KAA_Authenticate
KAA_Authenticate_old
KAA_ChangePassword
KAM_CreateUser
KAM_Debug
KAM_DeleteUser
KAM_GetEntry
KAM_GetPassword

Authentication Server Interface 20 April 12, 1993 14:48

Authentication Server Interface

KAM_GetRandomKey
KAM_GetStats
KAM_ListEntry
KAM_SetFields
KAM_SetPassword
KAT_GetTicket
KAT_GetTicket_old
Andrew_StringToKey
StringToKey
ka_Init
ka_ParseLoginName
ka_ReadPassword
ka_StringToKey
debugCell
ka_AuthServerConn
ka_Authenticate
ka_ChangePassword
ka_ExplicitCell
ka_GetSecurity
ka_GetServers
ka_GetToken
ka_SingleServerConn
ka_GetAdminToken
ka_GetAuthToken
ka_GetServerToken
ka_CellConfig
ka_CellToRealm
ka_ExpandCell
ka_LocalCell
ka_UserAuthenticate
ka_UserAuthenticateGeneral
ka_UserReadPassword

libauth.a

afsconf_CellApply
afsconf_Check
afsconf_Close
afsconf_CloseInternal
afsconf_GetCellInfo
afsconf_GetLocalCell
afsconf_Open
afsconf_OpenInternal
afsconf_Reopen
afsconf_Touch
afsconf_AddKey
afsconf_DeleteKey
afsconf_GetKey
afsconf_GetKeys
afsconf_GetLatestKey
afsconf_IntGetKeys
afsconf_ResetKeys
afsconf_AddUser
afsconf_DeleteUser

Authentication Server Interface 21 April 12, 1993 14:48

Authentication Server Interface

afsconf_GetNoAuthFlag
afsconf_GetNthUser
afsconf_SetNoAuthFlag
afsconf_SuperUser
afsconf_SetCellInfo
afsconf_CheckAuth
afsconf_ClientAuth
afsconf_ClientAuthSecure
afsconf_ServerAuth

librxkad.a

rxkad_AllocCID
rxkad_NewClientSecurityObject
rxkad_client_init
rxkad_GetServerInfo
rxkad_NewServerSecurityObject
rxkad_CheckPacket
rxkad_CksumChallengeResponse
rxkad_Close
rxkad_DeriveXORInfo
rxkad_DestroyConnection
rxkad_GetStats
rxkad_NewConnection
rxkad_PreparePacket
rxkad_SetLevel
rxkad_SetupEndpoint
ktohl
tkt_CheckTimes
tkt_DecodeTicket
tkt_MakeTicket
fc_cbc_encrypt
fc_ecb_encrypt
fc_keysched
fcrypt_init
rxkad_DecryptPacket
rxkad_EncryptPacket
rxkad_crypt_init

3.5 RPC Function Calls

This section describes the Remote Procedure Calls used between the AuthServer and
clients. Each function in this section has an assigned opcode number, see section 3.2.1.
This is the low-level numerical identifier for the function, and appears in the set of
network packets constructed for the RPC call.

Authentication Server Interface 22 April 12, 1993 14:48

Authentication Server Interface

3.5.1 KAA Authenticate — Authenticate user password

proc KAA Authenticate(IN kaname name, IN kaname instance, IN Date start time, IN Date end time,

IN struct ka CBS *request, INOUT struct ka BBS *answer) = 21;

Description

Calling this routine invokes the authentication protocol described in chapter 2. It uses
the name and instance to look up the user’s key in the authentication database. (NOTE:
The value of instance is always NULL.) The key allows the request to be decrypted
and, if it is properly formed, a ticket is created. The ticket and newly invented session
key are assembled into the answer, encrypted with the key, and returned. This ticket is
referred to as the AuthTicket. The lifetime of the ticket is specified by start time and
end time, although the actual expiration time may be earlier if the requested interval
exceeds the max ticket lifetime field of the user’s AuthServer entry. This request does
not modify the database.

The function KAA Authenticate old() is provided for backward compatibility with old
kauth.

3.5.2 KAA ChangePassword — Change user password

proc KAA ChangePassword(IN kaname name, IN kaname instance, IN struct ka CBS *arequest,

INOUT struct ka BBS *oanswer) = 2;

Description

This call invokes the protocol for changing passwords described above. The encryption
key used for both the request and answer sequences is the old one. The new key takes
effect as soon as the lock associated with this operation is released. This request modifies
the authentication database, but instead of updating the modification data a separate
field called change password time is set.

3.5.3 KAT GetTicket — Ask kaserver for a ticket for some other service

Authentication Server Interface 23 April 12, 1993 14:48

Authentication Server Interface

proc KAT GetTicket(IN long kvno, IN kaname auth domain, IN struct ka CBS *aticket,

IN kaname name, IN kaname instance, IN struct ka CBS *atimes,

INOUT struct ka BBS *oanswer) = 23;

Description

This call requires an RPC connection encrypted with the AuthTicket. As long as that
ticket is valid, the name and instance of a server are used to create a ticket and associated
session key for that server. (NOTE: The value of instance is always NULL.) This
operation does not modify the database.

The routine ka GetToken() performs the same function and may be easier for the appli-
cation writer to use.

The function KAT GetTicket old() is provided for backward compatibility with old
kauth.

3.5.4 KAM SetPassword — Initialize a password

proc KAM SetPassword(IN kaname name, IN kaname instance, IN long kvno,

IN EncryptionKey password) = 4;

Description

The key and key version number of the user are set to the provided values. This call
requires an RPC connection encrypted with an AdminTicket.

3.5.5 KAM SetFields — Reset values in user database entry

proc KAM SetFields(IN kaname name, IN kaname instance, IN long flags,

IN Date user expiration, IN long max ticket lifetime, IN long maxAssociates,

IN long spare1, IN long spare2) = 5;

Authentication Server Interface 24 April 12, 1993 14:48

Authentication Server Interface

Description

This function alters the miscellaneous parameters associated with a user. The flags

field can be set to one of three values.

• Normal - This is the default state: a regular user.

• Admin - This user is privileged and can modify the authentication database.

• Inactive - This makes the entry a placeholder. The user is not deleted but authen-
tication attempts will fail.

The user expiration is the time after which attempts to authenticate as this user will
fail. The max ticket lifetime can be set to limit the lifetime of an authentication ticket
created for a user. This call requires an RPC connection encrypted with an AdminTicket.

3.5.6 KAM CreateUser — Enter a user in the database

proc KAM CreateUser(IN kaname name, IN kaname instance, IN EncryptionKey password) = 6;

Description

This function adds a user to the authentication database. The key version number will
be zero. The user’s flags and maximum ticket lifetime will be set to default values. The
registration will not have an expiration time. The modification data is set. This call
requires an RPC connection encrypted with an AdminTicket.

3.5.7 KAM DeleteUser — Delete a user from the database

proc KAM DeleteUser (IN kaname name, IN kaname instance) = 7;

Description

This function removes a user from the authentication database. It requires an RPC
connection encrypted with an AdminTicket.

Authentication Server Interface 25 April 12, 1993 14:48

Authentication Server Interface

3.5.8 KAM GetEntry — Return a user entry in the database

proc KAM GetEntry(IN kaname name, IN kaname instance, IN long major version,

OUT struct kaentryinfo *entry) = 8;

Description

This function returns information about an entry in the authentication database. If the
major version number does not match that in use by the server, the call returns an error
code. This request does not modify the database. This call requires an RPC connection
encrypted with an AdminTicket.

3.5.9 KAM ListEntry — List entries in sequence

proc KAM ListEntry(IN long previous index,

OUT long *index, OUT long *count, OUT kaident *name) = 9;

Description

This function provides a way to step through all the entries in the database. The first
call should be made with previous index set to zero. The function returns count,
which is an estimate of the number of entries remaining to be returned, and index,
which should be passed in as previous index on the next call. Each call that returns a
non-zero index also returns a structure kaident, which gives the name and instance of
an entry. A negative count or a non-zero return code indicates that an error occurred.
A zero index means there were no more entries. A zero count means the last entry has
been returned. This call does not modify the database and requires an RPC connection
encrypted with an AdminTicket.

3.5.10 KAM GetStats — Returns kasstats and kadstats

proc KAM GetStats(IN long major version, OUT long *admin accounts,

OUT struct kasstats *statics, OUT struct kadstats *dynamics) = 10;

Authentication Server Interface 26 April 12, 1993 14:48

Authentication Server Interface

Description

This function returns statistics about the AuthServer and its database. If the major version

does not match that used by the server, the call returns an error code. The database is
not modified. This call requires an RPC connection encrypted with an AdminTicket.

3.5.11 KAM Debug — Return ka debugInfo

proc KAM Debug(IN long major version, IN int checkDB, OUT struct ka debugInfo *info) = 11;

Description

This function returns information about the authentication database, the key cache, and
the state of the AuthServer.

3.5.12 KAM GetPassword — Return a users password

proc KAM GetPassword (IN kaname name, OUT EncryptionKey *password) = 12;

Description

This function returns a password from an entry in the authentication database. This
could be either a user password (by specifying a user name) or a server password (by
specifying a service name, e.g., ”afs”).

3.5.13 KAM GetRandomKey — Return a random legal DES key

proc KAM GetRandomKey (OUT EncryptionKey *password) = 13;

Authentication Server Interface 27 April 12, 1993 14:48

Authentication Server Interface

Description

This function returns a random DES key and is preferred over a calling routine just
inventing a key. It returns a properly formatted 8 byte DES key, sets the parity properly
in each byte of the key, and avoids the 5 ”bad” keys.

3.6 User-Level Library Functions

This section contains specifications for the remaining routines that are visible in libkauth.a.
These routines are the higher level interface that is most frequently used by management
applications.

3.6.1 ka UserAuthenticateGeneral — Authenticate a user

long ka UserAuthenticateGeneral(long flags,

char *name,

char *instance,

char *realm,

char *password,

Date lifetime,

long spare1,

long spare2,

char **reasonP)

Description

This function returns 0 if successful. name, instance and realm can be gotten from a
principal by calling ka ParseLoginName(). reason will contain a textual description of
the failure in case of error spare2 must be 0.

This routine replaces ka UserAuthenticate(), which is retained in the library for backward
compatibility.

Authentication Server Interface 28 April 12, 1993 14:48

Authentication Server Interface

3.6.2 ka UserReadPassword — Read a user password

long ka UserReadPassword (char *prompt,

char *password,

int plen,

char **reasonP)

Description

This routine does a non-echo read of a password entered from a prompt on a standard
tty. Error messages are returned in reasonP.

3.7 Cell Related Functions

The following routines are used by management applications to manage cell information.

3.7.1 ka CellConfig — Access the cell configuration directory

int ka CellConfig(char *dir)

Description

This function uses dir to find the specified CellServDB file, otherwise it uses /usr/vice/etc/CellServDB
as the default.

3.7.2 ka LocalCell — Return the local cell name

char *ka LocalCell()

Authentication Server Interface 29 April 12, 1993 14:48

Authentication Server Interface

Description

This function returns 0 as an error, otherwise it returns the local cell name.

3.7.3 ka ExpandCell — Expands short cell name

int ka ExpandCell(char *cell,

char *fullCell,

int *alocal)

Description

cell and fullCell must be preallocated or else NULL. cell is a prefix of a cell name.
If cell is 0, the name of the local cell will be used. fullCell and alocal are OUT
parameters. fullCell is the expanded cell name which matches the prefix. alocal

indicates whether the returned cell name is the name of the local cell. If a cell name is
not returned then the function returns KANOCELL, KANOCELLS or 0.

3.7.4 ka CellToRealm — Convert cell name to upper case

int ka CellToRealm(char *cell,

char *realm,

int *local)

Description

This function converts a cell name into a Kerberos realm name. It actually calls ka ExpandCell()
and converts the returned cell name into upper case.

Like kaExpandCell(), if cell is 0 it uses the local cell name and sets local to 1. Otherwise
it uses the prefix found in cell to determine the full cell name. If the cell name is not
local then local is set to 0. The expanded cell name is returned in realm. If a cell name
is not returned then the function returns KANOCELL, KANOCELLS or 0.

Authentication Server Interface 30 April 12, 1993 14:48

Authentication Server Interface

3.8 Miscellaneous Client-Side Functions

This section contains descriptions of a variety of client functions.

The first three functions are called from management applications to manage passwords
and DES keys. They accept a password string as input and convert it via a one-way
encryption algorithm to a DES encryption key. In all three str, cell and key must be
pre-allocated and null-terminated. strlen(cell) must be less than MAXKTCREALMLEN.

3.8.1 ka Andrew StringToKey — Convert password to DES key

static void ka AndrewStringToKey(char *str,

char *cell,

struct ktc encryptionKey *key)

Description

This function is compatible with the original Andrew authentication service password
database.

3.8.2 StringToKey — Convert password to DES key

static void StringToKey(char *str,

char *cell,

struct ktc encryptionKey *key)

3.8.3 ka StringToKey — Convert password to DES key

int ka StringToKey(char *str

char *cell,

struct ktc encryptionKey *key)

Authentication Server Interface 31 April 12, 1993 14:48

Authentication Server Interface

3.8.4 ka ReadPassword — Read password, convert to DES key

long ka ReadPassword(char *prompt,

int verify,

char *cell,

struct ktc encryptionKey *key)

Description

This function prints out a prompt and reads a string from the terminal, turning off
echoing. If verify is requested it requests that the string be entered again and the two
strings are compared. The string is then converted to a DES encryption key. A non-zero
return indicates an error while reading in the password string.

3.8.5 ka ParseLoginName — Parse user-entered login name

long ka ParseLoginName(char *login,

char name[MAXKTCNAMELEN],

char inst[MAXKTCNAMELEN],

char cell[MAXKTCREALMLEN])

Description

This routine parses a string that might be entered by a user from the terminal. It defines
a syntax that allows a user to specify his or her identity in terms of his or her name,
instance and cell with a single string. These three output strings must be allocated by the
caller to their maximum length. The syntax is very simple: the first dot (’.’) separates
the name from the instance and the first atsign (’@’) begins the cell name. A backslash
(’\’) can be used to quote these special characters. A backslash followed by an octal
digit (zero through seven) introduces a three digit octal number which is interpreted as
the ascii value of a single character. A non-zero return indicates an argument error.

Authentication Server Interface 32 April 12, 1993 14:48

Authentication Server Interface

Error Codes

KABADARGUMENT No output parameters were specified.

KABADNAME A component of the user name was too long or a cell was specified but
the cell parameter was null.

3.8.6 ka Init — Initialize a client to make calls to the AuthServer

long ka Init(int flags)

Client side applications call this function to initialize error tables and connect to the
correct CellServDB file. The argument is not used but reserved for future use.

3.8.7 ka ExplicitCell — Copy list of servers to debugging cell

void ka ExplicitCell(char *cell,

long serverList[])

This function copies the specified list of servers in serverList into a specially known
cell named “explicit”. The cell can then be used to debug experimental servers.

3.8.8 ka GetServers — Return a list of AuthServers

int ka GetServers(char *cell,

struct afsconf cell *cellinfo)

This function returns a list of Authentication Servers in the cell named in cell.

Authentication Server Interface 33 April 12, 1993 14:48

Authentication Server Interface

3.8.9 ka GetSecurity — Return a security object

long ka GetSecurity(int service,

struct ktc token *token,

struct rx securityClass **scP,

int *siP)

This function returns a security object appropriate for the service passed in as an
argument.

Error Codes

KABADARGUMENT service was not recognized.

KARXFAIL Failed to get security object.

3.8.10 ka SingleServerConn — Establish connection to one server

long ka SingleServerConn(char *cell,

char *server,

int service,

struct ktc token *token,

struct ubik client **conn)

This function establishes a connection to only one Authentication Server. Inputs to the
function are

• cell - the cell name
• server - the server for which the connection is being requested
• service - the service required
• token - a token may or may not be needed depending on the service.

The connection is returned in conn.

Authentication Server Interface 34 April 12, 1993 14:48

Authentication Server Interface

3.8.11 ka AuthServerConn — Establish connection to all AuthServers

long ka AuthServerConn(char *cell,

int service,

struct ktc token *token,

struct ubik client **conn)

Description

This function gets connections to all the Authentication Servers in a cell. Inputs to the
function are

• cell - the cell name
• service - the service required
• token - a token may or may not be needed depending on the service.

The connection is returned in conn.

3.8.12 ka Authenticate — Return a ticket for the ticket-granting service

long ka Authenticate(char *name,

char *instance,

struct ubik client *conn,

int service,

struct ktc encryptionKey *key,

Date start,end,

struct ktc token *token)

This function is the interface to the AuthServer RPC routine KAA Authenticate(). It for-
mats the request packet, calls the encryption routine on the answer, callsKAA Authenticate()
and decrypts the response. The response is checked for correctness and its contents are
copied into the token. A non-zero return indicates either bad key parity, a timeout, a
bad packet or a server error.

Authentication Server Interface 35 April 12, 1993 14:48

Authentication Server Interface

3.8.13 ka ChangePassword — Change user password in the database

long ka ChangePassword(char *name,

char *instance,

struct ubik client *conn,

struct ktc encryptionKey *oldkey,

struct ktc encryptionKey *newkey)

3.8.14 ka GetToken — Return a ticket for the named service

long ka GetToken(char *name,

char *instance,

struct ubik client *conn,

Date start, end,

struct ktc token *auth token,

char *auth domain,

struct ktc token *token)

This is a low-level function used by ka GetServerToken(). It assumes that a connection
to the AuthServer has already been established. The desired ticket lifetime is specified
by start and end.

3.8.15 ka GetAdminToken — Return an admin token

long ka GetAdminToken(char *name,

char *instance,

char *cell,

struct ktc encryptionKey *key,

long lifetime,

struct ktc token *token,

int new)

Authentication Server Interface 36 April 12, 1993 14:48

Authentication Server Interface

Description

key contains the key constructed from the user’s password and lifetime indicates how
long the ticket will be valid (in seconds). token is used to pass in a token and to return
one. If token is NULL, a token is not returned. If new is set to 1, then the function
should get a new token if necessary.

3.8.16 ka GetAuthToken — Return an authentication token

long ka GetAuthToken(char *name,

char *instance,

char *cell,

struct ktc encryptionKey *key;

long lifetime)

Description

This function returns a ticket to administer for a particular principle specified by name

and instance. key contains the key constructed from the user’s password and lifetime
indicates how long the key will be valid (in seconds).

3.8.17 ka GetServerToken — Return a token for a server

long ka GetServerToken(char *name,

char *instance;

char *cell;

Date lifetime;

struct ktc token *token;

This function sets up the necessary connections etc. and then calls ka GetToken().

Authentication Server Interface 37 April 12, 1993 14:48

Authentication Server Interface

3.9 Command Line Interface

Another interface exported by the Authentication Server is the set of command line
switches it accepts. Using these switches, many server parameters and actions can be
set. Under normal conditions, the Authentication Server process is started up by the
BOS Server on that machine, as described in AFS Programmer’s Reference: BOS Server
Interface. So, in order to utilize any combination of these command-line options, the
system administrator must define the Authentication Server bnode in such a way that
these parameters are properly included.

A description of the set of currently-supported command line switches can be found in
the AFS Command Reference Manual.

Authentication Server Interface 38 April 12, 1993 14:48

Authentication Server Interface

Bibliography

[1] Transarc Corporation. AFS 3.0 System Administrator’s Guide, F-30-0-D102, Pitts-
burgh, PA, April 1990.

[2] Transarc Corporation. AFS 3.0 Command Reference Manual, F-30-0-D103, Pitts-
burgh, PA, April 1990.

[3] CMU Information Technology Center. Synchronization and Caching Issues in the
Andrew File System, USENIX Proceedings, Dallas, TX, Winter 1988.

[4] Sun Microsystems, Inc. NFS: Network File System Protocol Specification, RFC 1094,
March 1989.

[5] Sun Microsystems, Inc. Design and Implementation of the Sun Network File System,
USENIX Summer Conference Proceedings, June 1985.

[6] S.P. Miller, B.C. Neuman, J.I. Schiller, J.H. Saltzer. Kerberos Authentication and
Authorization System, Project Athena Technical Plan, Section E.2.1, M.I.T., De-
cember 1987.

[7] R. Needham, M. Schroeder. Using Encryption for Authentication in Large Networks
of Computers, CACM, 21(1978)993-9.

[8] S. Matyas, C. Meyer. Generation, Distribution and Installation of Cryptographic
Keys, IBM Sys Jr, 17(1978)126-37.

Authentication Server Interface 39 April 12, 1993 14:48

Index

function ka Andrew StringToKey(), 31
function ka Authenticate(), 35
function ka AuthServerConn(), 34
function ka CellConfig(), 29
function ka CellToRealm(), 30
function ka ChangePassword(), 35
function ka ExpandCell(), 30
function ka ExplicitCell(), 33
function ka GetAdminToken(), 36
function ka GetAuthToken(), 36
function ka GetSecurity(), 34
function ka GetServers(), 33
function ka GetServerToken(), 37
function ka GetToken(), 36
function ka Init(), 33
function ka LocalCell(), 29
function ka ParseLoginName(), 32
function ka ReadPassword(), 32
function ka SingleServerConn(), 34
function ka StringToKey(), 31
function ka UserAUthenticateGeneral(), 28
function ka UserReadPassword(), 29
function KAA Authenticate(), 23
function KAA ChangePassword(), 23
function KAM CreateUser(), 25
function KAM Debug(), 27
function KAM DeleteUser (), 25
function KAM GetEntry(), 26
function KAM GetPassword (), 27
function KAM GetRandomKey (), 27
function KAM GetStats(), 26
function KAM ListEntry(), 26
function KAM SetFields(), 24
function KAM SetPassword(), 24

function KAT GetTicket(), 23
function StringToKey(), 31

i

