AFS-3 Programmer’s Reference:
File Server/Cache Manager Interface

Edward R. Zayas

Transarc Corporation

Version 1.1 of 20 Aug 1991 9:38
(©Copyright 1991 Transarc Corporation
All Rights Reserved
FS-00-D162

AFS-3 FS/CM Programmer’s Ref

Contents

1 Overview 1
1.1 Imtroduction 1
1.1.1 The AFS 3.1 Distributed File System 1

1.1.2 Scope of this Document 6

1.1.3 Related Documents 6

1.2 Basic Concepts 7
1.3 Document Layout o 9

2 File Server Architecture Lo 10
2.1 Overview 10
2.2 Interactions 10
2.3 Threading 11

2.4 Callback Race Conditions 12
2.5 Read-Only Volume Synchronization 13
2.6 Disposal of Cache Manager Records 13

3 Cache Manager Architecture, .. 15
3.1 Overview 15
3.2 Interactions 17
3.3 Implementation Techniques 17
3.3.1 VFS Interface 17

332 System Calls 18

3.3.3 Threading 18

3.4 Disposal of Cache Manager Records 19

4 Common Definitions and Data Structures 21
4.1 File-Related Definitions, 21
4.1.1 struct AFSFid 21

4.2 Callback-related Definitions 22
421 Typesof Callbacks 22

4.2.2 struct AFSCallBack 22

4.2.3 Callback Arrays 22

Table of Contents i August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

4231 struct AFSCBFids 23

4232 struct AFSCBs. 23

4.3 Locking Definitions o 23
4.3.1 struct AFSDBLockDesc 23
4.3.2 struct AFSDBCacheEntry 24
4.3.3 struct AFSDBLock 24

4.4 Miscellaneous Definitions 25
4.4.1 Opaque structures 25
4.4.2 String Lengths o oo 25

5 File Server Interfaces 26
5.1 RPC Interface 27
5.1.1 Introduction and Caveats 27
5.1.2 Definitions and Structures 27
5.1.2.1 Constants and Typedefs 27

5.1.2.1.1 AFS_DISKNAMESIZE 28

5.1.2.1.2 AFS_MAX_ XSTAT LONGS 28

5.1.2.1.3 AFS_XSTATSCOLL_CALL_INFO 28

5.1.2.14 AFS_XSTATSCOLL_PERF_INFO 28

5.1.2.1.5 AFS CollData 28

5.1.2.1.6 AFSBulkStats 29

5.1.2.1.7 DiskName 29

5.1.2.1.8 ViceLockType 29

5.1.2.2 struct AFSVolSync 30

5.1.2.3 struct AFSFetchStatus 30

5.1.2.4 struct AFSStoreStatus 31

5.1.2.5 struct ViceDisk 31

5.1.2.6 struct ViceStatistics 32

5.1.2.7 struct afs PerfStats 34

5.1.2.8 struct AFSFetchVolumeStatus 37

5.1.2.9 struct AFSStoreVolumeStatus 38

5.1.2.10 struct AFSVolumelnfo. 38

5.1.3 Non-Streamed Function Calls 39
5.1.3.1 RXAFS_FetchACL 40

5.1.3.2 RXAFS_FetchStatus 41

5.1.3.3 RXAFS_StoreACL 42

5.1.3.4 RXAFS_StoreStatus 43

5.1.3.5 RXAFS_RemoveFile 44

5.1.3.6 RXAFS_CreateFile 45

5.1.3.7 RXAFS_ Rename 46

5.1.3.8 RXAFSSymlink 47

Table of Contents

i August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.39 RXAFSLink 48

5.1.3.10 RXAFS_MakeDir 49

5.1.3.11 RXAFS_RemoveDir 50

5.1.3.12 RXAFS_GetStatistics 51

5.1.3.13 RXAFS_GiveUpCallBacks 52

5.1.3.14 RXAFS_GetVolumelnfo 53

5.1.3.15 RXAFS_GetVolumeStatus 54

5.1.3.16 RXAFS_SetVolumeStatus 55

5.1.3.17 RXAFS_GetRootVolume 56

5.1.3.18 RXAFS_CheckToken 57

5.1.3.19 RXAFS_GetTime 58

5.1.3.20 RXAFS_NGetVolumelnfo 59

5.1.3.21 RXAFS_ BulkStatus 60

5.1.3.22 RXAFS SetLock 61

5.1.3.23 RXAFS_ExtendLock 62

5.1.3.24 RXAFS_ReleaseLock 63

5.1.3.25 RXAFS_XStatsVersion 64

5.1.3.26 RXAFS_GetXStats 65

5.1.4 Streamed Function Calls. 65
5.1.4.1 StartRXAFS_FetchData 67

5.1.4.2 EndRXAFS_FetchData 68

5.1.4.3 StartRXAFS_StoreData 69

5.1.4.4 EndRXAFS_StoreData 70

5.1.5 Example of Streamed Function Call Usage 71
5.1.5.1 Preface 71

5.1.5.2 Code Fragment Illustrating Fetch Operation 71

5.1.5.3 Discussion and Analysis 72

5.1.6 Required Caller Functionality 73

5.2 Signal Interface 74
5.2.1 SIGQUIT: Server Shutdown 74
5.2.2 SIGTSTP: Upgrade Debugging Level 74
5.2.3 SIGHUP: Reset Debugging Level 75
5.2.4 SIGTERM: File Descriptor Check 75

5.3 Command Line Interface 75
6 Cache Manager Interfaces 78
6.1 Overview e 78
6.2 Definitions 79
6.2.1 struct VenusFid 79
6.2.2 struct ClearToken 80

6.3 doctl() Interface 80

Table of Contents iii August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.4

6.3.1 VIOCCLOSEWAIT. i i i it i e 80
6.3.2 VIOCABORT v vttt e e e 81
6.3.3 VIOIGETCELL o v v v et e e e e e 81
pioctl() Interface Lo 81
6.4.1 Introduction 81
6.4.2 Mount Point Asymmetry 84
6.4.3 Volume Operations. 84
6.4.3.1 VIOCGETVOLSTAT: Get volume status for pathname . . . 84
6.4.3.2 VIOCSETVOLSTAT: Set volume status for pathname . . . 85

6.4.3.3 VIOCWHEREIS: Find the server(s) hosting the pathname’s
volume 85

6.4.3.4 VIOC_FLUSHVOLUME: Flush all data cached from the path-
name’s volume 85

6.4.3.5 VIOCCKBACK: Check validity of all cached volume infor-
mation 86
6.4.4 File Server Operations 86

6.4.4.1 VIOCGETFID: Get augmented fid for named file system
object 86
6.4.4.2 VIOCFLUSHCB: Unilaterally drop a callback 87
6.4.4.3 VIOC_AFS DELETE MT PT: Delete a mount point 87

6.4.4.4 VIOC_AFS_STAT MT_PT: Get the contents of a mount point 87
6.4.4.5 VIOCCKSERV: Check the status of one or more File Servers 88

6.4.5 Cell Operations 89
6.4.5.1 VIOCNEWCELL: Set cell service information 89
6.4.5.2 VIOCGETCELL: Get cell configuration entry 89
6.4.5.3 VIOC_FILE CELL NAME: Get cell hosting a given object . 90
6.4.5.4 VIOC_GET WS_CELL: Get caller’s home cell name 90
6.4.5.5 VIOC_GET _PRIMARY CELL: Get the caller’s primary cell . 90
6.4.5.6 VIOC_GETCELLSTATUS: Get status info for a cell entry . . 91
6.4.5.7 VIOC_SETCELLSTATUS: Set status info for a cell entry . . 91
6.4.6 Authentication Operations 92
6.4.6.1 VIOCSETTOK: Set the caller’s token for a cell 92
6.4.6.2 VIOCGETTOK: Get the caller’s token for a cell 93
6.4.6.3 VIOCACCESS: Check caller’s access on object 93
6.4.6.4 VIOCCKCONN: Check status of caller’s tokens/connections 94
6.4.6.5 VIOCUNLOG: Discard authentication information 94
6.4.6.6 VIOCUNPAG: Discard authentication information 94
6.4.7 ACL Operations 94
6.4.7.1 VIOCSETAL: Set the ACL on a directory 96
6.4.7.2 VIOCGETAL: Get the ACL for a directory 96
6.4.8 Cache Operations 96

Table of Contents iv August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.4.8.1 VIOCFLUSH: Flush an object from the cache 97
6.4.8.2 VIOCSETCACHESIZE: Set maximum cache size in blocks . 97
6.4.8.3 VIOCGETCACHEPARAMS: Get current cache parameter val-

UES & v v v e e e e e e 97

6.4.9 Miscellaneous Operations 98
6.4.9.1 VIOC_AFS_MARINER HOST: Get/set file transfer monitor-

ingoutput Lo 98

6.4.9.2 VIOC_VENUSLOG: Enable/disable Cache Manager logging 98

6.4.9.3 VIOC_AFS_SYSNAME: Get/set the @sys mapping 99

6.4.9.4 VIOC_EXPORTAFS: Enable/disable NFS/AFS translation 99

6.5 RPC Interface e 100

6.5.1 Introduction 100

6.5.2 Locks 101

6.5.3 Definitions and Typedefs 102

6.5.4 Structures 103

6.5.4.1 struct afs_MeanStats 103

6.5.4.2 struct afs CMCallStats 103

6.5.4.3 struct afs. CMMeanStats 104

6.5.4.4 struct afs.CMStats 104

6.5.4.5 struct afs.CMPerfStats 104

6.5.5 Function Calls 105

6.5.5.1 RXAFSCB_Probe 107

6.5.5.2 RXAFSCB_ CallBack 108

6.5.5.3 RXAFSCB_InitCallBackState 109

6.5.5.4 RXAFSCB_GetLock 110

6.5.5.5 RXAFSCB GetCE. 111

6.5.5.6 RXAFSCB_XStatsVersion 112

6.5.5.7 RXAFSCB_GetXStats. 113

6.6 Files 114

6.6.1 Configuration Files 114

6.6.1.1 ThisCell 114

6.6.1.2 CellServDB 114

6.6.1.3 cacheinfo 116

6.6.2 Cache Information Files 116

6.6.2.1 AFSLog. 116

6.6.2.2 Cacheltems 117

6.6.2.3 Volumeltems 117

6.7 Mariner Interface 118

A struct afs CMCallStats 120

Index i

Table of Contents \ August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Chapter 1

Overview

1.1 Introduction

1.1.1 The AFS 3.1 Distributed File System

AFS 3.1 is a distributed file system (DFS) designed to meet the following set of require-
ments:

e Server-client model: Permanent file storage for AFS is maintained by a col-
lection of file server machines. This centralized storage is accessed by individuals
running on client machines, which also serve as the computational engines for those
users. A single machine may act as both an AFS file server and client simultane-
ously. However, file server machines are generally assumed to be housed in a secure
environment, behind locked doors.

e Scale: Unlike other existing DFSs, AFS was designed with the specific goal of
supporting a very large user community. Unlike the rule-of-thumb ratio of 20
client machines for every server machine (20:1) used by Sun Microsystem’s NFS
distributed file system [4][5], the AFS architecture aims at smoothly supporting
client /server ratios more along the lines of 200:1 within a single installation.

AFS also provides another, higher-level notion of scalability. Not only can each
independently-administered AFS site, or cell, grow very large (on the order of
tens of thousands of client machines), but individual cells may easily collaborate
to form a single, unified file space composed of the union of the individual name
spaces. Thus, users have the image of a single UNIX file system tree rooted at the

Overview 1 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

/afs directory on their machine. Access to files in this tree is performed with the
standard UNIX commands, editors, and tools, regardless of a file’s location.

These cells and the files they export may be geographically dispersed, thus requiring
client machines to access remote file servers across network pathways varying widely
in speed, latency, and reliability. The AFS architecture encourages this concept of
a single, wide-area file system. As of this writing, the community AFS filespace
includes sites spanning the continental United States and Hawaii, and also reaches
overseas to various installations in Europe, Japan, and Australia.

e Performance: This is a critical consideration given the scalability and connec-
tivity requirements described above. A high-performance system in the face of
high client /server ratios and the existence of low-bandwidth, high-latency network
connections as well as the normal high-speed ones is achieved by two major mech-
anisms:

— Caching: Client machines make extensive use of caching techniques wherever
possible. One important application of this methodology is that each client
is required to maintain a cache of files it has accessed from AFS file servers,
performing its operations exclusively on these local copies. This file cache is
organized in a least-recently-used (LRU) fashion. Thus, each machine will
build a local working set of objects being referenced by its users. As long as
the cached images remain “current” (i.e., compatible with the central version
stored at the file servers), operations may be performed on these files without
further communication with the central servers. This results in significant
reductions in network traffic and server loads, paving the way for the target
client /server ratios.

This file cache is typically located on the client’s local hard disk, although a
strictly in-memory cache is also supported. The disk cache has the advantage
that its contents will survive crashes and reboots, with the expectation that
the majority of cached objects will remain current. The local cache param-
eters, including the maximum number of blocks it may occupy on the local
disk, may be changed on the fly. In order to avoid having the size of the client
file cache become a limit on the length of an AFS file, caching is actually
performed on chunks of the file. These chunks are typically 64 Kbytes in
length, although the chunk size used by the client is settable when the client
starts up.

— Callbacks: The use of caches by the file system, as described above, raises
the thorny issue of cache consistency. Each client must efficiently determine
whether its cached file chunks are identical to the corresponding sections of
the file as stored at the server machine before allowing a user to operate on
those chunks. AFS employs the notion of a callback as the backbone of its

Overview 2 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

cache consistency algorithm. When a server machine delivers one or more
chunks of a file to a client, it also includes a callback “promise” that the client
will be notified if any modifications are made to the data in the file. Thus, as
long as the client machine is in possession of a callback for a file, it knows it is
correctly synchronized with the centrally-stored version, and allows its users
to operate on it as desired without any further interaction with the server.
Before a file server stores a more recent version of a file on its own disks, it will
first break all outstanding callbacks on this item. A callback will eventually
time out, even if there are no changes to the file or directory it covers.

e Location transparency: The typical AFS user does not know which server or
servers houses any of his or her files. In fact, the user’s storage may be distributed
among several servers. This location transparency also allows user data to be
migrated between servers without users having to take corrective actions, or even
becoming aware of the shift.

e Reliability: The crash of a server machine in any distributed file system will
cause the information it hosts to become unavailable to the user community. The
same effect is caused when server and client machines are isolated across a network
partition. AFS addresses this situation by allowing data to be replicated across
two or more servers in a read-only fashion. If the client machine loses contact
with a particular server from which it is attempting to fetch data, it hunts among
the remaining machines hosting replicas, looking for one that is still in operation.
This search is performed without the user’s knowledge or intervention, smoothly
masking outages whenever possible. Each client machine will automatically per-
form periodic probes of machines on its list of known servers, updating its internal
records concerning their status. Consequently, server machines may enter and exit
the pool without administrator intervention.

Replication also applies to the various databases employed by the AFS server pro-
cesses. These system databases are read/write replicated with a single synchro-
nization site at any instant. If a synchronization site is lost due to failure, the
remaining database sites elect a new synchronization site automatically without
operator intervention.

e Security: A production file system, especially one which allows and encourages
transparent access between administrative domains, must be conscious of security
issues. AF'S considers the server machines as “trusted”, being kept behind locked
doors and only directly manipulated by administrators. On the other hand, client
machines are, by definition, assumed to exist in inherently insecure environments.
These client machines are recognized to be fully accessible to their users, making
AFS servers open to attacks mounted by possibly modified hardware, operating
systems, and software from its clients.

Overview 3 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

To provide credible file system security, AFS employs an authentication system
based on the Kerberos facility developed by Project Athena at MIT [6][7]. Users
operating from client machines are required to interact with Authentication Server
agents running on the secure server machines to generate secure tokens of identity.
These tokens express the user’s identity in an encrypted fashion, and are stored in
the kernel of the client machine. When the user attempts to fetch or store files, the
server may challenge the user to verify his or her identity. This challenge, hidden
from the user and handled entirely by the RPC layer, will transmit this token to
the file server involved in the operation. The server machine, upon decoding the
token and thus discovering the user’s true identity, will allow the caller to perform
the operation if permitted.

e Access control: The standard UNIX access control mechanism associates mode bits
with every file and directory, applying them based on the user’s numerical identifier
and the user’s membership in various groups. AFS has augmented this traditional
access control mechanism with Access Control Lists (ACLs). Every AFS directory
has an associated ACL which defines the principals or parties that may operate
on all files contained in the directory, and which operations these principals may
perform. Rights granted by these ACLs include read, write, delete, lookup, insert
(create new files, but don’t overwrite old files), and administer (change the ACL).
Principals on these ACLs include individual users and groups of users. These
groups may be defined by AFS users without administrative intervention. AFS
ACLs provide for much finer-grained access control for its files.

e Administrability: Any system with the scaling goals of AFS must pay close
attention to its ease of administration. The task of running an AFS installation is
facilitated via the following mechanisms:

— Pervasive RPC interfaces: Access to AFS server agents is performed
mostly via RPC interfaces. Thus, servers may be queried and operated upon
regardless of their location. In combination with the security system outlined
above, even administrative functions such as instigating backups, reconfigur-
ing server machines, and stopping and restarting servers may be performed
by an administrator sitting in front of any AFS-capable machine, as long as
the administrator holds the proper tokens.

— Replication: As AFS supports read-only replication for user data and read-
write replication for system databases, much of the system reconfiguration
work in light of failures is performed transparently and without human inter-
vention. Administrators thus typically have more time to respond to many
common failure situations.

— Data mobility: Improved and balanced utilization of disk resources is fa-
cilitated by the fact that AFS supports transparent relocation of user data

Overview 4 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

between partitions on a single file server machine or between two different
machines. In a situation where a machine must be brought down for an ex-
tended period, all its storage may be migrated to other servers so that users
may continue their work completely unaffected.

— Automated “nanny” services: Each file server machine runs a BOS Server
process, which assists in the machine’s administration. This server is respon-
sible for monitoring the health of the AFS agents under its care, bringing
them up in the proper order after a system reboot, answering requests as to
their status and restarting them when they fail. It also accepts commands
to start, suspend, or resume these processes, and install new server binaries.
Accessible via an RPC interface, this supervisory process relieves administra-
tors of some oversight responsibilities and also allows them to perform their
duties from any machine running AFS, regardless of location or geographic
distance from the targeted file server machine.

— On-line backup: Backups may be performed on the data stored by the
AFS file server machines without bringing those machines down for the dura-
tion. Copy-on-write “snapshots” are taken of the data to be preserved, and
tape backup is performed from these clones. One added benefit is that these
backup clones are on-line and accessible by users. Thus, if someone acciden-
tally deletes a file that is contained in their last snapshot, they may simply
copy its contents as of the time the snapshot was taken back into their active
workspace. This facility also serves to improve the administrability of the
system, greatly reducing the number of requests to restore data from tape.

— On-line help: The set of provided program tools used to interact with the
active AFS agents are self-documenting in that they will accept command-line
requests for help, displaying descriptive text in response.

— Statistics: Each AFS agent facilitates collection of statistical data on its
performance, configuration, and status via its RPC interface. Thus, the sys-
tem is easy to monitor. One tool that takes advantage of this facility is the
scout program. Scout polls file server machines periodically, displaying us-
age statistics, current disk capacities, and whether the server is unavailable.
Administrators monitoring this information can thus quickly react to correct
overcrowded disks and machine crashes.

e Coexistence: Many organizations currently employ other distributed file systems,
most notably NFS. AFS was designed to run simultaneously with other DFSs with-
out interfering in their operation. In fact, an NFS-AFS translator agent exists that
allows pure-NFS client machines to transparently access files in the AFS commu-
nity.

Overview 5 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

e Portability: Because AFS is implemented using the standard VFS and vnode
interfaces pioneered and advanced by Sun Microsystems, AFS is easily portable
between different platforms from a single vendor or from different vendors.

1.1.2 Scope of this Document

This document is a member of a documentation suite providing specifications of the
operations and interfaces offered by the various AFS servers and agents. Specifically,
this document will focus on two of these system agents:

e [ile Server: This AFS entity is responsible for providing a central disk reposi-
tory for a particular set of files and for making these files accessible to properly-
authorized users running on client machines. The File Server is implemented as a
user-space process

e Cache Manager: This code, running within the kernel of an AFS client machine,
is a user’s representative in communicating with the File Servers, fetching files
back and forth into the local cache as needed. The Cache Manager also keeps
information as to the composition of its own cell as well as the other AFS cells in
existence. It resolves file references and operations, determining the proper File
Server (or group of File Servers) that may satisfy the request. In addition, it is
also a reliable repository for the user’s authentication information, holding on to
their tokens and wielding them as necessary when challenged.

1.1.3 Related Documents

The full AFS specification suite of documents is listed below:

o AFS-3 Programmer’s Reference: Architectural Overview: This paper provides an
architectual overview of the AFS distributed file system, describing the full set of
servers and agents in a coherent way, illustrating their relationships to each other
and examining their interactions.

o AFS-3 Programmer’s Reference:Volume Server/Volume Location Server Interface:
This document describes the services through which “containers” of related user
data are located and managed.

o AFS-3 Programmer’s Reference: Protection Server Interface: This paper describes
the server responsible for providing two-way mappings between printable user

Overview 6 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

names and their internal AFS identifiers. The Protection Server also allows users to
create, destroy, and manipulate “groups” of users, which are suitable for placement
on ACLs.

e AFS-3 Programmer’s Reference: BOS Server Interface: This paper explicates the
“nanny” service described above, which assists in the administrability of the AFS
environment.

e AFS-3 Programmer’s Reference: Specification for the Rx Remote Procedure Call
Facility: This document specifies the design and operation of the remote procedure
call and lightweight process packages used by AFS.

In addition to these papers, the AFS 3.1 product is delivered with its own user, admin-
istrator, installation, and command reference documents.

1.2 Basic Concepts

To properly understand AFS operation, specifically the tasks and objectives of the File
Server and Cache Manager, it is necessary to introduce and explain the following con-
cepts:

e Cell: A cell is the set of server and client machines operated by an administratively
independent organization. The cell administrators make decisions concerning such
issues as server deployment and configuration, user backup schedules, and replica-
tion strategies on their own hardware and disk storage completely independently
from those implemented by other cell administrators regarding their own domains.
Every client machine belongs to exactly one cell, and uses that information to de-
termine the set of database servers it uses to locate system resources and generate
authentication information.

e Volume: AFS disk partitions do not directly host individual user files or direc-
tories. Rather, connected subtrees of the system’s directory structure are placed
into containers called volumes. Volumes vary in size dynamically as objects are
inserted, overwritten, and deleted. Each volume has an associated quota, or max-
imum permissible storage. A single UNIX disk partition may host one or more
volumes, and in fact may host as many volumes as physically fit in the storage
space. However, a practical maximum is 3,500 volumes per disk partition, since
this is the highest number currently handled by the salvager program. The salvager
is run on occasions where the volume structures on disk are inconsistent, repair-
ing the damage. A compile-time constant within the salvager imposes the above

Overview 7 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

limit, causing it to refuse to repair any inconsistent partition with more than 3,500
volumes.

Volumes serve many purposes within AFS. First, they reduce the number of objects
with which an administrator must be concerned, since operations are normally per-
formed on an entire volume at once (and thus on all files and directories contained
within the volume). In addition, volumes are the unit of replication, data mobility
between servers, and backup. Disk utilization may be balanced by transparently
moving volumes between partitions.

e Mount Point: The connected subtrees contained within individual volumes stored
at AFS file server machines are “glued” to their proper places in the file space de-
fined by a site, forming a single, apparently seamless UNIX tree. These attachment
points are referred to as mount points. Mount points are persistent objects, im-
plemented as symbolic links whose contents obey a stylized format. Thus, AFS
mount points differ from NFS-style mounts. In the NFS environment, the user
dynamically mounts entire remote disk partitions using any desired name. These
mounts do not survive client restarts, and do not insure a uniform namespace
between different machines.

As a Cache Manager resolves an AFS pathname as part of a file system operation
initiated by a user process, it recognizes mount points and takes special action
to resolve them. The Cache Manager consults the appropriate Volume Location
Server to discover the File Server (or set of File Servers) hosting the indicated
volume. This location information is cached, and the C'ache Managerthen proceeds
to contact the listed File Server(s) in turn until one is found that responds with
the contents of the volume’s root directory. Once mapped to a real file system
object, the pathname resolution proceeds to the next component.

e Database Server: A set of AFS databases is required for the proper functioning
of the system. Each database may be replicated across two or more file server
machines. Access to these databases is mediated by a database server process
running at each replication site. One site is declared to be the synchronization
site, the sole location accepting requests to modify the databases. All other sites
are read-only with respect to the set of AFS users. When the synchronization site
receives an update to its database, it immediately distributes it to the other sites.
Should a synchronization site go down through either a hard failure or a network
partition, the remaining sites will automatically elect a new synchronization site
if they form a quorum, or majority. This insures that multiple synchronization
sites do not become active in the network partition scenario.

The classes of AFS database servers are listed below:

— Authentication Server: This server maintains the authentication database
used to generate tokens of identity.

Overview 8 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

— Protection Server: This server maintains mappings between human-readable
user account names and their internal numerical AFS identifiers. It also man-
ages the creation, manipulation, and update of user-defined groups suitable
for use on ACLs.

— Volume Location Server: This server exports information concerning the lo-
cation of the individual volumes housed within the cell.

1.3 Document Layout

Following this introduction and overview, Chapter 2 describes the architecture of the File
Server process design. Similarly, Chapter 3 describes the architecture of the in-kernel
Cache Manager agent. Following these architectural examinations, Chapter 4 provides a
set of basic coding definitions common to both the AFS File Server and Cache Manager,
required to properly understand the interface specifications which follow. Chapter 5
then proceeds to specify the various File Server interfaces. The myriad Cache Manager
interfaces are presented in Chapter 6, thus completing the document.

Overview 9 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Chapter 2

File Server Architecture

2.1 Overview

The AFS File Serveris a user-level process that presides over the raw disk partitions on
which it supports one or more volumes. It provides “half” of the fundamental service
of the system, namely exporting and regimenting access to the user data entrusted to
it. The Cache Manager provides the other half, acting on behalf of its human users to
locate and access the files stored on the file server machines.

This chapter examines the structure of the File Server process. First, the set of AFS
agents with which it must interact are discussed. Next, the threading structure of the
server is examined. Some details of its handling of the race conditions created by the
callback mechanism are then presented. This is followed by a discussion of the read-only
volume synchronization mechanism. This functionality is used in each RPC interface call
and intended to detect new releases of read-only volumes. File Servers do not generate
callbacks for objects residing in read-only volumes, so this synchronization information
is used to implement a “whole-volume” callback. Finally, the fact that the File Server
may drop certain information recorded about the Cache Managers with which it has
communicated and yet guarantee correctness of operation is explored.

2.2 Interactions

By far the most frequent partner in File Server interactions is the set of Cache Managers
actively fetching and storing chunks of data files for which the File Server provides central
storage facilities. The File Server also periodically probes the Cache Managers recorded

File Server Architecture 10 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

in its tables with which it has recently dealt, determining if they are still active or
whether their records might be garbage-collected.

There are two other server entities with which the File Server interacts, namely the
Protection Server and the BOS Server. Given a fetch or store request generated by a
Cache Manager, the File Server needs to determine if the caller is authorized to perform
the given operation. An important step in this process is to determine what is referred
to as the caller’s Current Protection Subdomain, or CPS. A user’s CPS is a list
of principals, beginning with the user’s internal identifier, followed by the the numeri-
cal identifiers for all groups to which the user belongs. Once this CPS information is
determined, the File Server scans the ACL controlling access to the file system object
in question. If it finds that the ACL contains an entry specifying a principal with the
appropriate rights which also appears in the user’s CPS, then the operation is cleared.
Otherwise, it is rejected and a protection violation is reported to the Cache Manager for
ultimate reflection back to the caller.

The BOS Server performs administrative operations on the File Server process. Thus,
their interactions are quite one-sided, and always initiated by the BOS Server. The BOS
Server does not utilize the File Server’s RPC interface, but rather generates UNIX signals
to achieve the desired effect.

2.3 Threading

The File Server is organized as a multi-threaded server. Its threaded behavior within
a single UNIX process is achieved by use of the LWP lightweight process facility, as
described in detail in the companion “AFS-3 Programmer’s Reference: Specification for
the Rz Remote Procedure Call Facility” document. The various threads utilized by the
File Server are described below:

e WorkerLWP: This lightweight process sleeps until a request to execute one of
the RPC interface functions arrives. It pulls the relevant information out of the
request, including any incoming data delivered as part of the request, and then
executes the server stub routine to carry out the operation. The thread finishes its
current activation by feeding the return code and any output data back through the
RPC channel back to the calling Cache Manager. The File Server initialization
sequence specifies that at least three but no more than six of these WorkerLWP
threads are to exist at any one time. It is currently not possible to configure the
File Server process with a different number of WorkerLWP threads.

File Server Architecture 11 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

e FiveMinuteCheckLWP: This thread runs every five minutes, performing such
housekeeping chores as cleaning up timed-out callbacks, setting disk usage statis-
tics, and executing the special handling required by certain AIX implementa-
tions. Generally, this thread performs activities that do not take unbounded
time to accomplish and do not block the thread. If reassurance is required,
FiveMinuteCheckLWP can also be told to print out a banner message to the ma-
chine’s console every so often, stating that the File Server process is still running.
This is not strictly necessary and an artifact from earlier versions, as the File
Server’s status is now easily accessible at any time through the BOS Server run-
ning on its machine.

e HostCheckLWP: This thread, also activated every five minutes, performs pe-
riodic checking of the status of Cache Managers that have been previously con-
tacted and thus appear in this File Server’s internal tables. It generates RXAF-
SCB_Probe() calls from the Cache Manager interface, and may find itself suspended
for an arbitrary amount of time when it enounters unreachable Cache Managers.

2.4 Callback Race Conditions

Callbacks serve to implement the efficient AFS cache consistency mechanism, as de-
scribed in Section 1.1.1. Because of the asynchronous nature of callback generation
and the multi-threaded operation and organization of both the File Server and Cache
Manager, race conditions can arise in their use. As an example, consider the case of a
client machine fetching a chunk of file X. The File Server thread activated to carry out
the operation ships the contents of the chunk and the callback information over to the
requesting Cache Manager. Before the corresponding Cache Manager thread involved
in the exchange can be scheduled, another request arrives at the File Server, this time
storing a modified image of the same chunk from file X. Another worker thread comes
to life and completes processing of this second request, including execution of an RX-
AFSCB_CallBack() to the Cache Manager who still hasn’t picked up on the results of
its fetch operation. If the Cache Manager blindly honors the RXAFSCB_CallBack()
operation first and then proceeds to process the fetch, it will wind up believing it has a
callback on X when in reality it is out of sync with the central copy on the File Server.
To resolve the above class of callback race condition, the Cache Manager effectively
doublechecks the callback information received from File Server calls, making sure they
haven’t already been nullified by other file system activity.

File Server Architecture 12 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref
2.5 Read-Only Volume Synchronization

The File Server issues a callback for each file chunk it delivers from a read-write vol-
ume, thus allowing Cache Managers to efficiently synchronize their local caches with
the authoritative File Server images. However, no callbacks are issued when data from
read-only volumes is delivered to clients. Thus, it is possible for a new snapshot of the
read-only volume to be propagated to the set of replication sites without Cache Man-
agers becoming aware of the event and marking the appropriate chunks in their caches as
stale. Although the Cache Manager refreshes its volume version information periodically
(once an hour), there is still a window where a Cache Manager will fail to notice that it
has outdated chunks.

The volume synchronization mechanism was defined to close this window, resulting
in what is nearly a “whole-volume” callback device for read-only volumes. Each File
Server RPC interface function handling the transfer of file data is equipped with a
parameter (a_volSyncP), which carries this volume synchronization information. This
parameter is set to a non-zero value by the File Server exclusively when the data being
fetched is coming from a read-only volume. Although the struct AFSVolSync defined
in Section 5.1.2.2 passed via a_volSyncP consists of six longwords, only the first one is
set. This leading longword carries the creation date of the read-only volume. The Cache
Manager immediately compares the synchronization value stored in its cached volume
information against the one just received. If they are identical, then the operation is free
to complete, secure in the knowledge that all the information and files held from that
volume are still current. A mismatch, though, indicates that every file chunk from this
volume is potentially out of date, having come from a previous release of the read-only
volume. In this case, the Cache Manager proceeds to mark every chunk from this volume
as suspect. The next time the Cache Manager considers accessing any of these chunks,
it first checks with the File Server it came from which the chunks were obtained to see
if they are up to date.

2.6 Disposal of Cache Manager Records

Every File Server, when first starting up, will, by default, allocate enough space to record
20,000 callback promises (see Section 5.3 for how to override this default). Should the File
Server fully populate its callback records, it will not allocate more, allowing its memory
image to possibly grow in an unbounded fashion. Rather, the File Server chooses to
break callbacks until it acquires a free record. All reachable Cache Managers respond by
marking their cache entries appropriately, preserving the consistency guarantee. In fact,
a File Server may arbitrarily and unilaterally purge itself of all records associated with

File Server Architecture 13 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

a particular Cache Manager. Such actions will reduce its performance (forcing these
Cache Managers to revalidate items cached from that File Server) without sacrificing
correctness.

File Server Architecture 14 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Chapter 3

Cache Manager Architecture

3.1 Overview

The AFS Cache Manager is a kernel-resident agent with the following duties and respon-
sibilities:

e Users are to be given the illusion that files stored in the AFS distributed file system
are in fact part of the local UNIX file system of their client machine. There are
several areas in which this illusion is not fully realized:

— Semantics: Full UNIX semantics are not maintained by the set of agents im-
plementing the AFS distributed file system. The largest deviation involves
the time when changes made to a file are seen by others who also have the file
open. In AFS, modifications made to a cached copy of a file are not necessar-
ily reflected immediately to the central copy (the one hosted by File Server
disk storage), and thus to other cache sites. Rather, the changes are only
guaranteed to be visible to others who simultaneously have their own cached

copies open when the modifying process executes a UNIX close() operation on
the file.

This differs from the semantics expected from the single-machine, local UNIX
environment, where writes performed on one open file descriptor are imme-
diately visible to all processes reading the file via their own file descriptors.
Thus, instead of the standard “last writer wins” behavior, users see “last
closer wins” behavior on their AFS files. Incidentally, other DFSs, such as
NF'S, do not implement full UNIX semantics in this case either.

Cache Manager Architecture 15 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

— Partial failures: A panic experienced by a local, single-machine UNIX file
system will, by definition, cause all local processes to terminate immediately.
On the other hand, any hard or soft failure experienced by a File Server pro-
cess or the machine upon which it is executing does not cause any of the
Cache Managers interacting with it to crash. Rather, the Cache Managers
will now have to reflect their failures in getting responses from the affected
File Server back up to their callers. Network partitions also induce the same
behavior. From the user’s point of view, part of the file system tree has be-
come inaccessible. In addition, certain system calls (e.g., open() and read())
may return unexpected failures to their users. Thus, certain coding practices
that have become common amongst experienced (single-machine) UNIX pro-
grammers (e.g., not checking error codes from operations that “can’t” fail)
cause these programs to misbehave in the face of partial failures.

To support this transparent access paradigm, the Cache Manager proceeds to:

— Intercept all standard UNIX operations directed towards AFS objects, mapping
them to references aimed at the corresponding copies in the local cache.

— Keep a synchronized local cache of AFS files referenced by the client machine’s
users. If the chunks involved in an operation reading data from an object are
either stale or do not exist in the local cache, then they must be fetched from
the File Server(s) on which they reside. This may require a query to the
volume location service in order to locate the place(s) of residence. Authenti-
cation challenges from File Servers needing to verify the caller’s identity are
handled by the Cache Manager, and the chunk is then incorporated into the
cache.

— Upon receipt of a UNIX close, all dirty chunks belonging to the object will be
flushed back to the appropriate File Server.

— Callback deliveries and withdrawals from File Servers must be processed,
keeping the local cache in close synchrony with the state of affairs at the
central store.

e Interfaces are also be provided for those principals who wish to perform AFS-
specific operations, such as Access Control List (ACL) manipulations or changes
to the Cache Manager's configuration.

This chapter takes a tour of the Cache Manager’s architecture, and examines how it
supports these roles and responsibilities. First, the set of AFS agents with which it
must interact are discussed. Next, some of the Cache Manager’'s implementation and
interface choices are examined. Finally, the server’s ability to arbitrarily dispose of
callback information without affecting the correctness of the cache consistency algorithm
is explained.

Cache Manager Architecture 16 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref
3.2 Interactions

The main AFS agent interacting with a Cache Manager is the File Server. The most
common operation performed by the Cache Manager is to act as its users’ agent in
fetching and storing files to and from the centralized repositories. Related to this activity,
a Cache Manager must be prepared to answer queries from a File Server concerning its
health. It must also be able to accept callback revocation notices generated by File
Servers. Since the Cache Manager not only engages in data transfer but must also
determine where the data is located in the first place, it also directs inquiries to Volume
Location Server agents. There must also be an interface allowing direct interactions with
both common and administrative users. Certain AFS-specific operations must be made
available to these parties. In addition, administrative users may desire to dynamically
reconfigure the Cache Manager. For example, information about a newly-created cell
may be added without restarting the client’s machine.

3.3 Implementation Techniques

The above roles and behaviors for the Cache Manager influenced the implementation
choices and methods used to construct it, along with the desire to maximize portability.
This section begins by showing how the VFS/vnode interface, pioneered and standardized
by Sun Microsystems, provides not only the necessary fine-grain access to user file system
operations, but also facilitates Cache Manager ports to new hardware and operating
system platforms. Next, the use of UNIX system calls is examined. Finally, the threading
structure employed is described.

3.3.1 VFS Interface

As mentioned above, Sun Microsystems has introduced and propagated an important
concept in the file system world, that of the Virtual File System (VFS) interface. This
abstraction defines a core collection of file system functions which cover all operations
required for users to manipulate their data. System calls are written in terms of these
standardized routines. Also, the associated vnode concept generalizes the original UNIX
inode idea and provides hooks for differing underlying environments. Thus, to port a
system to a new hardware platform, the system programmers have only to construct
implementations of this base array of functions consistent with the new underlying ma-
chine.

The VFS abstraction also allows multiple file systems (e.g., vanilla unix, DOS, NFS, and

Cache Manager Architecture 17 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

AFS) to coexist on the same machine without interference. Thus, to make a machine
AFS-capable, a system designer first extends the base vnode structure in well-defined
ways in order to store AFS-specific operations with each file description. Then, the
base function array is coded so that calls upon the proper AFS agents are made to
accomplish each function’s standard objectives. In effect, the Cache Manager consists of
code that interprets the standard set of UNIX operations imported through this interface
and executes the AFS protocols to carry them out.

3.3.2 System Calls

As mentioned above, many UNIX system calls are implemented in terms of the base
function array of vnode-oriented operations. In addition, one existing system call has
been modified and two new system calls have been added to perform AFS-specific opera-
tions apart from the Cache Manager’'s UNIX “emulation” activities. The standard ioct()
system call has been augmented to handle AFS-related operations on objects accessed
via open UNIX file descriptors. One of the brand-new system calls is pioctl(), which is
much like ioctl() except it names targeted objects by pathname instead of file descriptor.
Another is afs_call(), which is used to initialize the Cache Manager threads, as described
in the section immediately following.

3.3.3 Threading

In order to execute its many roles, the Cache Manager is organized as a multi-threaded
entity. It is implemented with (potentially multiple instantiations of) the following three
thread classes:

e CallBack Listener: This thread implements the Cache Manager callback RPC
interface, as described in Section 6.5.

e Periodic Maintenance: Certain maintenance and checkup activities need to be
performed at five set intervals. Currently, the frequency of each of these opera-
tions is hard-wired. It would be a simple matter, though, to make these times
configurable by adding command-line parameters to the Cache Manager.

— Thirty seconds: Flush pending writes for NFS clients coming in through the
NFS-AFS Translator facility.

— One minute: Make sure local cache usage is below the assigned quota, write
out dirty buffers holding directory data, and keep flock()s alive.

Cache Manager Architecture 18 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

— Three minutes: Check for the resuscitation of File Servers previously de-
termined to be down, and check the cache of previously computed access
information in light of any newly expired tickets.

— Ten minutes: Check health of all File Servers marked as active, and garbage-
collect old RPC connections.

— One hour: Check the status of the root AFS volume as well as all cached
information concerning read-only volumes.

e Background Operations: The Cache Manager is capable of prefetching file sys-
tem objects, as well as carrying out delayed stores, occurring sometime after a
close() operation. At least two threads are created at Cache Manager initializa-
tion time and held in reserve to carry out these objectives. This class of background
threads implements the following three operations:

— Prefetch operation: Fetches particular file system object chunks in the expec-
tation that they will soon be needed.

— Path-based prefetch operation: The prefetch daemon mentioned above oper-
ates on objects already at least partly resident in the local cache, referenced
by their vnode. The path-based prefetch daemon performs the same actions,
but on objects named solely by their UNIX pathname.

— Delayed store operation: Flush all modified chunks from a file system object
to the appropriate File Server’s disks.

3.4 Disposal of Cache Manager Records

The Cache Manager is free to throw away any or all of the callbacks it has received from
the set of File Servers from which it has cached files. This housecleaning does not in
any way compromise the correctness of the AFS cache consistency algorithm. The File
Server RPC interface described in this paper provides a call to allow a Cache Manager
to advise of such unilateral jettisoning. However, failure to use this routine still leaves
the machine’s cache consistent. Let us examine the case of a Cache Manager on machine
C disposing of its callback on file X from File Server F. The next user access on file X
on machine C will cause the Cache Manager to notice that it does not currently hold
a callback on it (although the File Server will think it does). The Cache Manager on
C attempts to revalidate its entry when it is entirely possible that the file is still in
sync with the central store. In response, the File Server will extend the existing callback
information it has and deliver the new promise to the Cache Manager on C. Now consider
the case where file X is modified by a party on a machine other than C before such an

Cache Manager Architecture 19 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

access occurs on C. Under these circumstances, the File Server will break its callback on
file X before performing the central update. The Cache Manager on C will receive one of
these “break callback” messages. Since it no longer has a callback on file X, the Cache
Manager on C will cheerfully acknowledge the File Server’s notification and move on to
other matters. In either case, the callback information for both parties will eventually
resynchronize. The only potential penalty paid is extra inquiries by the Cache Manager
and thus providing for reduced performance instead of failure of operation.

Cache Manager Architecture 20 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Chapter 4

Common Definitions and Data
Structures

This chapter discusses the definitions used in common by the File Server and the Cache
Manager. They appear in the common.zg file, used by Rzgen to generate the C code
instantiations of these definitions.

4.1 File-Related Definitions

4.1.1 struct AFSFid

This is the type for file system objects within AFS.

Fields

unsigned long Volume - This provides the identifier for the volume in which the
object resides.

unsigned long Vnode - This specifies the index within the given volume corre-
sponding to the object.

unsigned long Unique - This is a “uniquifier” or generation number for the slot
identified by the Vnode field.

Common Definitions and Data Structures 21 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

4.2 Callback-related Definitions

4.2.1 Types of Callbacks

There are three types of callbacks defined by AFS-3:

e EXCLUSIVE: This version of callback has not been implemented. Its intent was to
allow a single Clache Manager to have exclusive rights on the associated file data.

e SHARED: This callback type indicates that the status information kept by a Cache
Manager for the associated file is up to date. All cached chunks from this file whose
version numbers match the status information are thus guaranteed to also be up to
date. This type of callback is non-exclusive, allowing any number of other Cache
Managers to have callbacks on this file and cache chunks from the file.

e DROPPED: This is used to indicate that the given callback promise has been cancelled
by the issuing File Server. The Cache Manager is forced to mark the status of its
cache entry as unknown, forcing it to stat the file the next time a user attempts to
access any chunk from it.

4.2.2 struct AFSCallBack

This is the canonical callback structure passed in many File Server RPC interface calls.

Fields

unsigned long CallBackVersion - Callback version number.

unsigned long ExpirationTime - Time when the callback expires, measured in
seconds.

unsigned long CallBackType - The type of callback involved, one of EXCLUSIVE,
SHARED, or DROPPED.

4.2.3 Callback Arrays

AFS-3 sometimes does callbacks in bulk. Up to AFSCBMAX (50) callbacks can be handled
at once. Layouts for the two related structures implementing callback arrays, struct
AFSCBFids and struct AFSCBs, follow below. Note that the callback descriptor in slot

Common Definitions and Data Structures 22 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

1 of the array in the AFSCBs structure applies to the file identifier contained in slot 7 in
the fid array in the matching AFSCBFids structure.

4.2.3.1 struct AFSCBFids

Fields

u_int AFSCBFids_len - Number of AFS file identifiers stored in the structure, up
to a maximum of AFSCBMAX.

AFSFid *AFSCBFids_val - Pointer to the first element of the array of file identifiers.

4.2.3.2 struct AFSCBs

Fields

u_int AFSCBs len - Number of AFS callback descriptors stored in the structure,
up to a maximum of AFSCBMAX.

AFSCallBack *AFSCBs_val - Pointer to the actual array of callback descriptors

4.3 Locking Definitions

4.3.1 struct AFSDBLockDesc

This structure describes the state of an AFS lock.

Fields

char waitStates - Types of lockers waiting for the lock.

char exclLocked - Does anyone have a boosted, shared or write lock? (A boosted
lock allows the holder to have data read-locked and then “boost” up to a write
lock on the data without ever relinquishing the lock.)

char readersReading - Number of readers that actually hold a read lock on the
associated object.

char numWaiting - Total number of parties waiting to acquire this lock in some
fashion.

Common Definitions and Data Structures 23 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

4.3.2 struct AFSDBCacheEntry

This structure defines the description of a Cache Manager local cache entry, as made
accessible via the RXAFSCB_GetCE() callback RPC call. Note that File Servers do
not make the above call. Rather, client debugging programs (such as cmdebug) are the

agents which call RXAFSCB_GetCE().

Fields

long addr - Memory location in the Cache Manager where this description is lo-
cated.

long cell - Cell part of the fid.

AFSFid netFid - Network (standard) part of the fid

long Length - Number of bytes in the cache entry.

long DataVersion - Data version number for the contents of the cache entry.

struct AFSDBLockDesc lock - Status of the lock object controlling access to this
cache entry.

long callback - Index in callback records for this object.
long cbExpires - Time when the callback expires.

short refCount - General reference count.

short opens - Number of opens performed on this object.
short writers - Number of writers active on this object.

char mvstat - The file classification, indicating one of normal file, mount point, or
volume root.

char states - Remembers the state of the given file with a set of bits indicating,
from lowest-order to highest order: stat info valid, read-only file, mount point
valid, pending core file, wait-for-store, and mapped file.

4.3.3 struct AFSDBLock

This is a fuller description of an AFS lock, including a string name used to identify it.

Fields

char name[16] - String name of the lock.
struct AFSDBLockDesc lock - Contents of the lock itself.

Common Definitions and Data Structures 24 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

4.4 Miscellaneous Definitions

4.4.1 Opaque structures

A maximum size for opaque structures passed via the File Server interface is defined as
AFSOPAQUEMAX. Currently, this is set to 1,024 bytes. The AFSOpaque typedef is defined
for use by those parameters that wish their contents to travel completely uninterpreted
across the network.

4.4.2 String Lengths

Two common definitions used to specify basic AFS string lengths are AFSNAMEMAX and
AFSPATHMAX. AFSNAMEMAX places an upper limit of 256 characters on such things as file
and directory names passed as parameters. AFSPATHMAX defines the longest pathname
expected by the system, composed of slash-separated instances of the individual directory
and file names mentioned above. The longest acceptable pathname is currently set to
1,024 characters.

Common Definitions and Data Structures 25 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Chapter 5

File Server Interfaces

There are several interfaces offered by the File Server, allowing it to export the files
stored within the set of AFS volumes resident on its disks to the AFS community in a
secure fashion and to perform self-administrative tasks. This chapter will cover the three
File Server interfaces, summarized below. There is one File Server interface that will
not be discussed in this document, namely that used by the Volume Server. It will be
fully described in the companion AFS-3 Programmer’s Reference: Volume Server/Volume
Location Server Interface.

e RPC: This is the main File Serverinterface, supporting all of the Cache Manager’s
needs for providing its own clients with appropriate access to file system objects
stored within AFS. It is closedly tied to the callback interface exported by the
Cache Manager as described in Section 6.5, which has special implications for any
application program making direct calls to this interface.

e Signals: Certain operations on a File Server must be performed by it sending
UNIX signals on the machine on which it is executing. These operations include
performing clean shutdowns and adjusting debugging output levels. Properly-
authenticated administrative users do not have to be physically logged into a File
Server machine to generate these signals. Rather, they may use the RPC inter-
face exported by that machine’s BOS Server process to generate them from any
AFS-capable machine.

e Command Line: Many of the File Server’'s operating parameters may be set
upon startup via its command line interface. Such choices as the number of data
buffers and callback records to hold in memory may be made here, along with
various other decisions such as lightweight thread stack size.

File Server Interfaces 26 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1 RPC Interface

5.1.1 Introduction and Caveats

The documentation for the AFS-3 File Server RPC interface commences with some
basic definitions and data structures used in conjunction with the function calls. This
is followed by an examination of the set of non-streamed RPC functions, namely those
routines whose parameters are all fixed in size. Next, the streamed RPC functions, those
with parameters that allow an arbitrary amount of data to be delivered, are described.
A code fragment and accompanying description and analysis are offered as an example
of how to use the streamed RPC calls. Finally, a description of the special requirements
on any application program making direct calls to this File Server interface appears.
The File Server assumes that any entity making calls to its RPC functionality is a bona
fide and full-fledged Cache Manager. Thus, it expects this caller to export the Cache
Manager’s own RPC interface, even if the application simply uses File Server calls that
don’t transfer files and thus generate callbacks.

Within those sections describing the RPC functions themselves, the purpose of each call
is detailed, and the nature and use of its parameters is documented. Each of these RPC
interface routines returns an integer error code, and a subset of the possible values are
described. A complete and systematic list of potential error returns for each function
is difficult to construct and unwieldy to examine. This is due to fact that error codes
from many different packages and from many different levels may arise. Instead of
attempting completeness, the error return descriptions discuss error codes generated
within the functions themselves (or a very small number of code levels below them)
within the File Server code itself, and not from such associated packages as the Rz,
volume, and protection modules. Many of these error code are defined in the companion
AFS-3 documents.

By convention, a return value of zero reveals that the function call was successful and
that all of its OUT parameters have been set by the File Server.

5.1.2 Definitions and Structures
5.1.2.1 Constants and Typedefs

The following constants and typedefs are required to properly use the File Server RPC
interface, both to provide values and to interpret information returned by the calls. The
constants appear first, followed by the list of typedefs, which sometimes depend on the

File Server Interfaces 27 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

constants above. Items are alphabetized within each group.

All of the constants appearing below whose names contain the XSTAT string are used in
conjuction with the extended data collection facility supported by the File Server. The
File Server defines some number of data collections, each of which consists of an array
of longword values computed by the File Server.

There are currently two data collections defined for the File Server. The first is identified
by the AFS_XSTATSCOLL _CALL INFO constant. This collection of longwords relates the
number of times each internal function within the File Server code has been executed,
thus providing profiling information. The second File Server data collection is identified
by the AFS_XSTATSCOLL _PERF_INFO constant. This set of longwords contains information
related to the File Server’s performance.

5.1.2.1.1 AFS_DISKNAMESIZE [Value = 32/ Specifies the maximum length
for an AFS disk partition, used directly in the definition for the DiskName typedef. A
DiskName appears as part of a struct ViceDisk, a group of which appear inside a
struct ViceStatistics, used for carrying basic File Server statistics information.

5.1.2.1.2 AFS_MAX_XSTAT _LONGS [Value = 1,024/ Defines the maximum
size for a File Server data collection, as exported via the RXAFS_GetXStats() RPC call.
It is used directly in the AFS_CollData typedef.

5.1.2.1.3 AFS_XSTATSCOLL_CALL_INFO [Value = 0] This constant identi-
fies the File Server’s data collection containing profiling information on the number of
times each of its internal procedures has been called.

Please note that this data collection is not supported by the File Server at this time. A
request for this data collection will result the return of a zero-length array.

5.1.2.1.4 AFS XSTATSCOLL PERF INFO [Value = 1] This constant identi-

fies the File Server’s data collection containing performance-related information.

5.1.2.1.5 AFS _CollData [typedeflong AFS_CollData< AFS_MAX XSTAT LONGS>;]
This typedef is used by Rzgen to create a structure used to pass File Server data col-
lections to the caller. It resolves into a C typedef statement defining a structure of the
same name with the following fields:

File Server Interfaces 28 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Fields

u_int AFS CollData_len - The number of longwords contained within the data
pointed to by the next field.

long *AFS CollData val - A pointer to a sequence of AFS CollData len long-
words.

5.1.2.1.6 AFSBulkStats [typedef AFSFetchStatus AFSBulkStats< AFSCBMAX>;]
This typedef is used by Rzgen to create a structure used to pass a set of statistics struc-
tures, as described in the RXAFS_BulkStatus documentation in Section 5.1.3.21. It
resolves into a C typedef statement defining a structure of the same name with the
following fields:

Fields

u_int AFSBulkStats_len - The number of struct AFSFetchStatus units con-
tained within the data to which the next field points.

AFSFetchStatus *AFSBulkStats_val - This field houses pointer to a sequence of
AFSBulkStats_len units of type struct AFSFetchStatus.

5.1.2.1.7 DiskName [typedef opaque DiskName[AFS_DISKNAMESIZE];] The name
of an AFS disk partition. This object appears as a field within a struct ViceDisk, a
group of which appear inside a struct ViceStatistics, used for carrying basic File
Server statistics information. The term opaque appearing above inidcates that the object
being defined will be treated as an undifferentiated string of bytes.

5.1.2.1.8 ViceLockType [typedef long ViceLockType;] This defines the format of
a lock used internally by the Cache Manager. The content of these locks is accessible
via the RXAFSCB_GetLock() RPC function. An isomorphic and more refined version
of the lock structure used by the Cache Manager, mapping directly to this definition, is
struct AFSDBLockDesc, defined in Section 4.3.1.

File Server Interfaces 29 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.2.2 struct AFSVolSync

This structure conveys volume synchronization information across many of the File
Server RPC interface calls, allowing something akin to a ‘whole-volume callback” on
read-only volumes.

Fields

unsigned long sparel ... spare6 - The first longword, sparel, contains the
volume’s creation date. The rest are currently unused.

5.1.2.3 struct AFSFetchStatus

This structure defines the information returned when a file system object is fetched from
a File Server.

Fields

unsigned long InterfaceVersion - RPC interface version, defined to be 1.

unsigned long FileType - Distinguishes the object as either a file, directory, sym-
link, or invalid.

unsigned long LinkCount - Number of links to this object.
unsigned long Length - Length in bytes.

unsigned long DataVersion - Object’s data version number.
unsigned long Author - Identity of the object’s author.
unsigned long Owner - Identity of the object’s owner.

unsigned long CallerAccess - The set of access rights computed for the caller on
this object.

unsigned long AnonymousAccess - The set of access rights computed for any com-
pletely unauthenticated principal.

unsigned long UnixModeBits - Contents of associated UNIX mode bits.
unsigned long ParentVnode - Vnode for the object’s parent directory.
unsigned long ParentUnique - Uniquifier field for the parent object.
unsigned long SegSize - (Not implemented).

File Server Interfaces 30 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

unsigned long ClientModTime - Time when the caller last modified the data
within the object.

unsigned long ServerModTime - Time when the server last modified the data
within the object.

unsigned long Group - (Not implemented).
unsigned long SyncCounter - (Not implemented).

unsigned long sparel ... spare4 - Spares.

5.1.2.4 struct AFSStoreStatus

This structure is used to convey which of a file system object’s status fields should be set,
and their new values. Several File Server RPC calls, including RXAFS_StoreStatus(),
RXAFS_CreateFile(), RXAFS_SymLink(), RXAFS_MakeDir(), and the streamed call to

store file data onto the File Server.

Fields

unsigned long Mask - Bit mask, specifying which of the following fields should be
assigned into the File Server’s status block on the object.

unsigned long ClientModTime - The time of day that the object was last modified.

unsigned long Owner - The principal identified as the owner of the file system
object.

unsigned long Group - (Not implemented).
unsigned long UnixModeBits - The set of associated UNIX mode bits.

unsigned long SegSize - (Not implemented).

5.1.2.5 struct ViceDisk

This structure occurs in struct ViceStatistics, and describes the characteristics and
status of a disk partition used for AFS storage.

File Server Interfaces 31 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Fields

long BlocksAvailable - Number of 1 Kbyte disk blocks still available on the par-
tition.

long TotalBlocks - Total number of disk blocks in the partition.

DiskName Name - The human-readable character string name of the disk partition
(e.g., /vicepa).

5.1.2.6 struct ViceStatistics

This is the File Server statistics structure returned by the RXAFS_GetStatistics() RPC
call.

Fields

unsigned long CurrentMsgNumber - Not used

unsigned long 0ldestMsgNumber - Not used

unsigned long CurrentTime - Time of day, as understood by the File Server.
unsigned long BootTime - Kernel’s boot time.

unsigned long StartTime - Time when the File Server started up.

long CurrentConnections - Number of connections to Cache Manager instances.
unsigned long TotalViceCalls - Count of all calls made to the RPC interface.

unsigned long TotalFetchs - Total number of fetch operations, either status or
data, performed.

unsigned long FetchDatas - Total number of data fetch operations exclusively.

unsigned long FetchedBytes - Total number of bytes fetched from the File Server
since it started up.

long FetchDataRate - Result of dividing the FetchedBytes field by the number of
seconds the File Server has been running.

unsigned long TotalStores - Total number of store operations, either status or
data, performed.

unsigned long StoreDatas - Total number of data store operations exclusively.

unsigned long StoredBytes - Total number of bytes stored to the File Server
since it started up.

File Server Interfaces 32 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

long

StoreDataRate - The result of dividing the StoredBytes field by the number
of seconds the File Server has been running.

unsigned long TotalRPCBytesSent - Outdated

unsigned long TotalRPCBytesReceived - Outdated

unsigned long TotalRPCPacketsSent - Outdated

unsigned long TotalRPCPacketsReceived - Outdated

unsigned long TotalRPCPacketsLost - Outdated

unsigned long TotalRPCBogusPackets - Qutdated

long

long

long

long

long
long
long
long
long
long
long
long
long
long
long

long

long

SystemCPU - Result of reading from the kernel the usage times attributed to
system activities.

UserCPU - Result of reading from the kernel the usage times attributed to
user-level activities.

NiceCPU - Result of reading from the kernel the usage times attributed to File
Server activities that have been nice()d (i.e., run at a lower priority).

Id1eCPU - Result of reading from the kernel the usage times attributed to
idling activities.

TotalIO - Summary of the number of bytes read/written from the disk.
ActiveVM - Amount of virtual memory used by the File Server.

TotalVM - Total space available on disk for virtual memory activities.
EtherNetTotalErrors - Not used.

EtherNetTotalWrites - Not used.

EtherNetTotalInterupts - Not used.

EtherNetGoodReads - Not used.

EtherNetTotalBytesWritten - Not used.

EtherNetTotalBytesRead - Not used.

ProcessSize - The size of the File Server’s data space in 1 Kbyte chunks.

WorkStations - The total number of client Cache Managers (workstations)
for which information is held by the File Server.

ActiveWorkStations - The total number of client Cache Managers (work-
stations) that have recently interacted with the File Server. This number is
strictly less than or equal to the WorkStations field.

Sparel ... Spare8 - Not used.

File Server Interfaces 33 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

ViceDisk Diskl ... Disk10 - Statistics concerning up to 10 disk partitions used
by the File Server. These records keep information on all partitions, not just
partitions reserved for AFS storage.

5.1.2.7 struct afs_PerfStats

This is the structure corresponding to the AFS XSTATSCOLL PERF_INFO data collection
that is defined by the File Server (see Section 5.1.2.1.4). It is accessible via the RX-
AFS_GetXStats() interface routine, as defined in Section 5.1.3.26.

The fields within this structure fall into the following classifications:

Number of requests for the structure.

Vnode cache information.

Directory package numbers.

Rx information.

Host module fields

e Spares.

Please note that the Rz fields represent the contents of the rx_stats structure maintained
by Rz RPC facility itself. Also, a full description of all the structure’s fields is not
possible here. For example, the reader is referred to the companion Rz document for
further clarification on the Ra-related fields within afs PerfStats.

Fields

long numPerfCalls - Number of performance collection calls received.

long vcache L Entries - Number of entries in large (directory) vnode cache.
long vcache L Allocs - Number of allocations for the large vnode cache.
long vcache L Gets - Number of get operations for the large vnode cache.
long vcache L Reads - Number of reads performed on the large vnode cache.

long vcache L Writes - Number of writes executed on the large vnode.cache.

File Server Interfaces 34 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

long
long
long
long
long
long
long
long

long
long
long
long
long
long
long
long
long
long
long

long

long

long
long

long

long

long

vcache S Entries - Number of entries in the small (file) vnode cache.
vcache S Allocs - Number of allocations for the small vnode cache.
vcache S Gets - Number of get operations for the small vnode cache.
vcache S Reads - Number of reads performed on the small vnode cache.
vcache S Writes - Number of writes executed on the small vnode cache.
vcache H Entries - Number of entries in the header of the vnode cache
vcache H Gets - Number of get operations on the header of the vnode cache.

vcache H Replacements - Number of replacement operations on the header
of the vnode cache.

dir Buffers - Number of directory package buffers in use.

dir Calls - Number of read calls made to the directory package.

dir_I0s - Number of directory I/O operations performed.
rx_packetRequests - Number of Rz packet allocation requests.
rx_noPackets_RcvClass - Number of failed packet reception requests.
rx_noPackets_SendClass - Number of failed packet transmission requests.
rx_noPackets _SpecialClass - Number of “special” Rz packet rquests.
rx_socketGreedy - Did setting the Rz socket to SO_GREEDY succeed?
rx_bogusPacketOnRead - Number of short packets received.
rx_bogusHost - Latest host address from bogus packets.

rx_noPacketOnRead - Number of attempts to read a packet when one was not
physically available.

rx_noPacketBuffersOnRead - Number of packets dropped due to buffer short-
ages.

rx_selects - Number of selects performed, waiting for a packet arrival or a
timeout.

rx_sendSelects - Number of selects forced upon a send.

rx_packetsRead RcvClass - Number of packets read belonging to the “Rev”
class.

rx_packetsRead SendClass - Number of packets read that belong to the
“Send” class.

rx_packetsRead SpecialClass - Number of packets read belonging to the
“Special” class.

rx_dataPacketsRead - Number of unique data packets read off the wire.

File Server Interfaces 35 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

long rx_ackPacketsRead - Number of acknowledgement packets read.

long rx_dupPacketsRead - Number of duplicate data packets read.

long rx_spuriousPacketsRead - Number of inappropriate packets read.

long rx_packetsSent RcvClass - Number of packets sent belonging to the “Rev”

class.

long rx packetsSent_SendClass - Number of packets sent belonging to the “Send”

class.

long rx_packetsSent_SpecialClass -

“Special” class.

Number of packets sent belonging to the

long rx_ackPacketsSent - Number of acknowledgement packets sent.

long rx pingPacketsSent - Number of ping packets sent.

long rx_abortPacketsSent - Number of abort packets sent.

long rx busyPacketsSent - Number of busy packets sent.

long rx_dataPacketsSent - Number of unique data packets sent.

long rx_dataPacketsReSent -

Number of retransmissions sent.

long rx_dataPacketsPushed - Number of retransmissions pushed by a NACK.

long rx_ignoreAckedPacket -

rzi_Start() time.

long rx_totalRtt_Sec - Total round trip time in seconds.

Number of packets whose acked flag was set at

long rx_totalRtt_Usec - Microsecond portion of the total round trip time,

long rxminRtt_Sec - Minimum round trip time in seconds.

long rx minRtt Usec - Microsecond portion of minimal round trip time.

long rx maxRtt_Sec - Maximum round trip time in seconds.

long rx maxRtt Usec - Microsecond portion of maximum round trip time.

long rx nRttSamples - Number of round trip samples.

long rx.nServerConns
long rx.nClientConns
long rx_nPeerStructs

long rx.nCallStructs

Total number of server connections.

Total number of client connections.

Total number of peer structures.

Total number of call structures.

long rx nFreeCallStructs - Total number of call structures residing on the free

list.

long host NumHostEntries - Number of host entries.

File Server Interfaces

36

August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

long
long
long

long

long

long
long
long

host_HostBlocks - Number of blocks in use for host entries.
host_NonDeletedHosts - Number of non-deleted host entries.

host _HostsInSameNetOrSubnet - Number of host entries in the same [sub]net
as the File Server.

host _HostsInDiffSubnet - Number of host entries in a different subnet as
the File Server.

host_HostsInDiffNetwork - Number of host entries in a different network
entirely as the File Server.

host NumClients - Number of client entries.
host_ClientBlocks - Number of blocks in use for client entries.

spare[32] - Spare fields, reserved for future use.

5.1.2.8

struct AFSFetchVolumeStatus

The results of asking the File Server for status information concerning a particular
volume it hosts.

Fields

long
long

char

char

char

char

long

long

Vid - Volume ID.

ParentId - Volume ID in which the given volume is “primarily” mounted.
This is used to properly resolve pwd operations, as a volume may be mounted
simultaneously at multiple locations.

Online - Is the volume currently online and fully available?

InService - This field records whether the volume is currently in service. It
is indistinguishable from the Blessed field,

Blessed - See the description of the InService field immediately above.

NeedsSalvage - Should this volume be salvaged (run through a consistency-
checking procedure)?

Type - The classification of this volume, namely a read/write volume (RWVOL
= 0), read-only volume (ROVOL = 1), or backup volume (BACKVOL = 2).

MinQuota - Minimum number of 1 Kbyte disk blocks to be set aside for this
volume. Note: this field is not currently set or accessed by any AFS agents.

File Server Interfaces 37 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

long MaxQuota - Maximum number of 1 Kbyte disk blocks that may be occupied
by this volume.

long BlocksInUse - Number of 1 Kbyte disk blocks currently in use by this volume.

long PartBlocksAvail - Number of available 1 Kbyte blocks currently unused in
the volume’s partition.

long PartMaxBlocks - Total number of blocks, in use or not, for the volume’s
partition.

5.1.2.9 struct AFSStoreVolumeStatus

This structure is used to convey which of a file system object’s status fields should be
set, and their new values. The RXAFS_SetVolumeStatus() RPC call is the only user of
this structure.

Fields

long Mask - Bit mask to determine which of the following two fields should be
stored in the centralized status for a given volume.

long MinQuota - Minimum number of 1 Kbyte disk blocks to be set aside for this
volume.

long MaxQuota - Maximum number of 1 Kbyte disk blocks that may be occupied
by this volume.

5.1.2.10 struct AFSVolumelnfo

This field conveys information regarding a particular volume through certain File Server
RPC interface calls. For information regarding the different volume types that ex-
ist, please consult the companion document, AFS-3 Programmer’s Reference: Volume
Server/ Volume Location Server Interface.

Fields

unsigned long Vid - Volume ID.

File Server Interfaces 38 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

long Type - Volume type (see struct AFSFetchVolumeStatus in Section 5.1.2.8
above).

unsigned long TypeO ... Type4 - The volume IDs for the possible volume types
in existance for this volume.

unsigned long ServerCount - The number of File Server machines on which an
instance of this volume is located.

unsigned long Server0O ... Server7 - Up to 8 IP addresses of File Server ma-
chines hosting an instance on this volume. The first ServerCount of these
fields hold valid server addresses.

unsigned short Port0O ... Port7 - Up to 8 UDP port numbers on which oper-
ations on this volume should be directed. The first ServerCount of these fileds
hold valid port identifiers.

5.1.3 Non-Streamed Function Calls

The following is a description of the File Server RPC interface routines that utilize only
parameters with fixed maximum lengths. The majority of the File Server calls fall into
this suite, with only a handful using streaming techniques to pass objects of unbounded
size between a File Server and Cache Manager.

Each function is labeled with an opcode number. This is the low-level numerical identifier
for the function, and appears in the set of network packets constructed for the RPC call.

File Server Interfaces 39 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.1 RXAFS _FetchACL — Fetch the ACL associated with the given
AFS file identifier

int RXAFS FetchACL(IN struct rx_connection *a rxConnP,
IN AFSFid *a_dirFidP,
OUT AFSOpaque *a_ACLP,
OUT AFSFetchStatus *a_dirNewStatP,
OUT AFSVolSync *a_volSyncP)

Description

[Opcode 131] Fetch the ACL for the directory identified by a_dirFidP, placing it in the
space described by the opaque structure to which a_ACLP points. Also returned is the
given directory’s status, written to a_dirNewStatP. An ACL may thus take up at most
AFSOPAQUEMAX (1,024) bytes, since this is the maximum size of an AFSOpaque.

Rz connection information for the related File Server is contained in a_rzConnP. Volume
version information is returned for synchronization purposes in a_volSyncP.
Error Codes

EACCES The caller is not permitted to perform this operation.

EINVAL An internal error in looking up the client record was encountered, or an
invalid fid was provided.

VICETOKENDEAD Caller’s authentication token has expired.

File Server Interfaces 40 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.2 RXAFS FetchStatus — Fetch the status information regarding a
given file system object

int RXAFS FetchStatus(IN struct rx_connection *a rxConnP,
IN AFSFid *a_fidToStatP,
OUT AFSFetchStatus *a_currStatP,
OUT AFSCallBack *a_callBackP,
OUT AFSVolSync *a_volSyncP)

Description

[Opcode 132] Fetch the current status information for the file or directory identified by
a_fidToStatP, placing it into the area to which a_currStatP points. If the object resides
in a read /write volume, then the related callback information is returned in a_callBackP.

Rz connection information for the related File Serveris contained in a_rxConnP. Volume
version information is returned for synchronization purposes in a_volSyncP.
Error Codes

EACCES The caller is not permitted to perform this operation.

EINVAL An internal error in looking up the client record was encountered, or an
invalid fid was provided.

VICETOKENDEAD Caller’s authentication token has expired.

File Server Interfaces 41 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.3 RXAFS_StoreACL — Associate the given ACL with the named

directory

int RXAFS _StoreACL (IN struct rx_connection *a_rxConnP,
IN AFSOpaque *a_ACLToStoreP,
IN AFSFid *a_ dirFidP,
OUT AFSFetchStatus *a_dirNewStatP,
OUT AFSVolSync *a_volSyncP)

Description

[Opcode 134] Store the ACL information to which a_ACLToStoreP points to the File
Server, associating it with the directory identified by a_dirFidP. The resulting status
information for the a_dirFidP directory is returned in a_dirNewStatP. Note that the
ACL supplied via a_ACLToStoreP may be at most AFSOPAQUEMAX (1,024) bytes long,
since this is the maximum size accommodated by an AFSOpaque.

Rz connection information for the related File Serveris contained in a_rzConnP. Volume
version information is returned for synchronization purposes in a_volSyncP.

Error Codes

EACCES The caller is not permitted to perform this operation.
E2BIG The given ACL is too large.
EINVAL The given ACL could not translated to its on-disk format.

File Server Interfaces 42 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.4 RXAFS_StoreStatus —— Store the given status information for the
specified file

int RXAFS _StoreStatus(IN struct rx_connection *a rxConnP,
IN AFSFid *a_fidP,
IN AFSStoreStatus *a_currStatusP,
OUT AFSFetchStatus *a_srvStatusP,
OUT AFSVolSync *a_volSyncP)

Description

[Opcode 135] Store the status information to which a_currStatusP points, associating it
with the file identified by a_fidP. All outstanding callbacks on this object are broken.
The resulting status structure stored at the File Server is returned in a_srvStatusP.

Rz connection information for the related File Serveris contained in a_rxConnP. Volume
version information is returned for synchronization purposes in a_volSyncP.

Error Codes

EACCES The caller is not permitted to perform this operation.

EINVAL An internal error in looking up the client record was encountered, or an
invalid fid was provided, or an attempt was made to change the mode of a
symbolic link.

VICETOKENDEAD Caller’s authentication token has expired.

File Server Interfaces 43 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.5 RXAFS_RemoveFile — Delete the given file

int RXAFS RemoveFile(IN struct rx connection *a rxConnP,
IN AFSFid *a_dirFidP,
IN char *a_name<AFSNAMEMAX>,
OUT AFSFetchStatus *a_srvStatusP,
OUT AFSVolSync *a_volSyncP)

Description

[Opcode 136] Destroy the file named a_name within the directory identified by a_dirFidP.
All outstanding callbacks on this object are broken. The resulting status structure stored
at the File Server is returned in a_srvStatusP.

Rz connection information for the related File Serveris contained in a_rzConnP. Volume
version information is returned for synchronization purposes in a_volSyncP.

Error Codes

EACCES The caller is not permitted to perform this operation.

EINVAL An internal error in looking up the client record was encountered, or an

[1a2] o

invalid fid was provided, or an attempt was made to remove “.” or

EISDIR The target of the deletion was supposed to be a file, but it is really a
directory.

ENOENT The named file was not found.

ENOTDIR The a_dirFidP parameter references an object which is not a directory,
or the deletion target is supposed to be a directory but is not.

ENOTEMPTY The target directory being deleted is not empty.
VICETOKENDEAD Caller’s authentication token has expired.

File Server Interfaces 44 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.6 RXAFS_CreateFile — Create the given file

int RXAFS _CreateFile(IN struct rx_connection *a rxConnP,
IN AFSFid *DirFid,
IN char *Name,
IN AFSStoreStatus *InStatus,
OUT AFSFid *0utFid,
OUT AFSFetchStatus *0OutFidStatus,
OUT AFSFetchStatus *0OutDirStatus,
OUT AFSCallBack *CallBack,
OUT AFSVolSync *a_volSyncP)

associated with the new file.

Description

[Opcode 137] This call is used to create a file, but not for creating a directory or a symbolic
link. If this call succeeds, it is the Cache Manager’s responsibility to either create an
entry locally in the directory specified by DirFid or to invalidate this directory’s cache
entry.

Rz connection information for the related File Serveris contained in a_rzConnP. Volume
version information is returned for synchronization purposes in a_volSyncP.

Error Codes

EACCES The caller is not permitted to perform this operation.

EINVAL An internal error in looking up the client record was encountered, or an
invalid fid or name was provided.

ENOTDIR The DirFid parameter references an object which is not a directory.

VICETOKENDEAD Caller’s authentication token has expired.

File Server Interfaces 45 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.7 RXAFS_Rename - Rename the specified file in the given directory

int RXAFS Rename(IN struct rx_connection *a_rxConnP,

Description

IN AFSFid *a_origDirFidP,

IN char *a_origNameP,

IN AFSFid *a newDirFidP,

IN char *a newNameP,

OUT AFSFetchStatus *a_origDirStatusP,
OUT AFSFetchStatus *a newDirStatusP,
OUT AFSVolSync *a_volSyncP)

[Opcode 138] Rename file a_origNameP in the directory identified by a_origDirFidP.
Its new name is to be a_newNameP, and it will reside in the directory identified by
a_newDirFidP. Each of these names must be no more than AFSNAMEMAX (256) characters
long. The status of the original and new directories after the rename operation completes
are deposited in a_origDirStatusP and a_newDirStatusP respectively. Existing callbacks
are broken for all files and directories involved in the operation.

Rz connection information for the related File Serveris contained in a_rzConnP. Volume
version information is returned for synchronization purposes in a_volSyncP.

Error Codes

EACCES
EINVAL
EISDIR
ENOENT

New file exists but user doesn’t have Delete rights in the directory.
Name provided is invalid.
Original object is a file and new object is a directory.

The object to be renamed doesn’t exist in the parent directory.

ENOTDIR Original object is a directory and new object is a file.

EXDEV Rename attempted across a volume boundary, or create a pathname loop,
or hard links exist to the file.

File Server Interfaces 46 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.8 RXAFS_Symlink — Create a symbolic link

int RXAFS_Symlink(IN struct rx_connection *a rxConnP,
IN AFSFid *a_dirFidP,
IN char *a_nameP,
IN char *a_linkContentsP,
IN AFSStoreStatus *a_origDirStatP,
OUT AFSFid *a_newFidP,
0OUT AFSFetchStatus *a_newFidStatP,
0OUT AFSFetchStatus *a_newDirStatP,
OUT AFSVolSync *a_volSyncP)

Description

[Opcode 139] Create a symbolic link named a_nameP in the directory identified by
a_dirFidP. The text of the symbolic link is provided in a_linkContentsP, and the de-
sired status fields for the symbolic link given by a_origDirStatP. The name offered in
a-nameP must be less than AFSNAMEMAX (256) characters long, and the text of the link
to which a_linkContentsP points must be less than AFSPATHMAX (1,024) characters long.
Once the symbolic link has been successfully created, its file identifier is returned in
a_newFidP. Existing callbacks to the a_dirFidP directory are broken before the symbolic
link creation completes. The status fields for the symbolic link itself and its parent’s
directory are returned in a_newFidStatP and a_newDirStatP respectively.

Rz connection information for the related File Serveris contained in a_rzConnP. Volume
version information is returned for synchronization purposes in a_volSyncP.

Error Codes

EACCES The caller does not have the necessary access rights.

EINVAL Illegal symbolic link name provided.

File Server Interfaces 47 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.9 RXAFS Link — Create a hard link

int RXAFS_Link(IN struct rx_connection *a_rxConnP,
IN AFSFid *a_dirFidP,
IN char *a_nameP,
IN AFSFid *a_existingFidP,
QUT AFSFetchStatus *a newFidStatP,
OUT AFSFetchStatus *a_newDirStatP,
OUT AFSVolSync *a_volSyncP)

Description

[Opcode 140] Create a hard link named a_nameP in the directory identified by a_dirFidP.
The file serving as the basis for the hard link is identified by existingFidP. The name
offered in a_nameP must be less than AFSNAMEMAX (256) characters long. Existing call-
backs to the a_dirFidP directory are broken before the hard link creation completes. The
status fields for the file itself and its parent’s directory are returned in a_newFidStatP
and a_newDirStatP respectively.

Rz connection information for the related File Serveris contained in a_rzConnP. Volume
version information is returned for synchronization purposes in a_volSyncP.

Error Codes

EACCES The caller does not have the necessary access rights.
EISDIR An attempt was made to create a hard link to a directory.
EXDEV Hard link attempted across directories.

File Server Interfaces 48 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.10 RXAFS_MakeDir — Create a directory

int RXAFS MakeDir(IN struct rx_connection *a rxConnP,
IN AFSFid *a_parentDirFid,P
IN char *a newDirNameP,
IN AFSStoreStatus *a_currStatP,
OUT AFSFid *a newDirFidP,
OUT AFSFetchStatus *a_dirFidStatP,
OUT AFSFetchStatus *a_parentDirStatP,
OUT AFSCallBack *a_newDirCallBackP,
OUT AFSVolSync *a_volSyncP)

Description

[Opcode 141] Create a directory named a_-newDirNameP within the directory identi-
fied by a_parentDirFidP. The initial status fields for the new directory are provided in
a_currStatP. The new directory’s name must be less than AFSNAMEMAX (256) characters
long. The new directory’s ACL is inherited from its parent. Existing callbacks on the
parent directory are broken before the creation completes. Upon successful directory cre-
ation, the new directory’s file identifier is returned in a_newDirFidP, and the resulting
status information for the new and parent directories are stored in a_dirFidStatP and
a_parentDirStatP respectively. In addition, a callback for the new directory is returned
in a_newDirCallBackP.

Rz connection information for the related File Serveris contained in a_rzConnP. Volume
version information is returned for synchronization purposes in a_volSyncP.

Error Codes

EACCES The caller does not have the necessary access rights.

EINVAL The directory name provided is unacceptable.

File Server Interfaces 49 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.11 RXAFS_RemoveDir — Remove a directory

int RXAFS RemoveDir(IN struct rx_connection *a rxConnP,
IN AFSFid *a_parentDirFidP,
IN char *a_dirNameP,
OUT AFSFetchStatus *a_newParentDirStatP,
OUT AFSVolSync *a_volSyncP)

Description

[Opcode 142] Remove the directory named a_dirNameP from within its parent direc-
tory, identified by a_parentDirFid. The directory being removed must be empty, and its
name must be less than AFSNAMEMAX (256) characters long. Existing callbacks to the
directory being removed and its parent directory are broken before the deletion com-
pletes. Upon successful deletion, the status fields for the parent directory are returned
in a_newParentDirStatP.

Rz connection information for the related File Serveris contained in a_rzConnP. Volume
version information is returned for synchronization purposes in a_volSyncP.

Error Codes

EACCES The caller does not have the necessary access rights.

File Server Interfaces 50 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.12 RXAFS_GetStatistics — Get common File Server statistics

int RXAFS_GetStatistics(IN struct rx_connection *a rxConnP,
OUT ViceStatistics *a_FSInfoP)

Description

[Opcode 146] Fetch the structure containing a set of common File Server statistics. These
numbers represent accumulated readings since the time the File Server last restarted.

For a full description of the individual fields contained in this structure, please see Section
5.1.2.6.

Rz connection information for the related File Server is contained in a_rzConnP.

Error Codes

--— No error codes generated.

File Server Interfaces 51 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.13 RXAFS_GiveUpCallBacks — Ask the File Server to break the

given set of callbacks on the corresponding set of file identifiers

int RXAFS_GiveUpCallBackS(IN struct rx_connection *a_rxConnP,
IN AFSCBFids *a_fidArrayP,
IN AFSCBs *a_callBackArrayP)

Description

[Opcode 147] Given an array of up to AFSCBMAX file identifiers in a_fidArrayP and a
corresponding number of callback structures in a_callBackArrayP, ask the File Server
to remove these callbacks from its register. Note that this routine only affects callbacks
outstanding on the given set of files for the host issuing the RXAFS_GiveUpCallBacks
call. Callback promises made to other machines on any or all of these files are not
affected.

Rz connection information for the related File Server is contained in a_rzConnP.

Error Codes

EINVAL More file identifiers were provided in the a_fidArrayP than callbacks in the
a_callBackArray.

File Server Interfaces 52 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.14 RXAFS GetVolumelnfo - Get information about a volume

given its name

int RXAFS_GetVolumelnfo(IN struct rx_connection *a_rxConnP,
IN char *a_volNameP,
QUT VolumelInfo *a_volInfoP)

Description

[Opcode 148] Ask the given File Server for information regarding a volume whose name
is a_volNameP. The volume name must be less than AFSNAMEMAX characters long, and
the volume itself must reside on the File Server being probed.

Rz connection information for the related File Server is contained in a_rzConnP. Please
note that definitions for the error codes with VL_ prefixes may be found in the viserver.h
include file

Error Codes

1 Could not contact any of the corresponding Volume Location Servers.
VL_BADNAME An improperly-formatted volume name provided.

VL_ENTDELETED An entry was found for the volume, reporting that the volume has
been deleted.

VL_NOENT The given volume was not found.

File Server Interfaces 53 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.15 RXAFS _GetVolumeStatus — Get basic status information for

the named volume

int RXAFS_GetVolumeStatus(IN struct rx_connection *a rxConnP,
IN long a_volIDP,
OUT AFSFetchVolumeStatus *a_volFetchStatP,
OUT char *a_volNameP,
OUT char *a_offLineMsgP,
OUT char *a motdP)

Description

[Opcode 149] Given the numeric volume identifier contained in a_volIDP, fetch the basic
status information corresponding to that volume. This status information is stored into
a_volFetchStatP. A full description of this status structure is found in Section 5.1.2.8. In
addition, three other facts about the volume are returned. The volume’s character string
name is placed into a_volNameP. This name is guaranteed to be less than AFSNAMEMAX
characters long. The volume’s offline message, namely the string recording why the vol-
ume is off-line (if it is), is stored in a_offLineMsgP . Finally, the volume’s “Message of the
Day” is placed in a_motdP. Each of the character strings deposited into a_offLineMsgP
and a-motdP is guaranteed to be less than AFSOPAQUEMAX (1,024) characters long.

Rz connection information for the related File Server is contained in a_rzConnP.

Error Codes

EACCES The caller does not have the necessary access rights.
EINVAL A volume identifier of zero was specified.

File Server Interfaces 54 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.16 RXAFS _SetVolumeStatus — Set the basic status information

for the named volume

int RXAFS_SetVolumeStatus(IN struct rx_connection *a rxConnP,
IN long a_volIDP,
IN AFSStoreVolumeStatus *a_volStoreStatP,
IN char *a_volNameP,
IN char *a_offLineMsgP,
IN char *a.motdP)

Description

[Opcode 150] Given the numeric volume identifier contained in a_volIDP, set that vol-
ume’s basic status information to the values contained in a_volStoreStatP. A full de-
scription of the fields settable by this call, including the necessary masking, is found
in Section 5.1.2.9. In addition, three other items relating to the volume may be set.
Non-null character strings found in a_volNameP, a_offLineMsgP, and a_motdP will be
stored in the volume’s printable name, off-line message, and “Message of the Day” fields
respectively. The volume name provided must be less than AFSNAMEMAX (256) characters
long, and the other two strings must be less than AFSOPAQUEMAX (1,024) characters long
each.

Rz connection information for the related File Server is contained in a_rzConnP.

Error Codes

EACCES The caller does not have the necessary access rights.
EINVAL A volume identifier of zero was specified.

File Server Interfaces 55 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.17 RXAFS GetRootVolume - Return the name of the root vol-

ume for the file system

int RXAFS _GetRootVolume(IN struct rx connection *a rxConnP,
0UT char *a_rootVolNameP)

Description

[Opcode 151] Fetch the name of the volume which serves as the root of the AFS file
system and place it into a_root VolNameP. This name will always be less than AFSNAMEMAX
characters long. Any File Server will respond to this call, not just the one hosting the
root volume. The queried File Server first tries to discover the name of the root volume
by reading from the /usr/afs/etc/RootVolume file on its local disks. If that file doesn’t
exist, then it will return the default value, namely “root.afs”.

Rz connection information for the related File Serveris contained in a_rxConnP. Volume
version information is returned for synchronization purposes in a_volSyncP.

Error Codes

-—— No error codes generated.

File Server Interfaces 56 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.18 RXAFS_CheckToken - (Obsolete) Check that the given user

identifier matches the one in the supplied authentication token

int RXAFS_CheckToken (IN struct rx_connection *a rxConnP,
IN long Viceld,
IN AFSOpaque *token)

Description

[Opcode 152] This function only works for the now-obsolete RPC facility used by AFS,
R. For modern systems using the Rz RPC mechanism, we always get an error return
from this routine.

Rz connection information for the related File Server is contained in a_rzConnP.

Error Codes

ECONNREFUSED Always returned on Rz connections.

File Server Interfaces Y August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.19 RXAFS_GetTime - Get the File Server’s time of day

int RXAFS _GetTime(IN struct rx_connection *a rxConnP,
OUT unsigned