/* * Copyright 2000, International Business Machines Corporation and others. * All Rights Reserved. * * This software has been released under the terms of the IBM Public * License. For details, see the LICENSE file in the top-level source * directory or online at http://www.openafs.org/dl/license10.html */ /* * rx_kcommon.c - Common kernel RX code for all system types. */ #include #include "../afs/param.h" RCSID("$Header$"); #include "../rx/rx_kcommon.h" #ifdef AFS_HPUX110_ENV #include "../h/tihdr.h" #include #endif #include "../afsint/afsint.h" #ifdef AFS_DARWIN60_ENV struct ifnet *rxi_FindIfnet(afs_uint32 addr, struct ifaddr **pifad); #else struct ifnet *rxi_FindIfnet(afs_uint32 addr, struct in_ifaddr **pifad); #endif #ifndef RXK_LISTENER_ENV int (*rxk_PacketArrivalProc)(register struct rx_packet *ahandle, register struct sockaddr_in *afrom, char *arock, afs_int32 asize); /* set to packet allocation procedure */ int (*rxk_GetPacketProc)(char **ahandle, int asize); #endif extern struct interfaceAddr afs_cb_interface; rxk_ports_t rxk_ports; rxk_portRocks_t rxk_portRocks; int rxk_initDone=0; /* add a port to the monitored list, port # is in network order */ static int rxk_AddPort(u_short aport, char * arock) { int i; unsigned short *tsp, ts; int zslot; zslot = -1; /* look for an empty slot simultaneously */ for(i=0,tsp=rxk_ports;i= 0; k--) { buf[k] = val % 10 + '0'; val /= 10; if (val == 0) break; } /* did we finish converting val to string form? */ if (val != 0) { return -2; } /* this should never happen */ if (k < 0) { return -3; } /* this should never happen */ if (k >= len) { return -4; } /* if necessary, relocate string to beginning of buf[] */ if (k > 0) { /* * We need to achieve the effect of calling * * memmove(buf, &buf[k], len - k); * * However, since memmove() is not available in all * kernels, we explicitly do an appropriate copy. */ char *dst = buf; char *src = buf+k; while((*dst++ = *src++) != '\0') continue; } return 0; } /* * osi_AssertFailK() -- used by the osi_Assert() macro. * * It essentially does * * osi_Panic("assertion failed: %s, file: %s, line: %d", expr, file, line); * * Since the kernel version of osi_Panic() only passes its first * argument to the native panic(), we construct a single string and hand * that to osi_Panic(). */ void osi_AssertFailK(const char *expr, const char *file, int line) { static const char msg0[] = "assertion failed: "; static const char msg1[] = ", file: "; static const char msg2[] = ", line: "; static const char msg3[] = "\n"; /* * These buffers add up to 1K, which is a pleasantly nice round * value, but probably not vital. */ char buf[1008]; char linebuf[16]; /* check line number conversion */ if (osi_utoa(linebuf, sizeof linebuf, line) < 0) { osi_Panic("osi_AssertFailK: error in osi_utoa()\n"); } /* okay, panic */ #define ADDBUF(BUF, STR) \ if (strlen(BUF) + strlen((char *)(STR)) + 1 <= sizeof BUF) { \ strcat(BUF, (char *)(STR)); \ } buf[0] = '\0'; ADDBUF(buf, msg0); ADDBUF(buf, expr); ADDBUF(buf, msg1); ADDBUF(buf, file); ADDBUF(buf, msg2); ADDBUF(buf, linebuf); ADDBUF(buf, msg3); #undef ADDBUF osi_Panic(buf); } #ifndef UKERNEL /* This is the server process request loop. Kernel server * processes never become listener threads */ void rx_ServerProc(void) { int threadID; rxi_MorePackets(rx_maxReceiveWindow+2); /* alloc more packets */ rxi_dataQuota += rx_initSendWindow; /* Reserve some pkts for hard times */ /* threadID is used for making decisions in GetCall. Get it by bumping * number of threads handling incoming calls */ threadID = rxi_availProcs++; #ifdef RX_ENABLE_LOCKS AFS_GUNLOCK(); #endif /* RX_ENABLE_LOCKS */ rxi_ServerProc(threadID, NULL, NULL); #ifdef RX_ENABLE_LOCKS AFS_GLOCK(); #endif /* RX_ENABLE_LOCKS */ } #endif /* !UKERNEL */ #ifndef RXK_LISTENER_ENV /* asize includes the Rx header */ static int MyPacketProc(char **ahandle, int asize) { register struct rx_packet *tp; /* If this is larger than we expected, increase rx_maxReceiveDataSize */ /* If we can't scrounge enough cbufs, then we have to drop the packet, * but we should set a flag so we magic up some more at our leisure. */ if ((asize >= 0) && (asize <= RX_MAX_PACKET_SIZE)) { tp = rxi_AllocPacket(RX_PACKET_CLASS_RECEIVE); if (tp && (tp->length + RX_HEADER_SIZE) < asize ) { if (0 < rxi_AllocDataBuf(tp, asize - (tp->length + RX_HEADER_SIZE), RX_PACKET_CLASS_RECV_CBUF)) { rxi_FreePacket(tp); tp = NULL; MUTEX_ENTER(&rx_stats_mutex); rx_stats.noPacketBuffersOnRead++; MUTEX_EXIT(&rx_stats_mutex); } } } else { /* * XXX if packet is too long for our buffer, * should do this at a higher layer and let other * end know we're losing. */ MUTEX_ENTER(&rx_stats_mutex); rx_stats.bogusPacketOnRead++; MUTEX_EXIT(&rx_stats_mutex); /* I DON"T LIKE THIS PRINTF -- PRINTFS MAKE THINGS VERY VERY SLOOWWW */ printf("rx: packet dropped: bad ulen=%d\n", asize); tp = NULL; } if (!tp) return -1; /* otherwise we have a packet, set appropriate values */ *ahandle = (char *) tp; return 0; } static int MyArrivalProc(register struct rx_packet *ahandle, register struct sockaddr_in *afrom, char *arock, afs_int32 asize) { /* handle basic rx packet */ ahandle->length = asize - RX_HEADER_SIZE; rxi_DecodePacketHeader(ahandle); ahandle = rxi_ReceivePacket(ahandle, (struct socket *) arock, afrom->sin_addr.s_addr, afrom->sin_port, NULL, NULL); /* free the packet if it has been returned */ if (ahandle) rxi_FreePacket(ahandle); return 0; } #endif /* !RXK_LISTENER_ENV */ void rxi_StartListener(void) { /* if kernel, give name of appropriate procedures */ #ifndef RXK_LISTENER_ENV rxk_GetPacketProc = MyPacketProc; rxk_PacketArrivalProc = MyArrivalProc; rxk_init(); #endif } /* Called from rxi_FindPeer, when initializing a clear rx_peer structure, to get interesting information. */ void rxi_InitPeerParams(register struct rx_peer *pp) { #ifdef ADAPT_MTU u_short rxmtu; afs_int32 i, mtu; #ifndef AFS_SUN5_ENV #ifdef AFS_USERSPACE_IP_ADDR i = rxi_Findcbi(pp->host); if (i == -1) { pp->timeout.sec = 3; /* pp->timeout.usec = 0; */ pp->ifMTU = RX_REMOTE_PACKET_SIZE; } else { pp->timeout.sec = 2; /* pp->timeout.usec = 0; */ pp->ifMTU = MIN(RX_MAX_PACKET_SIZE, rx_MyMaxSendSize); } if (i != -1) { mtu = ntohl(afs_cb_interface.mtu[i]); /* Diminish the packet size to one based on the MTU given by * the interface. */ if (mtu > (RX_IPUDP_SIZE + RX_HEADER_SIZE)) { rxmtu = mtu - RX_IPUDP_SIZE; if (rxmtu < pp->ifMTU) pp->ifMTU = rxmtu; } } else { /* couldn't find the interface, so assume the worst */ pp->ifMTU = RX_REMOTE_PACKET_SIZE; } #else /* AFS_USERSPACE_IP_ADDR */ #ifdef AFS_DARWIN60_ENV struct ifaddr *ifad = (struct ifaddr *) 0; #else struct in_ifaddr *ifad = (struct in_ifaddr *) 0; #endif struct ifnet *ifn; /* At some time we need to iterate through rxi_FindIfnet() to find the * global maximum. */ ifn = rxi_FindIfnet(pp->host, &ifad); if (ifn == NULL) { /* not local */ pp->timeout.sec = 3; /* pp->timeout.usec = 0; */ pp->ifMTU = RX_REMOTE_PACKET_SIZE; } else { pp->timeout.sec = 2; /* pp->timeout.usec = 0; */ pp->ifMTU = MIN(RX_MAX_PACKET_SIZE, rx_MyMaxSendSize); } if (ifn) { #ifdef IFF_POINTOPOINT if (ifn->if_flags & IFF_POINTOPOINT) { /* wish we knew the bit rate and the chunk size, sigh. */ pp->timeout.sec = 4; pp->ifMTU = RX_PP_PACKET_SIZE; } #endif /* IFF_POINTOPOINT */ /* Diminish the packet size to one based on the MTU given by * the interface. */ if (ifn->if_mtu > (RX_IPUDP_SIZE + RX_HEADER_SIZE)) { rxmtu = ifn->if_mtu - RX_IPUDP_SIZE; if (rxmtu < pp->ifMTU) pp->ifMTU = rxmtu; } } else { /* couldn't find the interface, so assume the worst */ pp->ifMTU = RX_REMOTE_PACKET_SIZE; } #endif/* else AFS_USERSPACE_IP_ADDR */ #else /* AFS_SUN5_ENV */ mtu = rxi_FindIfMTU(pp->host); if (mtu <= 0) { pp->timeout.sec = 3; /* pp->timeout.usec = 0; */ pp->ifMTU = RX_REMOTE_PACKET_SIZE; } else { pp->timeout.sec = 2; /* pp->timeout.usec = 0; */ pp->ifMTU = MIN(RX_MAX_PACKET_SIZE, rx_MyMaxSendSize); } if (mtu > 0) { /* Diminish the packet size to one based on the MTU given by * the interface. */ if (mtu > (RX_IPUDP_SIZE + RX_HEADER_SIZE)) { rxmtu = mtu - RX_IPUDP_SIZE; if (rxmtu < pp->ifMTU) pp->ifMTU = rxmtu; } } else { /* couldn't find the interface, so assume the worst */ pp->ifMTU = RX_REMOTE_PACKET_SIZE; } #endif /* AFS_SUN5_ENV */ #else /* ADAPT_MTU */ pp->rateFlag = 2; /* start timing after two full packets */ pp->timeout.sec = 2; pp->ifMTU = OLD_MAX_PACKET_SIZE; #endif /* else ADAPT_MTU */ pp->ifMTU = rxi_AdjustIfMTU(pp->ifMTU); pp->maxMTU = OLD_MAX_PACKET_SIZE; /* for compatibility with old guys */ pp->natMTU = MIN(pp->ifMTU, OLD_MAX_PACKET_SIZE); pp->ifDgramPackets = MIN(rxi_nDgramPackets, rxi_AdjustDgramPackets(RX_MAX_FRAGS, pp->ifMTU)); pp->maxDgramPackets = 1; /* Initialize slow start parameters */ pp->MTU = MIN(pp->natMTU, pp->maxMTU); pp->cwind = 1; pp->nDgramPackets = 1; pp->congestSeq = 0; } /* The following code is common to several system types, but not all. The * separate ones are found in the system specific subdirectories. */ #if ! defined(AFS_AIX_ENV) && ! defined(AFS_SUN5_ENV) && ! defined(UKERNEL) && ! defined(AFS_LINUX20_ENV) && !defined (AFS_DARWIN_ENV) && !defined (AFS_XBSD_ENV) /* Routine called during the afsd "-shutdown" process to put things back to * the initial state. */ static struct protosw parent_proto; /* udp proto switch */ void shutdown_rxkernel(void) { register struct protosw *tpro, *last; last = inetdomain.dom_protoswNPROTOSW; for (tpro = inetdomain.dom_protosw; tpro < last; tpro++) if (tpro->pr_protocol == IPPROTO_UDP) { /* restore original udp protocol switch */ memcpy((void *)tpro, (void *)&parent_proto, sizeof(parent_proto)); memset((void *)&parent_proto, 0, sizeof(parent_proto)); rxk_initDone = 0; rxk_shutdownPorts(); return; } printf("shutdown_rxkernel: no udp proto"); } #endif /* !AIX && !SUN && !NCR && !UKERNEL */ #if !defined(AFS_SUN5_ENV) && !defined(AFS_SGI62_ENV) /* Determine what the network interfaces are for this machine. */ #define ADDRSPERSITE 16 static afs_uint32 myNetAddrs[ADDRSPERSITE]; static int myNetMTUs[ADDRSPERSITE]; static int numMyNetAddrs = 0; #ifdef AFS_USERSPACE_IP_ADDR int rxi_GetcbiInfo(void) { int i, j, different = 0; int rxmtu, maxmtu; afs_uint32 ifinaddr; afs_uint32 addrs[ADDRSPERSITE]; int mtus[ADDRSPERSITE]; memset((void *)addrs, 0, sizeof(addrs)); memset((void *)mtus, 0, sizeof(mtus)); for (i=0; i rx_maxReceiveSize) ) { rx_maxReceiveSize = MIN( RX_MAX_PACKET_SIZE, maxmtu); rx_maxReceiveSize = MIN( rx_maxReceiveSize, rx_maxReceiveSizeUser); } } rx_maxJumboRecvSize = RX_HEADER_SIZE + ( rxi_nDgramPackets * RX_JUMBOBUFFERSIZE) + ((rxi_nDgramPackets-1) * RX_JUMBOHEADERSIZE); rx_maxJumboRecvSize = MAX(rx_maxJumboRecvSize, rx_maxReceiveSize); if (different) { for (j=0; jifa_addr)) #else /* AFS_AIX41_ENV */ #define IFADDR2SA(f) ((f)->ifa_addr) #endif int rxi_GetIFInfo(void) { int i = 0; int different = 0; register struct ifnet *ifn; register int rxmtu, maxmtu; afs_uint32 addrs[ADDRSPERSITE]; int mtus[ADDRSPERSITE]; struct ifaddr *ifad; /* ifnet points to a if_addrlist of ifaddrs */ afs_uint32 ifinaddr; memset(addrs, 0, sizeof(addrs)); memset(mtus, 0, sizeof(mtus)); #if defined(AFS_DARWIN_ENV) || defined(AFS_XBSD_ENV) TAILQ_FOREACH(ifn, &ifnet, if_link) { if (i >= ADDRSPERSITE) break; #else for (ifn = ifnet; ifn != NULL && i < ADDRSPERSITE; ifn = ifn->if_next) { #endif rxmtu = (ifn->if_mtu - RX_IPUDP_SIZE); #if defined(AFS_DARWIN_ENV) || defined(AFS_XBSD_ENV) TAILQ_FOREACH(ifad, &ifn->if_addrhead, ifa_link) { if (i >= ADDRSPERSITE) break; #else for (ifad = ifn->if_addrlist; ifad != NULL && i < ADDRSPERSITE; ifad = ifad->ifa_next){ #endif if (IFADDR2SA(ifad)->sa_family == AF_INET) { ifinaddr = ntohl(((struct sockaddr_in *) IFADDR2SA(ifad))->sin_addr.s_addr); if (myNetAddrs[i] != ifinaddr) { different++; } mtus[i] = rxmtu; rxmtu = rxi_AdjustIfMTU(rxmtu); maxmtu = rxmtu * rxi_nRecvFrags + ((rxi_nRecvFrags-1) * UDP_HDR_SIZE); maxmtu = rxi_AdjustMaxMTU(rxmtu, maxmtu); addrs[i++] = ifinaddr; if ( ( ifinaddr != 0x7f000001 ) && (maxmtu > rx_maxReceiveSize) ) { rx_maxReceiveSize = MIN( RX_MAX_PACKET_SIZE, maxmtu); rx_maxReceiveSize = MIN( rx_maxReceiveSize, rx_maxReceiveSizeUser); } } } } rx_maxJumboRecvSize = RX_HEADER_SIZE + rxi_nDgramPackets * RX_JUMBOBUFFERSIZE + (rxi_nDgramPackets-1) * RX_JUMBOHEADERSIZE; rx_maxJumboRecvSize = MAX(rx_maxJumboRecvSize, rx_maxReceiveSize); if (different) { int j; for (j=0; j< i; j++) { myNetMTUs[j] = mtus[j]; myNetAddrs[j] = addrs[j]; } } return different; } #ifdef AFS_DARWIN60_ENV /* Returns ifnet which best matches address */ struct ifnet * rxi_FindIfnet(addr, pifad) afs_uint32 addr; struct ifaddr **pifad; { struct sockaddr_in s; if (numMyNetAddrs == 0) (void) rxi_GetIFInfo(); s.sin_family=AF_INET; s.sin_addr.s_addr=addr; *pifad=ifa_ifwithnet((struct sockaddr *)&s); done: return (*pifad ? (*pifad)->ifa_ifp : NULL ); } #else /* Returns ifnet which best matches address */ struct ifnet *rxi_FindIfnet(afs_uint32 addr, struct in_ifaddr **pifad) { afs_uint32 ppaddr; int match_value = 0; extern struct in_ifaddr *in_ifaddr; struct in_ifaddr *ifa; struct sockaddr_in *sin; if (numMyNetAddrs == 0) (void) rxi_GetIFInfo(); ppaddr = ntohl(addr); /* if we're given an address, skip everything until we find it */ if (!*pifad) #if defined(AFS_DARWIN_ENV) || defined(AFS_XBSD_ENV) *pifad = TAILQ_FIRST(&in_ifaddrhead); #else *pifad = in_ifaddr; #endif else { if (((ppaddr & (*pifad)->ia_subnetmask) == (*pifad)->ia_subnet)) match_value = 2; /* don't find matching nets, just subnets */ #if defined(AFS_DARWIN_ENV) || defined(AFS_XBSD_ENV) *pifad = TAILQ_NEXT(*pifad, ia_link); #else *pifad = (*pifad)->ia_next; #endif } #if defined(AFS_DARWIN_ENV) || defined(AFS_XBSD_ENV) for (ifa = *pifad; ifa; ifa = TAILQ_NEXT(ifa, ia_link) ) { #else for (ifa = *pifad; ifa; ifa = ifa->ia_next ) { #endif if ((ppaddr & ifa->ia_netmask) == ifa->ia_net) { if ((ppaddr & ifa->ia_subnetmask) == ifa->ia_subnet) { sin=IA_SIN(ifa); if ( sin->sin_addr.s_addr == ppaddr) { /* ie, ME!!! */ match_value = 4; *pifad = ifa; goto done; } if (match_value < 3) { *pifad = ifa; match_value = 3; } } else { if (match_value < 2) { *pifad = ifa; match_value = 2; } } } /* if net matches */ } /* for all in_ifaddrs */ done: return (*pifad ? (*pifad)->ia_ifp : NULL ); } #endif #endif /* else AFS_USERSPACE_IP_ADDR */ #endif /* !SUN5 && !SGI62 */ /* rxk_NewSocket, rxk_FreeSocket and osi_NetSend are from the now defunct * afs_osinet.c. One could argue that rxi_NewSocket could go into the * system specific subdirectories for all systems. But for the moment, * most of it is simple to follow common code. */ #if !defined(UKERNEL) #if !defined(AFS_SUN5_ENV) && !defined(AFS_LINUX20_ENV) /* rxk_NewSocket creates a new socket on the specified port. The port is * in network byte order. */ struct osi_socket *rxk_NewSocket(short aport) { register afs_int32 code; struct socket *newSocket; register struct mbuf *nam; struct sockaddr_in myaddr; int wow; #ifdef AFS_HPUX110_ENV /* prototype copied from kernel source file streams/str_proto.h */ extern MBLKP allocb_wait(int, int); MBLKP bindnam; int addrsize = sizeof(struct sockaddr_in); #endif #ifdef AFS_SGI65_ENV bhv_desc_t bhv; #endif AFS_STATCNT(osi_NewSocket); #if (defined(AFS_DARWIN_ENV) || defined(AFS_XBSD_ENV)) && defined(KERNEL_FUNNEL) thread_funnel_switch(KERNEL_FUNNEL, NETWORK_FUNNEL); #endif #if defined(AFS_HPUX102_ENV) #if defined(AFS_HPUX110_ENV) /* blocking socket */ code = socreate(AF_INET, &newSocket, SOCK_DGRAM, 0, 0); #else /* AFS_HPUX110_ENV */ code = socreate(AF_INET, &newSocket, SOCK_DGRAM, 0, SS_NOWAIT); #endif /* else AFS_HPUX110_ENV */ #else #ifdef AFS_SGI65_ENV code = socreate(AF_INET, &newSocket, SOCK_DGRAM,IPPROTO_UDP); #elif defined(AFS_XBSD_ENV) code = socreate(AF_INET, &newSocket, SOCK_DGRAM,IPPROTO_UDP, curproc); #else code = socreate(AF_INET, &newSocket, SOCK_DGRAM, 0); #endif /* AFS_SGI65_ENV */ #endif /* AFS_HPUX102_ENV */ if (code) goto bad; myaddr.sin_family = AF_INET; myaddr.sin_port = aport; myaddr.sin_addr.s_addr = 0; #ifdef STRUCT_SOCKADDR_HAS_SA_LEN myaddr.sin_len = sizeof(myaddr); #endif #ifdef AFS_HPUX110_ENV bindnam = allocb_wait((addrsize+SO_MSGOFFSET+1), BPRI_MED); if (!bindnam) { setuerror(ENOBUFS); goto bad; } memcpy((caddr_t)bindnam->b_rptr+SO_MSGOFFSET, (caddr_t)&myaddr, addrsize); bindnam->b_wptr = bindnam->b_rptr + (addrsize+SO_MSGOFFSET+1); code = sobind(newSocket, bindnam, addrsize); if (code) { soclose(newSocket); m_freem(nam); goto bad; } freeb(bindnam); #else /* AFS_HPUX110_ENV */ code = soreserve(newSocket, 50000, 50000); if (code) { code = soreserve(newSocket, 32766, 32766); if (code) osi_Panic("osi_NewSocket: last attempt to reserve 32K failed!\n"); } #if defined(AFS_DARWIN_ENV) || defined(AFS_XBSD_ENV) #if defined(AFS_XBSD_ENV) code = sobind(newSocket, (struct sockaddr *)&myaddr, curproc); #else code = sobind(newSocket, (struct sockaddr *)&myaddr); #endif if (code) { printf("sobind fails\n"); soclose(newSocket); goto bad; } #else #ifdef AFS_OSF_ENV nam = m_getclr(M_WAIT, MT_SONAME); #else /* AFS_OSF_ENV */ nam = m_get(M_WAIT, MT_SONAME); #endif if (nam == NULL) { #if !defined(AFS_SUN5_ENV) && !defined(AFS_OSF_ENV) && !defined(AFS_SGI64_ENV) && !defined(AFS_XBSD_ENV) setuerror(ENOBUFS); #endif goto bad; } nam->m_len = sizeof(myaddr); #ifdef AFS_OSF_ENV myaddr.sin_len = nam->m_len; #endif /* AFS_OSF_ENV */ memcpy(mtod(nam, caddr_t), &myaddr, sizeof(myaddr)); #ifdef AFS_SGI65_ENV BHV_PDATA(&bhv) = (void*)newSocket; code = sobind(&bhv, nam); m_freem(nam); #elif defined(AFS_XBSD_ENV) code = sobind(newSocket, nam, curproc); #else code = sobind(newSocket, nam); #endif if (code) { soclose(newSocket); #ifndef AFS_SGI65_ENV m_freem(nam); #endif goto bad; } #endif /* else AFS_DARWIN_ENV */ #endif /* else AFS_HPUX110_ENV */ #if defined(AFS_DARWIN_ENV) && defined(KERNEL_FUNNEL) thread_funnel_switch(NETWORK_FUNNEL, KERNEL_FUNNEL); #endif return (struct osi_socket *) newSocket; bad: #if defined(AFS_DARWIN_ENV) && defined(KERNEL_FUNNEL) thread_funnel_switch(NETWORK_FUNNEL, KERNEL_FUNNEL); #endif return (struct osi_socket *) 0; } /* free socket allocated by rxk_NewSocket */ int rxk_FreeSocket(register struct socket *asocket) { AFS_STATCNT(osi_FreeSocket); #if defined(AFS_DARWIN_ENV) && defined(KERNEL_FUNNEL) thread_funnel_switch(KERNEL_FUNNEL, NETWORK_FUNNEL); #endif soclose(asocket); #if defined(AFS_DARWIN_ENV) && defined(KERNEL_FUNNEL) thread_funnel_switch(NETWORK_FUNNEL, KERNEL_FUNNEL); #endif return 0; } #endif /* !SUN5 && !LINUX20 */ #if defined(RXK_LISTENER_ENV) || defined(AFS_SUN5_ENV) /* * Run RX event daemon every second (5 times faster than rest of systems) */ void afs_rxevent_daemon(void) { struct clock temp; SPLVAR; while (1) { #ifdef RX_ENABLE_LOCKS AFS_GUNLOCK(); #endif /* RX_ENABLE_LOCKS */ NETPRI; AFS_RXGLOCK(); rxevent_RaiseEvents(&temp); AFS_RXGUNLOCK(); USERPRI; #ifdef RX_ENABLE_LOCKS AFS_GLOCK(); #endif /* RX_ENABLE_LOCKS */ afs_osi_Wait(500, NULL, 0); if (afs_termState == AFSOP_STOP_RXEVENT ) { #ifdef RXK_LISTENER_ENV afs_termState = AFSOP_STOP_RXK_LISTENER; #else afs_termState = AFSOP_STOP_COMPLETE; #endif afs_osi_Wakeup(&afs_termState); return; } } } #endif #ifdef RXK_LISTENER_ENV /* rxk_ReadPacket returns 1 if valid packet, 0 on error. */ int rxk_ReadPacket(osi_socket so, struct rx_packet *p, int *host, int *port) { int code; struct sockaddr_in from; int nbytes; afs_int32 rlen; register afs_int32 tlen; afs_int32 savelen; /* was using rlen but had aliasing problems */ rx_computelen(p, tlen); rx_SetDataSize(p, tlen); /* this is the size of the user data area */ tlen += RX_HEADER_SIZE; /* now this is the size of the entire packet */ rlen = rx_maxJumboRecvSize; /* this is what I am advertising. Only check * it once in order to avoid races. */ tlen = rlen - tlen; if (tlen > 0) { tlen = rxi_AllocDataBuf(p, tlen, RX_PACKET_CLASS_RECV_CBUF); if (tlen >0) { tlen = rlen - tlen; } else tlen = rlen; } else tlen = rlen; /* add some padding to the last iovec, it's just to make sure that the * read doesn't return more data than we expect, and is done to get around * our problems caused by the lack of a length field in the rx header. */ savelen = p->wirevec[p->niovecs-1].iov_len; p->wirevec[p->niovecs-1].iov_len = savelen + RX_EXTRABUFFERSIZE; nbytes = tlen + sizeof(afs_int32); code = osi_NetReceive(rx_socket, &from, p->wirevec, p->niovecs, &nbytes); /* restore the vec to its correct state */ p->wirevec[p->niovecs-1].iov_len = savelen; if (!code) { p->length = nbytes - RX_HEADER_SIZE;; if ((nbytes > tlen) || (p->length & 0x8000)) { /* Bogus packet */ if (nbytes > 0) rxi_MorePackets(rx_initSendWindow); else { MUTEX_ENTER(&rx_stats_mutex); rx_stats.bogusPacketOnRead++; rx_stats.bogusHost = from.sin_addr.s_addr; MUTEX_EXIT(&rx_stats_mutex); dpf(("B: bogus packet from [%x,%d] nb=%d", from.sin_addr.s_addr, from.sin_port,nbytes)); } return -1; } else { /* Extract packet header. */ rxi_DecodePacketHeader(p); *host = from.sin_addr.s_addr; *port = from.sin_port; if (p->header.type > 0 && p->header.type < RX_N_PACKET_TYPES) { MUTEX_ENTER(&rx_stats_mutex); rx_stats.packetsRead[p->header.type-1]++; MUTEX_EXIT(&rx_stats_mutex); } /* Free any empty packet buffers at the end of this packet */ rxi_TrimDataBufs(p, 1); return 0; } } else return code; } /* rxk_Listener() * * Listen for packets on socket. This thread is typically started after * rx_Init has called rxi_StartListener(), but nevertheless, ensures that * the start state is set before proceeding. * * Note that this thread is outside the AFS global lock for much of * it's existence. * * In many OS's, the socket receive code sleeps interruptibly. That's not what * we want here. So we need to either block all signals (including SIGKILL * and SIGSTOP) or reset the thread's signal state to unsignalled when the * OS's socket receive routine returns as a result of a signal. */ int rxk_ListenerPid; /* Used to signal process to wakeup at shutdown */ #ifdef AFS_SUN5_ENV /* * Run the listener as a kernel thread. */ void rxk_Listener(void) { extern id_t syscid; void rxk_ListenerProc(void); if (thread_create(NULL, DEFAULTSTKSZ, rxk_ListenerProc, 0, 0, &p0, TS_RUN, minclsyspri) == NULL) osi_Panic("rxk_Listener: failed to start listener thread!\n"); } void rxk_ListenerProc(void) #else /* AFS_SUN5_ENV */ void rxk_Listener(void) #endif /* AFS_SUN5_ENV */ { struct rx_packet *rxp = NULL; int code; int host, port; #ifdef AFS_LINUX20_ENV rxk_ListenerPid = current->pid; #endif #ifdef AFS_SUN5_ENV rxk_ListenerPid = 1; /* No PID, just a flag that we're alive */ #endif /* AFS_SUN5_ENV */ #ifdef AFS_FBSD_ENV rxk_ListenerPid = curproc->p_pid; #endif /* AFS_FBSD_ENV */ #if defined(AFS_DARWIN_ENV) rxk_ListenerPid = current_proc()->p_pid; #endif #if defined(RX_ENABLE_LOCKS) && !defined(AFS_SUN5_ENV) AFS_GUNLOCK(); #endif /* RX_ENABLE_LOCKS && !AFS_SUN5_ENV */ while (afs_termState != AFSOP_STOP_RXK_LISTENER) { if (rxp) { rxi_RestoreDataBufs(rxp); } else { rxp = rxi_AllocPacket(RX_PACKET_CLASS_RECEIVE); if (!rxp) osi_Panic("rxk_Listener: No more Rx buffers!\n"); } if (!(code = rxk_ReadPacket(rx_socket, rxp, &host, &port))) { AFS_RXGLOCK(); rxp = rxi_ReceivePacket(rxp, rx_socket, host, port, 0, 0); AFS_RXGUNLOCK(); } } #ifdef RX_ENABLE_LOCKS AFS_GLOCK(); #endif /* RX_ENABLE_LOCKS */ if (afs_termState == AFSOP_STOP_RXK_LISTENER) { afs_termState = AFSOP_STOP_COMPLETE; afs_osi_Wakeup(&afs_termState); } rxk_ListenerPid = 0; #if defined(AFS_LINUX22_ENV) || defined(AFS_SUN5_ENV) afs_osi_Wakeup(&rxk_ListenerPid); #endif #ifdef AFS_SUN5_ENV AFS_GUNLOCK(); #endif /* AFS_SUN5_ENV */ } #if !defined(AFS_LINUX20_ENV) && !defined(AFS_SUN5_ENV) && !defined(AFS_DARWIN_ENV) && !defined(AFS_XBSD_ENV) /* The manner of stopping the rx listener thread may vary. Most unix's should * be able to call soclose. */ void osi_StopListener(void) { soclose(rx_socket); } #endif #endif /* RXK_LISTENER_ENV */ #endif /* !NCR && !UKERNEL */