/* * Copyright (c) 1995 - 2000 Kungliga Tekniska Högskolan * (Royal Institute of Technology, Stockholm, Sweden). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #ifdef KERNEL #include "afs/param.h" #else #include #endif RCSID("$Header$"); #define DEBUG 0 #ifdef KERNEL #ifndef UKERNEL #include "afs/stds.h" #include "h/types.h" #if !defined(AFS_LINUX20_ENV) && !defined(AFS_OBSD_ENV) #include "netinet/in.h" #endif #else /* UKERNEL */ #include "afs/sysincludes.h" #include "afs/stds.h" #endif /* UKERNEL */ #ifdef AFS_LINUX22_ENV #include #endif #include "afs/longc_procs.h" #else /* KERNEL */ #include #include #ifdef AFS_NT40_ENV #include #else #include #endif #include #endif /* KERNEL */ #include "fcrypt.h" #include "rxkad.h" #include "fcrypt.h" #undef WORDS_BIGENDIAN #ifdef AFSBIG_ENDIAN #define WORDS_BIGENDIAN 1 #endif /* * Unrolling of the inner loops helps the most on pentium chips * (ca 18%). On risc machines only expect a modest improvement (ca 5%). * The cost for this is rougly 4k bytes. */ #define UNROLL_LOOPS 1 /* * Inline assembler gives a boost only to fc_keysched. * On the pentium expect ca 28%. */ /*#define GNU_ASM 1 (now autoconfed) */ #if !defined(inline) && !defined(__GNUC__) #define inline #endif /* * There is usually no memcpy in kernels but gcc will inline all * calls to memcpy in this code anyway. */ #if defined(KERNEL) && !defined(__GNUC__) #define memcpy(to, from, n) bcopy((from), (to), (n)) #endif /* Rotate 32 bit word left */ #define ROT32L(x, n) ((((afs_uint32) x) << (n)) | (((afs_uint32) x) >> (32-(n)))) #define bswap32(x) (((ROT32L(x, 16) & 0x00ff00ff)<<8) | ((ROT32L(x, 16)>>8) & 0x00ff00ff)) #if WORDS_BIGENDIAN #define NTOH(x) (x) #else #define NTOH(x) bswap32(x) #endif /* * Try to use a good function for ntohl-ing. * * The choice is done by autoconf setting EFF_NTOHL to one of: * CPU function * i386 ntohl * i[4-9]86 bswap * alpha bswap32 * all else ntohl */ #define EFF_NTOHL(x) ntohl(x) #if 0 #if defined(__GNUC__) && (defined(i386) || defined(__i386__)) static inline afs_uint32 bswap(afs_uint32 x) { asm("bswap %0" : "=r" (x) : "0" (x)); return x; } #endif #endif /* * Sboxes for Feistel network derived from * /afs/transarc.com/public/afsps/afs.rel31b.export-src/rxkad/sboxes.h */ #undef Z #define Z(x) NTOH(x << 3) static const afs_uint32 sbox0[256] = { Z(0xea), Z(0x7f), Z(0xb2), Z(0x64), Z(0x9d), Z(0xb0), Z(0xd9), Z(0x11), Z(0xcd), Z(0x86), Z(0x86), Z(0x91), Z(0x0a), Z(0xb2), Z(0x93), Z(0x06), Z(0x0e), Z(0x06), Z(0xd2), Z(0x65), Z(0x73), Z(0xc5), Z(0x28), Z(0x60), Z(0xf2), Z(0x20), Z(0xb5), Z(0x38), Z(0x7e), Z(0xda), Z(0x9f), Z(0xe3), Z(0xd2), Z(0xcf), Z(0xc4), Z(0x3c), Z(0x61), Z(0xff), Z(0x4a), Z(0x4a), Z(0x35), Z(0xac), Z(0xaa), Z(0x5f), Z(0x2b), Z(0xbb), Z(0xbc), Z(0x53), Z(0x4e), Z(0x9d), Z(0x78), Z(0xa3), Z(0xdc), Z(0x09), Z(0x32), Z(0x10), Z(0xc6), Z(0x6f), Z(0x66), Z(0xd6), Z(0xab), Z(0xa9), Z(0xaf), Z(0xfd), Z(0x3b), Z(0x95), Z(0xe8), Z(0x34), Z(0x9a), Z(0x81), Z(0x72), Z(0x80), Z(0x9c), Z(0xf3), Z(0xec), Z(0xda), Z(0x9f), Z(0x26), Z(0x76), Z(0x15), Z(0x3e), Z(0x55), Z(0x4d), Z(0xde), Z(0x84), Z(0xee), Z(0xad), Z(0xc7), Z(0xf1), Z(0x6b), Z(0x3d), Z(0xd3), Z(0x04), Z(0x49), Z(0xaa), Z(0x24), Z(0x0b), Z(0x8a), Z(0x83), Z(0xba), Z(0xfa), Z(0x85), Z(0xa0), Z(0xa8), Z(0xb1), Z(0xd4), Z(0x01), Z(0xd8), Z(0x70), Z(0x64), Z(0xf0), Z(0x51), Z(0xd2), Z(0xc3), Z(0xa7), Z(0x75), Z(0x8c), Z(0xa5), Z(0x64), Z(0xef), Z(0x10), Z(0x4e), Z(0xb7), Z(0xc6), Z(0x61), Z(0x03), Z(0xeb), Z(0x44), Z(0x3d), Z(0xe5), Z(0xb3), Z(0x5b), Z(0xae), Z(0xd5), Z(0xad), Z(0x1d), Z(0xfa), Z(0x5a), Z(0x1e), Z(0x33), Z(0xab), Z(0x93), Z(0xa2), Z(0xb7), Z(0xe7), Z(0xa8), Z(0x45), Z(0xa4), Z(0xcd), Z(0x29), Z(0x63), Z(0x44), Z(0xb6), Z(0x69), Z(0x7e), Z(0x2e), Z(0x62), Z(0x03), Z(0xc8), Z(0xe0), Z(0x17), Z(0xbb), Z(0xc7), Z(0xf3), Z(0x3f), Z(0x36), Z(0xba), Z(0x71), Z(0x8e), Z(0x97), Z(0x65), Z(0x60), Z(0x69), Z(0xb6), Z(0xf6), Z(0xe6), Z(0x6e), Z(0xe0), Z(0x81), Z(0x59), Z(0xe8), Z(0xaf), Z(0xdd), Z(0x95), Z(0x22), Z(0x99), Z(0xfd), Z(0x63), Z(0x19), Z(0x74), Z(0x61), Z(0xb1), Z(0xb6), Z(0x5b), Z(0xae), Z(0x54), Z(0xb3), Z(0x70), Z(0xff), Z(0xc6), Z(0x3b), Z(0x3e), Z(0xc1), Z(0xd7), Z(0xe1), Z(0x0e), Z(0x76), Z(0xe5), Z(0x36), Z(0x4f), Z(0x59), Z(0xc7), Z(0x08), Z(0x6e), Z(0x82), Z(0xa6), Z(0x93), Z(0xc4), Z(0xaa), Z(0x26), Z(0x49), Z(0xe0), Z(0x21), Z(0x64), Z(0x07), Z(0x9f), Z(0x64), Z(0x81), Z(0x9c), Z(0xbf), Z(0xf9), Z(0xd1), Z(0x43), Z(0xf8), Z(0xb6), Z(0xb9), Z(0xf1), Z(0x24), Z(0x75), Z(0x03), Z(0xe4), Z(0xb0), Z(0x99), Z(0x46), Z(0x3d), Z(0xf5), Z(0xd1), Z(0x39), Z(0x72), Z(0x12), Z(0xf6), Z(0xba), Z(0x0c), Z(0x0d), Z(0x42), Z(0x2e)}; #undef Z #define Z(x) NTOH((x << 27) | (x >> 5)) static const afs_uint32 sbox1[256] = { Z(0x77), Z(0x14), Z(0xa6), Z(0xfe), Z(0xb2), Z(0x5e), Z(0x8c), Z(0x3e), Z(0x67), Z(0x6c), Z(0xa1), Z(0x0d), Z(0xc2), Z(0xa2), Z(0xc1), Z(0x85), Z(0x6c), Z(0x7b), Z(0x67), Z(0xc6), Z(0x23), Z(0xe3), Z(0xf2), Z(0x89), Z(0x50), Z(0x9c), Z(0x03), Z(0xb7), Z(0x73), Z(0xe6), Z(0xe1), Z(0x39), Z(0x31), Z(0x2c), Z(0x27), Z(0x9f), Z(0xa5), Z(0x69), Z(0x44), Z(0xd6), Z(0x23), Z(0x83), Z(0x98), Z(0x7d), Z(0x3c), Z(0xb4), Z(0x2d), Z(0x99), Z(0x1c), Z(0x1f), Z(0x8c), Z(0x20), Z(0x03), Z(0x7c), Z(0x5f), Z(0xad), Z(0xf4), Z(0xfa), Z(0x95), Z(0xca), Z(0x76), Z(0x44), Z(0xcd), Z(0xb6), Z(0xb8), Z(0xa1), Z(0xa1), Z(0xbe), Z(0x9e), Z(0x54), Z(0x8f), Z(0x0b), Z(0x16), Z(0x74), Z(0x31), Z(0x8a), Z(0x23), Z(0x17), Z(0x04), Z(0xfa), Z(0x79), Z(0x84), Z(0xb1), Z(0xf5), Z(0x13), Z(0xab), Z(0xb5), Z(0x2e), Z(0xaa), Z(0x0c), Z(0x60), Z(0x6b), Z(0x5b), Z(0xc4), Z(0x4b), Z(0xbc), Z(0xe2), Z(0xaf), Z(0x45), Z(0x73), Z(0xfa), Z(0xc9), Z(0x49), Z(0xcd), Z(0x00), Z(0x92), Z(0x7d), Z(0x97), Z(0x7a), Z(0x18), Z(0x60), Z(0x3d), Z(0xcf), Z(0x5b), Z(0xde), Z(0xc6), Z(0xe2), Z(0xe6), Z(0xbb), Z(0x8b), Z(0x06), Z(0xda), Z(0x08), Z(0x15), Z(0x1b), Z(0x88), Z(0x6a), Z(0x17), Z(0x89), Z(0xd0), Z(0xa9), Z(0xc1), Z(0xc9), Z(0x70), Z(0x6b), Z(0xe5), Z(0x43), Z(0xf4), Z(0x68), Z(0xc8), Z(0xd3), Z(0x84), Z(0x28), Z(0x0a), Z(0x52), Z(0x66), Z(0xa3), Z(0xca), Z(0xf2), Z(0xe3), Z(0x7f), Z(0x7a), Z(0x31), Z(0xf7), Z(0x88), Z(0x94), Z(0x5e), Z(0x9c), Z(0x63), Z(0xd5), Z(0x24), Z(0x66), Z(0xfc), Z(0xb3), Z(0x57), Z(0x25), Z(0xbe), Z(0x89), Z(0x44), Z(0xc4), Z(0xe0), Z(0x8f), Z(0x23), Z(0x3c), Z(0x12), Z(0x52), Z(0xf5), Z(0x1e), Z(0xf4), Z(0xcb), Z(0x18), Z(0x33), Z(0x1f), Z(0xf8), Z(0x69), Z(0x10), Z(0x9d), Z(0xd3), Z(0xf7), Z(0x28), Z(0xf8), Z(0x30), Z(0x05), Z(0x5e), Z(0x32), Z(0xc0), Z(0xd5), Z(0x19), Z(0xbd), Z(0x45), Z(0x8b), Z(0x5b), Z(0xfd), Z(0xbc), Z(0xe2), Z(0x5c), Z(0xa9), Z(0x96), Z(0xef), Z(0x70), Z(0xcf), Z(0xc2), Z(0x2a), Z(0xb3), Z(0x61), Z(0xad), Z(0x80), Z(0x48), Z(0x81), Z(0xb7), Z(0x1d), Z(0x43), Z(0xd9), Z(0xd7), Z(0x45), Z(0xf0), Z(0xd8), Z(0x8a), Z(0x59), Z(0x7c), Z(0x57), Z(0xc1), Z(0x79), Z(0xc7), Z(0x34), Z(0xd6), Z(0x43), Z(0xdf), Z(0xe4), Z(0x78), Z(0x16), Z(0x06), Z(0xda), Z(0x92), Z(0x76), Z(0x51), Z(0xe1), Z(0xd4), Z(0x70), Z(0x03), Z(0xe0), Z(0x2f), Z(0x96), Z(0x91), Z(0x82), Z(0x80)}; #undef Z #define Z(x) NTOH(x << 11) static const afs_uint32 sbox2[256] = { Z(0xf0), Z(0x37), Z(0x24), Z(0x53), Z(0x2a), Z(0x03), Z(0x83), Z(0x86), Z(0xd1), Z(0xec), Z(0x50), Z(0xf0), Z(0x42), Z(0x78), Z(0x2f), Z(0x6d), Z(0xbf), Z(0x80), Z(0x87), Z(0x27), Z(0x95), Z(0xe2), Z(0xc5), Z(0x5d), Z(0xf9), Z(0x6f), Z(0xdb), Z(0xb4), Z(0x65), Z(0x6e), Z(0xe7), Z(0x24), Z(0xc8), Z(0x1a), Z(0xbb), Z(0x49), Z(0xb5), Z(0x0a), Z(0x7d), Z(0xb9), Z(0xe8), Z(0xdc), Z(0xb7), Z(0xd9), Z(0x45), Z(0x20), Z(0x1b), Z(0xce), Z(0x59), Z(0x9d), Z(0x6b), Z(0xbd), Z(0x0e), Z(0x8f), Z(0xa3), Z(0xa9), Z(0xbc), Z(0x74), Z(0xa6), Z(0xf6), Z(0x7f), Z(0x5f), Z(0xb1), Z(0x68), Z(0x84), Z(0xbc), Z(0xa9), Z(0xfd), Z(0x55), Z(0x50), Z(0xe9), Z(0xb6), Z(0x13), Z(0x5e), Z(0x07), Z(0xb8), Z(0x95), Z(0x02), Z(0xc0), Z(0xd0), Z(0x6a), Z(0x1a), Z(0x85), Z(0xbd), Z(0xb6), Z(0xfd), Z(0xfe), Z(0x17), Z(0x3f), Z(0x09), Z(0xa3), Z(0x8d), Z(0xfb), Z(0xed), Z(0xda), Z(0x1d), Z(0x6d), Z(0x1c), Z(0x6c), Z(0x01), Z(0x5a), Z(0xe5), Z(0x71), Z(0x3e), Z(0x8b), Z(0x6b), Z(0xbe), Z(0x29), Z(0xeb), Z(0x12), Z(0x19), Z(0x34), Z(0xcd), Z(0xb3), Z(0xbd), Z(0x35), Z(0xea), Z(0x4b), Z(0xd5), Z(0xae), Z(0x2a), Z(0x79), Z(0x5a), Z(0xa5), Z(0x32), Z(0x12), Z(0x7b), Z(0xdc), Z(0x2c), Z(0xd0), Z(0x22), Z(0x4b), Z(0xb1), Z(0x85), Z(0x59), Z(0x80), Z(0xc0), Z(0x30), Z(0x9f), Z(0x73), Z(0xd3), Z(0x14), Z(0x48), Z(0x40), Z(0x07), Z(0x2d), Z(0x8f), Z(0x80), Z(0x0f), Z(0xce), Z(0x0b), Z(0x5e), Z(0xb7), Z(0x5e), Z(0xac), Z(0x24), Z(0x94), Z(0x4a), Z(0x18), Z(0x15), Z(0x05), Z(0xe8), Z(0x02), Z(0x77), Z(0xa9), Z(0xc7), Z(0x40), Z(0x45), Z(0x89), Z(0xd1), Z(0xea), Z(0xde), Z(0x0c), Z(0x79), Z(0x2a), Z(0x99), Z(0x6c), Z(0x3e), Z(0x95), Z(0xdd), Z(0x8c), Z(0x7d), Z(0xad), Z(0x6f), Z(0xdc), Z(0xff), Z(0xfd), Z(0x62), Z(0x47), Z(0xb3), Z(0x21), Z(0x8a), Z(0xec), Z(0x8e), Z(0x19), Z(0x18), Z(0xb4), Z(0x6e), Z(0x3d), Z(0xfd), Z(0x74), Z(0x54), Z(0x1e), Z(0x04), Z(0x85), Z(0xd8), Z(0xbc), Z(0x1f), Z(0x56), Z(0xe7), Z(0x3a), Z(0x56), Z(0x67), Z(0xd6), Z(0xc8), Z(0xa5), Z(0xf3), Z(0x8e), Z(0xde), Z(0xae), Z(0x37), Z(0x49), Z(0xb7), Z(0xfa), Z(0xc8), Z(0xf4), Z(0x1f), Z(0xe0), Z(0x2a), Z(0x9b), Z(0x15), Z(0xd1), Z(0x34), Z(0x0e), Z(0xb5), Z(0xe0), Z(0x44), Z(0x78), Z(0x84), Z(0x59), Z(0x56), Z(0x68), Z(0x77), Z(0xa5), Z(0x14), Z(0x06), Z(0xf5), Z(0x2f), Z(0x8c), Z(0x8a), Z(0x73), Z(0x80), Z(0x76), Z(0xb4), Z(0x10), Z(0x86)}; #undef Z #define Z(x) NTOH(x << 19) static const afs_uint32 sbox3[256] = { Z(0xa9), Z(0x2a), Z(0x48), Z(0x51), Z(0x84), Z(0x7e), Z(0x49), Z(0xe2), Z(0xb5), Z(0xb7), Z(0x42), Z(0x33), Z(0x7d), Z(0x5d), Z(0xa6), Z(0x12), Z(0x44), Z(0x48), Z(0x6d), Z(0x28), Z(0xaa), Z(0x20), Z(0x6d), Z(0x57), Z(0xd6), Z(0x6b), Z(0x5d), Z(0x72), Z(0xf0), Z(0x92), Z(0x5a), Z(0x1b), Z(0x53), Z(0x80), Z(0x24), Z(0x70), Z(0x9a), Z(0xcc), Z(0xa7), Z(0x66), Z(0xa1), Z(0x01), Z(0xa5), Z(0x41), Z(0x97), Z(0x41), Z(0x31), Z(0x82), Z(0xf1), Z(0x14), Z(0xcf), Z(0x53), Z(0x0d), Z(0xa0), Z(0x10), Z(0xcc), Z(0x2a), Z(0x7d), Z(0xd2), Z(0xbf), Z(0x4b), Z(0x1a), Z(0xdb), Z(0x16), Z(0x47), Z(0xf6), Z(0x51), Z(0x36), Z(0xed), Z(0xf3), Z(0xb9), Z(0x1a), Z(0xa7), Z(0xdf), Z(0x29), Z(0x43), Z(0x01), Z(0x54), Z(0x70), Z(0xa4), Z(0xbf), Z(0xd4), Z(0x0b), Z(0x53), Z(0x44), Z(0x60), Z(0x9e), Z(0x23), Z(0xa1), Z(0x18), Z(0x68), Z(0x4f), Z(0xf0), Z(0x2f), Z(0x82), Z(0xc2), Z(0x2a), Z(0x41), Z(0xb2), Z(0x42), Z(0x0c), Z(0xed), Z(0x0c), Z(0x1d), Z(0x13), Z(0x3a), Z(0x3c), Z(0x6e), Z(0x35), Z(0xdc), Z(0x60), Z(0x65), Z(0x85), Z(0xe9), Z(0x64), Z(0x02), Z(0x9a), Z(0x3f), Z(0x9f), Z(0x87), Z(0x96), Z(0xdf), Z(0xbe), Z(0xf2), Z(0xcb), Z(0xe5), Z(0x6c), Z(0xd4), Z(0x5a), Z(0x83), Z(0xbf), Z(0x92), Z(0x1b), Z(0x94), Z(0x00), Z(0x42), Z(0xcf), Z(0x4b), Z(0x00), Z(0x75), Z(0xba), Z(0x8f), Z(0x76), Z(0x5f), Z(0x5d), Z(0x3a), Z(0x4d), Z(0x09), Z(0x12), Z(0x08), Z(0x38), Z(0x95), Z(0x17), Z(0xe4), Z(0x01), Z(0x1d), Z(0x4c), Z(0xa9), Z(0xcc), Z(0x85), Z(0x82), Z(0x4c), Z(0x9d), Z(0x2f), Z(0x3b), Z(0x66), Z(0xa1), Z(0x34), Z(0x10), Z(0xcd), Z(0x59), Z(0x89), Z(0xa5), Z(0x31), Z(0xcf), Z(0x05), Z(0xc8), Z(0x84), Z(0xfa), Z(0xc7), Z(0xba), Z(0x4e), Z(0x8b), Z(0x1a), Z(0x19), Z(0xf1), Z(0xa1), Z(0x3b), Z(0x18), Z(0x12), Z(0x17), Z(0xb0), Z(0x98), Z(0x8d), Z(0x0b), Z(0x23), Z(0xc3), Z(0x3a), Z(0x2d), Z(0x20), Z(0xdf), Z(0x13), Z(0xa0), Z(0xa8), Z(0x4c), Z(0x0d), Z(0x6c), Z(0x2f), Z(0x47), Z(0x13), Z(0x13), Z(0x52), Z(0x1f), Z(0x2d), Z(0xf5), Z(0x79), Z(0x3d), Z(0xa2), Z(0x54), Z(0xbd), Z(0x69), Z(0xc8), Z(0x6b), Z(0xf3), Z(0x05), Z(0x28), Z(0xf1), Z(0x16), Z(0x46), Z(0x40), Z(0xb0), Z(0x11), Z(0xd3), Z(0xb7), Z(0x95), Z(0x49), Z(0xcf), Z(0xc3), Z(0x1d), Z(0x8f), Z(0xd8), Z(0xe1), Z(0x73), Z(0xdb), Z(0xad), Z(0xc8), Z(0xc9), Z(0xa9), Z(0xa1), Z(0xc2), Z(0xc5), Z(0xe3), Z(0xba), Z(0xfc), Z(0x0e), Z(0x25)}; /* * This is a 16 round Feistel network with permutation F_ENCRYPT */ #define F_ENCRYPT(R, L, sched) { \ union lc4 { afs_uint32 l; unsigned char c[4]; } u; \ u.l = sched ^ R; \ L ^= sbox0[u.c[0]] ^ sbox1[u.c[1]] ^ sbox2[u.c[2]] ^ sbox3[u.c[3]]; } #ifndef WORDS_BIGENDIAN /* BEWARE: this code is endian dependent. * This should really be inline assembler on the x86. */ #undef F_ENCRYPT #define FF(y, shiftN) (((y) >> shiftN) & 0xFF) #define F_ENCRYPT(R, L, sched) { \ afs_uint32 u; \ u = sched ^ R; \ L ^= sbox0[FF(u, 0)] ^ sbox1[FF(u, 8)] ^ sbox2[FF(u, 16)] ^ sbox3[FF(u, 24)];} #endif static inline void fc_ecb_enc(afs_uint32 l, afs_uint32 r, afs_uint32 out[2], const afs_int32 sched[MAXROUNDS]) { #if !defined(UNROLL_LOOPS) { int i; for (i = 0; i < (MAXROUNDS/4); i++) { F_ENCRYPT(r, l, *sched++); F_ENCRYPT(l, r, *sched++); F_ENCRYPT(r, l, *sched++); F_ENCRYPT(l, r, *sched++); } } #else F_ENCRYPT(r, l, *sched++); F_ENCRYPT(l, r, *sched++); F_ENCRYPT(r, l, *sched++); F_ENCRYPT(l, r, *sched++); F_ENCRYPT(r, l, *sched++); F_ENCRYPT(l, r, *sched++); F_ENCRYPT(r, l, *sched++); F_ENCRYPT(l, r, *sched++); F_ENCRYPT(r, l, *sched++); F_ENCRYPT(l, r, *sched++); F_ENCRYPT(r, l, *sched++); F_ENCRYPT(l, r, *sched++); F_ENCRYPT(r, l, *sched++); F_ENCRYPT(l, r, *sched++); F_ENCRYPT(r, l, *sched++); F_ENCRYPT(l, r, *sched++); #endif /* UNROLL_LOOPS */ out[0] = l; out[1] = r; } static inline void fc_ecb_dec(afs_uint32 l, afs_uint32 r, afs_uint32 out[2], const afs_int32 sched[MAXROUNDS]) { sched = &sched[MAXROUNDS-1]; #if !defined(UNROLL_LOOPS) { int i; for (i = 0; i < (MAXROUNDS/4); i++) { F_ENCRYPT(l, r, *sched--); F_ENCRYPT(r, l, *sched--); F_ENCRYPT(l, r, *sched--); F_ENCRYPT(r, l, *sched--); } } #else F_ENCRYPT(l, r, *sched--); F_ENCRYPT(r, l, *sched--); F_ENCRYPT(l, r, *sched--); F_ENCRYPT(r, l, *sched--); F_ENCRYPT(l, r, *sched--); F_ENCRYPT(r, l, *sched--); F_ENCRYPT(l, r, *sched--); F_ENCRYPT(r, l, *sched--); F_ENCRYPT(l, r, *sched--); F_ENCRYPT(r, l, *sched--); F_ENCRYPT(l, r, *sched--); F_ENCRYPT(r, l, *sched--); F_ENCRYPT(l, r, *sched--); F_ENCRYPT(r, l, *sched--); F_ENCRYPT(l, r, *sched--); F_ENCRYPT(r, l, *sched--); #endif /* UNROLL_LOOPS */ out[0] = l; out[1] = r; } static inline void fc_cbc_enc(const afs_uint32 *in, afs_uint32 *out, afs_int32 length, const afs_int32 sched[MAXROUNDS], afs_uint32 *iv) { afs_int32 xor0 = iv[0], xor1 = iv[1]; for (; length > 0; length -= 8) { afs_uint32 b8[2]; /* If length < 8 we read to much, usally ok */ xor0 ^= in[0]; xor1 ^= in[1]; fc_ecb_enc(xor0, xor1, b8, sched); xor0 = in[0] ^ b8[0]; xor1 = in[1] ^ b8[1]; /* Out is always a multiple of 8 */ memcpy(out, b8, 8); out += 2; in += 2; } iv[0] = xor0; iv[1] = xor1; } static inline void fc_cbc_dec(const afs_uint32 *in, afs_uint32 *out, afs_int32 length, const afs_int32 sched[MAXROUNDS], afs_uint32 *iv) { afs_int32 xor0 = iv[0], xor1 = iv[1]; for (; length > 0; length -= 8) { afs_uint32 b8[2]; /* In is always a multiple of 8 */ fc_ecb_dec(in[0], in[1], b8, sched); b8[0] ^= xor0; b8[1] ^= xor1; xor0 = in[0] ^ b8[0]; xor1 = in[1] ^ b8[1]; #if 0 if (length >= 8) memcpy(out, b8, 8); else memcpy(out, b8, length); /* Don't write to much when length < 8 */ #else /* If length < 8 we write to much, this is not always ok */ memcpy(out, b8, 8); #endif out += 2; in += 2; } iv[0] = xor0; iv[1] = xor1; } afs_int32 fc_ecb_encrypt(afs_uint32 *in, afs_uint32 *out, fc_KeySchedule sched, int encrypt) { if (encrypt) fc_ecb_enc(in[0], in[1], out, sched); else fc_ecb_dec(in[0], in[1], out, sched); return 0; } afs_int32 fc_cbc_encrypt(afs_uint32 *in, afs_uint32 *out, afs_int32 length, fc_KeySchedule sched, afs_uint32 *iv, int encrypt) { if (encrypt) fc_cbc_enc(in, out, length, sched, iv); else fc_cbc_dec(in, out, length, sched, iv); return 0; } /* Rotate two 32 bit numbers as a 56 bit number */ #define ROT56R(hi, lo, n) { \ afs_uint32 t = lo & ((1<> n) | ((hi & ((1<> n) | (t << (24-n)); } /* Rotate one 64 bit number as a 56 bit number */ #define ROT56R64(k, n) { \ k = (k >> n) | ((k & ((1<> 55) != 0) && ((1ul << 55) != 0) unsigned long k; /* k holds all 56 non parity bits */ /* Compress out parity bits */ k = (*key++) >> 1; k <<= 7; k |= (*key++) >> 1; k <<= 7; k |= (*key++) >> 1; k <<= 7; k |= (*key++) >> 1; k <<= 7; k |= (*key++) >> 1; k <<= 7; k |= (*key++) >> 1; k <<= 7; k |= (*key++) >> 1; k <<= 7; k |= (*key) >> 1; /* Use lower 32 bits for schedule, rotate by 11 each round (16 times) */ *sched++ = EFF_NTOHL((afs_uint32)k); ROT56R64(k, 11); *sched++ = EFF_NTOHL((afs_uint32)k); ROT56R64(k, 11); *sched++ = EFF_NTOHL((afs_uint32)k); ROT56R64(k, 11); *sched++ = EFF_NTOHL((afs_uint32)k); ROT56R64(k, 11); *sched++ = EFF_NTOHL((afs_uint32)k); ROT56R64(k, 11); *sched++ = EFF_NTOHL((afs_uint32)k); ROT56R64(k, 11); *sched++ = EFF_NTOHL((afs_uint32)k); ROT56R64(k, 11); *sched++ = EFF_NTOHL((afs_uint32)k); ROT56R64(k, 11); *sched++ = EFF_NTOHL((afs_uint32)k); ROT56R64(k, 11); *sched++ = EFF_NTOHL((afs_uint32)k); ROT56R64(k, 11); *sched++ = EFF_NTOHL((afs_uint32)k); ROT56R64(k, 11); *sched++ = EFF_NTOHL((afs_uint32)k); ROT56R64(k, 11); *sched++ = EFF_NTOHL((afs_uint32)k); ROT56R64(k, 11); *sched++ = EFF_NTOHL((afs_uint32)k); ROT56R64(k, 11); *sched++ = EFF_NTOHL((afs_uint32)k); ROT56R64(k, 11); *sched++ = EFF_NTOHL((afs_uint32)k); return 0; #else afs_uint32 hi, lo; /* hi is upper 24 bits and lo lower 32, total 56 */ /* Compress out parity bits */ lo = (*key++) >> 1; lo <<= 7; lo |= (*key++) >> 1; lo <<= 7; lo |= (*key++) >> 1; lo <<= 7; lo |= (*key++) >> 1; hi = lo >> 4; lo &= 0xf; lo <<= 7; lo |= (*key++) >> 1; lo <<= 7; lo |= (*key++) >> 1; lo <<= 7; lo |= (*key++) >> 1; lo <<= 7; lo |= (*key) >> 1; /* Use lower 32 bits for schedule, rotate by 11 each round (16 times) */ *sched++ = EFF_NTOHL(lo); ROT56R(hi, lo, 11); *sched++ = EFF_NTOHL(lo); ROT56R(hi, lo, 11); *sched++ = EFF_NTOHL(lo); ROT56R(hi, lo, 11); *sched++ = EFF_NTOHL(lo); ROT56R(hi, lo, 11); *sched++ = EFF_NTOHL(lo); ROT56R(hi, lo, 11); *sched++ = EFF_NTOHL(lo); ROT56R(hi, lo, 11); *sched++ = EFF_NTOHL(lo); ROT56R(hi, lo, 11); *sched++ = EFF_NTOHL(lo); ROT56R(hi, lo, 11); *sched++ = EFF_NTOHL(lo); ROT56R(hi, lo, 11); *sched++ = EFF_NTOHL(lo); ROT56R(hi, lo, 11); *sched++ = EFF_NTOHL(lo); ROT56R(hi, lo, 11); *sched++ = EFF_NTOHL(lo); ROT56R(hi, lo, 11); *sched++ = EFF_NTOHL(lo); ROT56R(hi, lo, 11); *sched++ = EFF_NTOHL(lo); ROT56R(hi, lo, 11); *sched++ = EFF_NTOHL(lo); ROT56R(hi, lo, 11); *sched++ = EFF_NTOHL(lo); return 0; #endif } /* * Encryption/decryption of Rx packets is pretty straight forward. Run * fc_cbc_encrypt over the packet fragments until len bytes have been * processed. Skip the Rx packet header but not the security header. */ afs_int32 rxkad_EncryptPacket(const struct rx_connection *rx_connection_not_used, const fc_KeySchedule *sched, const afs_uint32 *iv, int len, struct rx_packet *packet) { afs_uint32 ivec[2]; struct iovec *frag; { /* What is this good for? * It turns out that the security header for auth_enc is of * size 8 bytes and the last 4 bytes are defined to be 0! */ afs_uint32 *t = (afs_uint32 *)packet->wirevec[1].iov_base; t[1] = 0; } memcpy(ivec, iv, sizeof(ivec)); /* Must use copy of iv */ for (frag = &packet->wirevec[1]; len; frag++) { int iov_len = frag->iov_len; afs_uint32 *iov_bas = (afs_uint32 *) frag->iov_base; if (iov_len == 0) return RXKADDATALEN; /* Length mismatch */ if (len < iov_len) iov_len = len; /* Don't process to much data */ fc_cbc_enc(iov_bas, iov_bas, iov_len, sched, ivec); len -= iov_len; } return 0; } afs_int32 rxkad_DecryptPacket(const struct rx_connection *rx_connection_not_used, const fc_KeySchedule *sched, const afs_uint32 *iv, int len, struct rx_packet *packet) { afs_uint32 ivec[2]; struct iovec *frag; memcpy(ivec, iv, sizeof(ivec)); /* Must use copy of iv */ for (frag = &packet->wirevec[1]; len > 0; frag++) { int iov_len = frag->iov_len; afs_uint32 *iov_bas = (afs_uint32 *) frag->iov_base; if (iov_len == 0) return RXKADDATALEN; /* Length mismatch */ if (len < iov_len) iov_len = len; /* Don't process to much data */ fc_cbc_dec(iov_bas, iov_bas, iov_len, sched, ivec); len -= iov_len; } return 0; } #if defined(TEST) || defined(TEST_KERNEL) /* * It is possible to link with the client kernel libafs.a to verify * the test case. Use TEST_KERNEL to get the mangled names. */ #include #include #include const char the_quick[] = "The quick brown fox jumps over the lazy dogs.\0\0"; const unsigned char key1[8]={0xf0,0xe1,0xd2,0xc3,0xb4,0xa5,0x96,0x87}; const char ciph1[] = { 0x00, 0xf0, 0xe, 0x11, 0x75, 0xe6, 0x23, 0x82, 0xee, 0xac, 0x98, 0x62, 0x44, 0x51, 0xe4, 0x84, 0xc3, 0x59, 0xd8, 0xaa, 0x64, 0x60, 0xae, 0xf7, 0xd2, 0xd9, 0x13, 0x79, 0x72, 0xa3, 0x45, 0x03, 0x23, 0xb5, 0x62, 0xd7, 0xc, 0xf5, 0x27, 0xd1, 0xf8, 0x91, 0x3c, 0xac, 0x44, 0x22, 0x92, 0xef }; const unsigned char key2[8]={0xfe,0xdc,0xba,0x98,0x76,0x54,0x32,0x10}; const char ciph2[] = { 0xca, 0x90, 0xf5, 0x9d, 0xcb, 0xd4, 0xd2, 0x3c, 0x01, 0x88, 0x7f, 0x3e, 0x31, 0x6e, 0x62, 0x9d, 0xd8, 0xe0, 0x57, 0xa3, 0x06, 0x3a, 0x42, 0x58, 0x2a, 0x28, 0xfe, 0x72, 0x52, 0x2f, 0xdd, 0xe0, 0x19, 0x89, 0x09, 0x1c, 0x2a, 0x8e, 0x8c, 0x94, 0xfc, 0xc7, 0x68, 0xe4, 0x88, 0xaa, 0xde, 0x0f }; #ifdef TEST_KERNEL #define fc_keysched _afs_QTKrFdpoFL #define fc_ecb_encrypt _afs_sDLThwNLok #define fc_cbc_encrypt _afs_fkyCWTvfRS #define rxkad_DecryptPacket _afs_SRWEeqTXrS #define rxkad_EncryptPacket _afs_bpwQbdoghO #endif int rx_SlowPutInt32() { abort(); } int main() { afs_int32 sched[MAXROUNDS]; char ciph[100], clear[100], tmp[100]; afs_uint32 data[2]; afs_uint32 iv[2]; struct rx_packet packet; if (sizeof(afs_int32) != 4) fprintf(stderr, "error: sizeof(afs_int32) != 4\n"); if (sizeof(afs_uint32) != 4) fprintf(stderr, "error: sizeof(afs_uint32) != 4\n"); /* * Use key1 and key2 as iv */ fc_keysched(key1, sched); memcpy(iv, key2, sizeof(iv)); fc_cbc_encrypt(the_quick, ciph, sizeof(the_quick), sched, iv, ENCRYPT); if (memcmp(ciph1, ciph, sizeof(ciph1)) != 0) fprintf(stderr, "encrypt FAILED\n"); memcpy(iv, key2, sizeof(iv)); fc_cbc_encrypt(ciph, clear, sizeof(the_quick), sched, iv, DECRYPT); if (strcmp(the_quick, clear) != 0) fprintf(stderr, "crypt decrypt FAILED\n"); /* * Use key2 and key1 as iv */ fc_keysched(key2, sched); memcpy(iv, key1, sizeof(iv)); fc_cbc_encrypt(the_quick, ciph, sizeof(the_quick), sched, iv, ENCRYPT); if (memcmp(ciph2, ciph, sizeof(ciph2)) != 0) fprintf(stderr, "encrypt FAILED\n"); memcpy(iv, key1, sizeof(iv)); fc_cbc_encrypt(ciph, clear, sizeof(the_quick), sched, iv, DECRYPT); if (strcmp(the_quick, clear) != 0) fprintf(stderr, "crypt decrypt FAILED\n"); /* * Test Encrypt- and Decrypt-Packet, use key1 and key2 as iv */ fc_keysched(key1, sched); memcpy(iv, key2, sizeof(iv)); strcpy(clear, the_quick); packet.wirevec[1].iov_base = clear; packet.wirevec[1].iov_len = sizeof(the_quick); packet.wirevec[2].iov_len = 0; /* For unknown reasons bytes 4-7 are zeroed in rxkad_EncryptPacket */ rxkad_EncryptPacket(tmp, sched, iv, sizeof(the_quick), &packet); rxkad_DecryptPacket(tmp, sched, iv, sizeof(the_quick), &packet); clear[4] ^= 'q'; clear[5] ^= 'u'; clear[6] ^= 'i'; clear[7] ^= 'c'; if (strcmp(the_quick, clear) != 0) fprintf(stderr, "rxkad_EncryptPacket/rxkad_DecryptPacket FAILED\n"); { struct timeval start, stop; int i; fc_keysched(key1, sched); gettimeofday(&start, 0); for (i = 0; i < 1000000; i++) fc_keysched(key1, sched); gettimeofday(&stop, 0); printf("fc_keysched = %2.2f us\n", (stop.tv_sec - start.tv_sec + (stop.tv_usec - start.tv_usec)/1e6)*1); fc_ecb_encrypt(data, data, sched, ENCRYPT); gettimeofday(&start, 0); for (i = 0; i < 1000000; i++) fc_ecb_encrypt(data, data, sched, ENCRYPT); gettimeofday(&stop, 0); printf("fc_ecb_encrypt = %2.2f us\n", (stop.tv_sec - start.tv_sec + (stop.tv_usec - start.tv_usec)/1e6)*1); fc_cbc_encrypt(the_quick, ciph, sizeof(the_quick), sched, iv, ENCRYPT); gettimeofday(&start, 0); for (i = 0; i < 100000; i++) fc_cbc_encrypt(the_quick, ciph, sizeof(the_quick), sched, iv, ENCRYPT); gettimeofday(&stop, 0); printf("fc_cbc_encrypt = %2.2f us\n", (stop.tv_sec - start.tv_sec + (stop.tv_usec - start.tv_usec)/1e6)*10); } exit(0); } #endif /* TEST */