AFS-3 Programmer’s Reference:
BOS Server Interface

Edward R. Zayas

Transarc Corporation

Version 1.0 of 28 August 1991 11:58
(©Copyright 1991 Transarc Corporation
All Rights Reserved
FS-00-D161

BOS' Server Specification

Contents

1 Overview e 1
1.1 Introduction 1
1.2 Scope 2
1.3 Document Layout 2
1.4 Related Documents 3

2 BOS Server Architecture. 4
2.1 Bnodes 4

2.1.1 Overview 4
2.1.2 Bnode Classes 5
2.1.3 Per-Class Bnode Operations 6
2.2 BOS Server Directories 7
2.3 BOS Server Files 7
2.3.1 Jusr/afs/etc/UserList 7
2.3.2 Jusr/afs/etc/CellServDB 8
2.3.3 Jusr/afs/etc/ThisCell 8
2.3.4 Jusr/afs/local/BosConfig, 8
2.3.5 Jusr/afs/local/NoAuth 10
2.3.6 Jusr/afs/etc/KeyFile 10
2.4 Restart Times 11
2.5 The bosserver Process 12
2.5.1 Introduction 12
2.5.2 Threading 12
2.5.3 Initialization Algorithm 13
2.5.4 Command Line Switches 14

3 BOS Server Interface 15
3.1 Introduction e 15
3.2 Constants s 15

3.21 Status Bits 16
3.2.2 Bnode Activity Bits oo o 16
3.2.3 Bnode States 17

Table of Contents i August 29, 1991 10:26

BOS' Server Specification

3.2.4 Pruning Server Binarieso 17
3.2.5 Flag Bits for struct bnodeproc. 17
3.3 Structures. 18
3.3.1 struct bozomnetKTime 18
3.3.2 struct bozokey 19
3.3.3 struct bozokeyInfo 19
3.3.4 struct bozo._status 20
3.3.0 struct bnode ops 20
3.3.6 struct bnode_type 22
3.3.7 struct bnode token 23
3.3.8 struct bnode 23
3.3.9 struct bnode proc 24
34 Error Codes. 25
3.5 Macros . ..o 25
3.5.1 BOP.TIMEOUT() 26
3.5.2 BOP_-GETSTAT() 26
3.5.3 BOPSETSTAT() 26
3.5.4 BOP.DELETE() 27
3.5.5 BOP_PROCEXIT() 27
3.5.6 BOP_-GETSTRING() 27
3.5.7 BOP_-GETPARM() 27
3.5.8 BOP_RESTARTP() 28
3.5.9 BOP_-HASCORE() 28
3.6 Functions 28
3.6.1 Creating and Removing Processes 32
3.6.1.1 BOZO_CreateBnode 33

3.6.1.2 BOZO_DeleteBnode 35

3.6.2 Examining Process Information 36
3.6.2.1 BOZO_GetStatus, 37

3.6.2.2 BOZO_Enumeratelnstance 39

3.6.2.3 BOZO _Getlnstancelnfo 40

3.6.2.4 BOZO_GetlnstanceParm 41

3.6.2.5 BOZO_GetRestartTime 42

3.6.2.6 BOZO_SetRestartTime 43
3.6.2.7 BOZO_GetDates 44

3.6.2.8 StartBOZO_GetLog 45

3.6.2.9 EndBOZO GetLog. 46
3.6.2.10 BOZO_GetlInstanceStrings 47

3.6.3 Starting, Stopping, and Restarting Processes 48
3.6.3.1 BOZO_SetStatus 49

3.6.3.2 BOZOSetTStatus 50

Table of Contents i August 29, 1991 10:26

BOS' Server Specification

3.6.3.3 BOZO_StartupAll 51
3.6.3.4 BOZO_ShutdownAll 52
3.6.3.5 BOZO RestartAll 53
3.6.36 BOZOReBozo 54
3.6.3.7 BOZORestart 55
3.6.3.8 BOZO WaitAll 56
3.6.4 Security Configuration 57
3.6.4.1 BOZO_AddSUser 58
3.6.4.2 BOZO_ DeleteSUser 59
3.6.4.3 BOZO_ListSUsers 60
3.6.44 BOZO ListKeys 61
3.6.45 BOZO AddKey 62
3.6.4.6 BOZO DeleteKey 63
3.6.47 BOZO_SetNoAuthFlag 64
3.6.5 Cell Configuration 65
3.6.5.1 BOZO_GetCellName 66
3.6.5.2 BOZO SetCellName 67
3.6.5.3 BOZO_GetCellHost 68
3.6.5.4 BOZO_AddCellHost 69
3.6.5.5 BOZO_DeleteCellHost 70
3.6.6 Installing/Uninstalling Server Binaries 71
3.6.6.1 StartBOZO.Install 72
3.6.6.2 EndBOZOInstall 74
3.6.6.3 BOZO Unlnstall 75
3.6.64 BOZOPrune. 76
3.6.7 Executing Commands at the Server 7
3.6.71 BOZO Exec 78

Table of Contents iii August 29, 1991 10:26

BOS' Server Specification

Chapter 1

Overview

1.1 Introduction

One of the important duties of an AF'S system administrator is to insure that processes on
file server machines are properly installed and kept running. The BOS Server was written
as a tool for assisting administrators in these tasks. An instance of the BOS Server runs
on each AFS server machine, and has the following specific areas of responsibility:

e Definition of the set of processes that are to be run on the machine on
which a given BOS Server executes. This definition may be changed dynamically
by system administrators. Programs may be marked as continuously or periodically
runnable.

e Automatic startup and restart of these specified processes upon server
bootup and program failure. The BOS Server also responds to administrator re-
quests for stopping and starting one or more of these processes. In addition, the
BOS Server is capable of restarting itself on command.

e Collection of information regarding the current status, command line parame-
ters, execution history, and log files generated by the set of server programs.

e Management of the security information resident on the machine on which
the BOS Server executes. Such information includes the list of administratively
privileged people associated with the machine and the set of AFS File Server
encryption keys used in the course of file service.

e Management of the cell configuration information for the server machine
in question. This includes the name of the cell in which the server resides, along

Overview 1 August 29, 1991 10:26

BOS' Server Specification

with the list and locations of the servers within the cell providing AFS database
services (e.g., volume location, authentication, protection).

e Installation of server binaries on the given machine. The BOS Server allows
several “generations” of server software to be kept on its machine. Installation of
new software for one or more server agents is handled by the BOS Server, as is
“rolling back” to a previous version should it prove more stable than the currently-
installed image.

e Execution of commands on the server machine. An administrator may
execute arbitrary UNIX commands on a machine running the BOS Server.

Unlike many other AFS server processes, the BOS Server does not maintain a cell-wide,
replicated database. It does, however, maintain several databases used exclusively on
every machine on which it runs.

1.2 Scope

This paper describes the design and structure of the AFS-3 BOS Server. The scope of this
work is to provide readers with a sufficiently detailed description of the BOS Server so
that they may construct client applications that call the server’s RPC interface routines.

1.3 Document Layout

The second chapter discusses various aspects of the BOS Server’s architecture. First, one
of the basic concepts is examined, namely the bnode. Providing the complete description
of a program or set of programs to be run on the given server machine, a bnode is the
generic definitional unit for the BOS Server’s duties. After bnodes have been explained,
the set of standard directories on which the BOS Server depends is considered. Also,
the set of well-known files within these directories is explored. Their uses and internal
formats are presented. After these sections, a discussion of BOS Server restart times
follows. The BOS Server has special support for two commonly-used restart occasions,
as described by this section. Finally, the organization and behavior of the bosserver
program itself is presented.

The third and final chapter provides a detailed examination of the programmer-visible
BOS Server constants and structures, along with a full specification of the API for the
RPC-based BOS Server functionality.

Overview 2 August 29, 1991 10:26

BOS' Server Specification

1.4 Related Documents

This document is a member of a documentation suite providing programmer-level speci-
fications for the operation of the various AFS servers and agents, and the interfaces they
export, as well as the underlying RPC system they use to communicate. The full suite
of related AFS specification documents is listed below:

o AFS-3 Programmer’s Reference: Architectural Overview: This paper provides an
architectual overview of the AFS distributed file system, describing the full set of
servers and agents in a coherent way, illustrating their relationships to each other
and examining their interactions.

o AFS-3 Programmer’s Reference: File Server/Cache Manager Interface: This doc-
ument describes the File Server and Cache Manager agents, which provide the
backbone file managment services for AFS. The collection of File Servers for a cell
supply centralized file storage for that site, and allow clients running the Cache
Manager component to acces those files in a high-performance, secure fashion.

o AFS-3 Programmer’s Reference:Volume Server/Volume Location Server Interface:
This document describes the services through which “containers” of related user
data are located and managed.

o AFS-3 Programmer’s Reference: Protection Server Interface: This paper describes
the server responsible for mapping printable user names to and from their internal
AFS identifiers. The Protection Server also allows users to create, destroy, and
manipulate “groups” of users, which are suitable for placement on ACLs.

o AFS-3 Programmer’s Reference: Specification for the Rx Remote Procedure Call
Facility: This document specifies the design and operation of the remote procedure
call and lightweight process packages used by AFS.

In addition to these papers, the AFS 3.1 product is delivered with its own user, admin-
istrator, installation, and command reference documents.

Overview 3 August 29, 1991 10:26

BOS' Server Specification

Chapter 2

BOS Server Architecture

This chapter considers some of the architectual features of the AFS-3 BOS Server. First,
the basic organizational and functional entity employed by the BOS Server, the bnode,
is discussed. Next, the set of files with which the server interacts is examined. The notion
of restart times is then explained in detail. Finally, the organization and components
of the bosserver program itself, which implements the BOS Server, are presented.

2.1 Bnodes

2.1.1 Overview

The information required to manage each AFS-related program running on a File Server
machine is encapsulated in a bnode object. These bnodes serve as the basic building
blocks for BOS Server services. Bnodes have two forms of existence:

e On-disk: The BosConfig file (see Section 2.3.4 below) defines the set of bnodes
for which the BOS Server running on that machine will be responsible, along with
specifying other information such as values for the two restart times. This file
provides permanent storage (i.e., between bootups) for the desired list of programs
for that server platform.

e In-memory: The contents of the BosConfig file are parsed and internalized by
the BOS Server when it starts execution. The basic data for a particular server
program is placed into a struct bnode structure.

BOS Server Architecture 4 August 29, 1991 10:26

BOS' Server Specification

The initial contents of the BosConfig file are typically set up during system installation.
The BOS Server can be directed, via its RPC interface, to alter existing bnode entries in
the BosConfig file, add new ones, and delete old ones. Typically, this file is never edited
directly.

2.1.2 Bnode Classes

The descriptions of the members of the AFS server suite fall into three broad classes of
programs:

e Simple programs: This server class is populated by programs that simply need
to be kept running, and do not depend on other programs for correctness or ef-
fectiveness. Examples of AFS servers falling into this category are the Volume
Location Server, Authentication Server, and Protection Server. Since its members
exhibit such straightforward behavior, this class of programs is referred to as the
simple class.

e Interrelated programs: The File Server program depends on two other pro-
grams, and requires that they be executed at the appropriate times and in the
appropriate sequence, for correct operation. The first of these programs is the
Volume Server, which must be run concurrently with the File Server. The second
is the salvager, which repairs the AFS volume metadata on the server partitions
should the metadata become damaged. The salvager must not be run at the same
time as the File Server. In honor of the File Server trio that inspired it, the class
of programs consisting of groups of interrelated processes is named the fs class.

e Periodic programs: Some AFS servers, such as the BackupServer, only need to
run every so often, but on a regular and well-defined basis. The name for this class
is taken from the UNIX tool that is typically used to define such regular executions,
namely the cron class.

The recognition and definition of these three server classes is exploited by the BOS
Server. Since all of the programs in a given class share certain common characteristics,
they may all utilize the same basic data structures to record and manage their special
requirements. Thus, it is not necessary to reimplement all the operations required to
satisfy the capabilities promised by the BOS Server RPC interface for each and every
program the BOS Server manages. Implementing one set of operations for each server
class is sufficient to handle any and all server binaries to be run on the platform.

BOS Server Architecture 5 August 29, 1991 10:26

BOS' Server Specification

2.1.3 Per-Class Bnode Operations

As mentioned above, only one set of basic routines must be implemented for each AFS
server class. Much like Sun’s VFS/vnode interface [8], providing a common set of routines
for interacting with a given file system, regardless of its underlying implementation and
semantics, the BOS Server defines a common vector of operations for a class of programs
to be run under the BOS Server’s tutelage. In fact, it was this standardized file system
interface that inspired the “bnode” name.

The BOS Server manipulates the process or processes that are described by each bnode
by invoking the proper functions in the appropriate order from the operation vector for
that server class. Thus, the BOS Server itself operates in a class-independent fashion.
This allows each class to take care of the special circumstances associated with it, yet to
have the BOS Server itself be totally unaware of what special actions (if any) are needed
for the class. This abstraction also allows more server classes to be implemented without
any significant change to the BOS Server code itself.

There are ten entries in this standardized class function array. The purpose and usage
of each individual class function is described in detail in Section 3.3.5. Much like the
VES system, a collection of macros is also provided in order to simplify the invocation
of these functions. These macros are described in Section 3.5. The ten function slots are
named here for convenience:

e create()
e timeout()
o getstat()
o setstat()
o delete()
e procexit()
e getstring()
e getparm()
o restartp()

e hascore()

BOS Server Architecture 6 August 29, 1991 10:26

BOS' Server Specification
2.2 BOS Server Directories

The BOS Server expects the existence of the following directories on the local disk of
the platform on which it runs. These directories define where the system binaries, log
files, ubik databases, and other files lie.

e /Jusr/afs/bin: This directory houses the full set of AFS server binaries. Such ex-
ecutables as bosserver, fileserver, viserver, volserver, kaserver, and ptserver reside
here.

e /Jusr/afs/db: This directory serves as the well-known location on the server’s local
disk for the ubik database replicas for this machine. Specifically, the Authentication
Server, Protection Server, and the Volume Location Server maintain their local
database images here.

o /Jusr/afs/etc: This directory hosts the files containing the security, cell, and autho-
rized system administrator list for the given machine. Specifically, the CellServDB,
KeyFile, License, ThisCell, and UserList files are stored here.

e /usr/afs/local: This directory houses the BosConfig file, which supplies the BOS
Server with the permanent set of bnodes to support. Also contained in this direc-
tory are files used exclusively by the salvager.

o /Jusr/afs/logs: All of the AFS server programs that maintain log files deposit them
in this directory.

2.3 BOS Server Files

Several files, some mentioned above, are maintained on the server’s local disk and ma-
nipulated by the BOS Server. This section examines many of these files, and describes
their formats.

2.3.1 /usr/afs/etc/UserList

This file contains the names of individuals who are allowed to issue “restricted” BOS
Server commands (e.g., creating & deleting bnodes, setting cell information, etc.) on the
given hardware platform. The format is straightforward, with one administrator name
per line. If a cell grants joe and schmoe these rights on a machine, that particular
UserList will have the following two lines:

BOS Server Architecture 7 August 29, 1991 10:26

BOS' Server Specification

joe
schmoe

2.3.2 /usr/afs/etc/CellServDB

This file identifies the name of the cell to which the given server machine belongs, along
with the set of machines on which its ubik database servers are running. Unlike the
CellServDB found in /usr/vice/etc on AFS client machines, this file contains only the
entry for the home cell. It shares the formatting rules with the /usr/vice/etc version
of CellServDB. The contents of the CellServDB file used by the BOS Server on host
grand.central.org are:

>grand.central.org #DARPA clearinghouse cell
192.54.226.100 #grand.central.org
192.54.226.101 #penn.central.org

2.3.3 Susr/afs/etc/ThisCell

The BOS Server obtains its notion of cell membership from the ThisCell file in the
specified directory. As with the version of ThisCell found in /usr/vice/etc on AFS client
machines, this file simply contains the character string identifying the home cell name.
For any server machine in the grand.central.org cell, this file contains the following:

grand.central.org

2.3.4 /usr/afs/local/BosConfig

The BosConfig file is the on-disk representation of the collection of bnodes this particular
BOS Server manages. The BOS Server reads and writes to this file in the normal course
of its affairs. The BOS Server itself, in fact, should be the only agent that modifies this
file. Any changes to BosConfig should be carried out by issuing the proper RPCs to the
BOS Server running on the desired machine.

The following is the text of the BosConfig file on grand.central.org. A discussion of
the contents follows immediately afterwards.

BOS Server Architecture 8 August 29, 1991 10:26

BOS' Server Specification

restarttime 11 0 4 0 0
checkbintime 3 0 56 0 O

bnode simple kaserver 1

parm /usr/afs/bin/kaserver
end

bnode simple ptserver 1

parm /usr/afs/bin/ptserver
end

bnode simple vlserver 1

parm /usr/afs/bin/vlserver
end

bnode fs fs 1

parm /usr/afs/bin/fileserver
parm /usr/afs/bin/volserver
parm /usr/afs/bin/salvager
end

bnode simple runntp 1

parm /usr/afs/bin/runntp -localclock transarc.com
end

bnode simple upserver 1

parm /usr/afs/bin/upserver
end

bnode simple budb_server 1
parm /usr/afs/bin/budb_server
end

bnode cron backup 1

parm /usr/afs/backup/clones/lib/backup.csh daily
parm 05:00

end

The first two lines of this file set the system and new-binary restart times (see Section
2.4, below). They are optional, with the default system restart time being every Sunday
at 4:00am and the new-binary restart time being 5:00am daily. Following the reserved
words restarttime and checkbintime are five integers, providing the mask, day, hour,
minute, and second values (in decimal) for the restart time, as diagrammed below:

restarttime <mask> <day> <hour> <minute> <second>
checkbintime <mask> <day> <hour> <minute> <second>

The range of acceptable values for these fields is presented in Section 3.3.1. In this ex-
ample, the restart line specifies a (decimal) mask value of 11, selecting the KTIME_HOUR,
KTIME MIN, and KTIME DAY bits. This indicates that the hour, minute, and day values are
the ones to be used when matching times. Thus, this line requests that system restarts
occur on day 0 (Sunday), hour 4 (4:00am), and minute 0 within that hour.

The sets of lines that follow define the individual bnodes for the particular machine. The
first line of the bnode definition set must begin with the reserved word bnode, followed
by the type name, the instance name, and the initial bnode goal:

BOS Server Architecture 9 August 29, 1991 10:26

BOS' Server Specification

bnode <type_name> <instance_name> <goal_val>

The <type name> and <instance name> fields are both character strings, and the
<goal _val> field is an integer. Acceptable values for the <type name> are simple, fs,
and cron. Acceptable values for <goal val> are defined in Section 3.2.3, and are nor-
mally restricted to the integer values representing BSTAT NORMAL and BSTAT _SHUTDOWN.
Thus, in the bnode line defining the Authentication Server, it is declared to be of type
simple, have instance name kaserver, and have 1 (BSTAT_NORMAL) as a goal (e.g., it
should be brought up and kept running).

Following the bnode line in the BosConfig file may be one or more parm lines. These
entries represent the command line parameters that will be used to invoke the proper
related program or programs. The entire text of the line after the parm reserved word
up to the terminating newline is stored as the command line string.

parm <command_line_text>

After the parm lines, if any, the reserved word end must appear alone on a line, marking
the end of an individual bnode definition.

2.3.5 /usr/afs/local/NoAuth

The appearance of this file is used to mark whether the BOS Server is to insist on
properly authenticated connections for its restricted operations or whether it will allow
any caller to exercise these commands. Not only is the BOS Server affected by the
presence of this file, but so are all of the bnodes objects the BOS Server starts up. If
Jusr/afs/local/NoAuth is present, the BOS Server will start all of its bnodes with the
-noauth flag.

Completely unauthenticated AFS operation will result if this file is present when the
BOS Server starts execution. The file itself is typically empty. If any data is put into
the NoAuth file, it will be ignored by the system.

2.3.6 /usr/afs/etc/KeyFile

This file stores the set of AFS encryption keys used for file service operations. The
file follows the format defined by struct afsconf key and struct afsconf keys in
include file afs/keys.h. For the reader’s convenience, these structures are detailed below:

BOS Server Architecture 10 August 29, 1991 10:26

BOS' Server Specification

#define AFSCONF_MAXKEYS 8

struct afsconf_key {
long kvno;
char key[8];

+;

struct afsconf_keys {

long nkeys;

struct afsconf_key key[AFSCONF_MAXKEYS];
s

The first longword of the file reveals the number of keys that may be found there, with
a maximum of AFSCONF_MAXKEYS (8). The keys themselves follow, each preceded by its
key version number.

All information in this file is stored in network byte order. Each BOS Server converts
the data to the appropriate host byte order befor storing and manipulating it.

2.4 Restart Times

It is possible to manually start or restart any server defined within the set of BOS
Server bnodes from any AFS client machine, simply by making the appropriate call to
the RPC interface while authenticated as a valid administrator (i.e., a principal listed
in the UserList file on the given machine). However, two restart situations merit the
implementation of special functionality within the BOS Server. There are two common
occasions, occuring on a regular basis, where the entire system or individual server
programs should be brought down and restarted:

e Complete system restart: To guard against the reliability and performance
problems caused by any core leaks in long-running programs, the entire AFS system
should be occasionally shut down and restarted periodically. This action “clears
out” the memory system, and may result in smaller memory images for these
servers, as internal data structures are reinitialized back to their starting sizes. It
also allows AFS partitions to be regularly examined, and salvaged if necessary.

Another reason for performing a complete system restart is to commence execution
of a new release of the BOS Server itself. The new-binary restarts described below
do not restart the BOS Server if a new version of its software has been installed
on the machine.

e New-binary restarts: New server software may be installed at any time with
the assistance of the BOS Server. However, it is often not the case that such

BOS Server Architecture 11 August 29, 1991 10:26

BOS' Server Specification

software installations occur as a result of the discovery of an error in the program
or programs requiring immediate restart. On these occasions, restarting the given
processes in prime time so that the new binaries may begin execution is counter-
productive, causing system downtime and interfering with user productivity. The
system administrator may wish to set an off-peak time when the server binaries are
automatically compared to the running program images, and restarts take place
should the on-disk binary be more recent than the currently running program.
These restarts would thus minimize the resulting service disruption.

Automatically performing these restart functions could be accomplished by creating
cron-type bnodes that were defined to execute at the desired times. However, rather
than force the system administrator to create and supervise such bnodes, the BOS Server
supports

the notion of an internal LWP thread with the same effect (see Section 2.5.2). As part
of the BosConfig file defined above, the administrator may simply specify the values for
the complete system restart and new-binary restart times, and a dedicated BOS Server
thread will manage the restarts.

Unless otherwise instructed, the BOS Server selects default times for the two above
restart times. A complete system restart is carried out every Sunday at 4:00am by
default, and a new-binary restart is executed for each updated binary at 5:00am every
day.

2.5 The bosserver Process

2.5.1 Introduction

The user-space bosserver process is in charge of managing the AFS server processes and
software images, the local security and cell database files, and allowing administrators to
execute arbitrary programs on the server machine on which it runs. It also implements
the RPC interface defined in the bosint.zg Rzgen definition file.

2.5.2 Threading

As with all the other AFS server agents, the BOS Server is a multithreaded program. It
is configured so that a minimum of two lightweight threads are guaranteed to be allocated

BOS Server Architecture 12 August 29, 1991 10:26

BOS' Server Specification

to handle incoming RPC calls to the BOS Server, and a maximum of four threads are
commissioned for this task.

In addition to these threads assigned to RPC duties, there is one other thread employed
by the BOS Server, the BozoDaemon(). This thread is responsible for keeping track
of the two major restart events, namely the system restart and the new binary restart
(see Section 2.4). Every 60 seconds, this thread is awakened, at which time it checks
to see if either deadline has occurred. If the complete system restart is then due, it
invokes internal BOS Server routines to shut down the entire suite of AFS agents on
that machine and then reexecute the BOS Server binary, which results in the restart of
all of the server processes. If the new-binary time has arrived, the BOS Server shuts
down the bnodes for which binaries newer than those running are available, and then
invokes the new software.

In general, the following procedure is used when stopping and restarting processes. First,
the restart() operation defined for each bnode’s class is invoked via the BOP_RESTART()
macro. This allows each server to take any special steps required before cycling its
service. After that function completes, the standard mechanisms are used to shut down
each bnode’s process, wait until it has truly stopped its execution, and then start it back
up again.

2.5.3 Initialization Algorithm

This section describes the procedure followed by the BOS Server from the time when
it is invoked to the time it has properly initialized the server machine upon which it is
executing.

The first check performed by the BOS Server is whether or not it is running as root. It
needs to manipulate local UNIX files and directories in which only root has been given
access, so it immediately exits with an error message if this is not the case. The BOS
Server’s UNIX working directory is then set to be /usr/afs/logs in order to more easily
service incoming RPC requests to fetch the contents of the various server log files at this
location. Also, changing the working directory in this fashion results in any core images
dumped by the BOS Server’s wards will be left in /usr/afs/logs.

The command line is then inspected, and the BOS Server determines whether it will
insist on authenticated RPC connections for secure administrative operations by setting
up the /usr/afs/local/NoAuth file appropriately (see Section 2.3.5). It initializes the
underlying bnode package and installs the three known bnode types (simple, fs, and
cron).

BOS Server Architecture 13 August 29, 1991 10:26

BOS' Server Specification

After the bnode package is thus set up, the BOS Server ensures that the set of local
directories on which it will depend are present; refer to Section 2.2 for more details
on this matter. The license file in /usr/afs/etc/License is then read to determine the
number of AFS server machines the site is allowed to operate, and whether the cell is
allowed to run the NFS/AFS Translator software. This file is typically obtained in the
initial system installation, taken from the installation tape. The BOS Server will exit
unless this file exists and is properly formatted.

In order to record its actions, any existing /usr/afs/logs/BosLog file is moved to BosLog.old,
and a new version is opened in append mode. The BOS Server immediately writes a log
entry concerning the state of the above set of important directories.

At this point, the BOS Server reads the BosConfig file, which lists the set of bnodes for
which it will be responsible. It starts up the processes associated with the given bnodes.

Once accomplished, it invokes its internal system restart LWP thread (covered in Section
2.5.2 above).

Rz initialization begins at this point, setting up the RPC infrastructure to receive its
packets on the AFSCONF_NANNYPORT, UDP port 7007. The local cell database is then read
and internalized, followed by acquisition of the AFS encryption keys.

After all of these steps have been carried out, the BOS Server has gleaned all of the
necessary information from its environemnt and has also started up its wards. The final
initialization action required is to start all of its listener LWP threads, which are devoted
to executing incoming requests for the BOS Server RPC interface.

2.5.4 Command Line Switches

The BOS Server recognizes exactly one command line argument: -noauth. By de-
fault, the BOS Server attempts to use authenticated RPC connections (unless the
Jusr/afs/local/NoAuth file is present; see Section 2.3.5). The appearance of the -noauth
command line flag signals that this server incarnation is to use unauthenticated connec-
tions for even those operations that are normally restricted to system administrators.
This switch is essential during the initial AFS system installation, where the procedures
followed to bootstrap AFS onto a new machine require the BOS Server to run before
some system databases have been created.

BOS Server Architecture 14 August 29, 1991 10:26

BOS' Server Specification

Chapter 3

BOS Server Interface

3.1 Introduction

This chapter documents the API for the BOS Server facility, as defined by the bosint.zg
Rzxgen interface file and the bnode.h include file. Descriptions of all the constants, struc-
tures, macros, and interface functions available to the application programmer appear
in this chapter.

3.2 Constants

This section covers the basic constant definitions of interest to the BOS Server application
programmer. These definitions appear in the bosint.h file, automatically generated from
the bosint.xzg Rxgen interface file. Another file is exported to the programmer, namely

bnode.h.
Each subsection is devoted to describing constants falling into each of the following
categories:

e Status bits

e Bnode activity bits

e Bnode states

e Pruning server binaries

BOS Server Interface 15 August 29, 1991 10:26

BOS' Server Specification

e Flag bits for struct bnode _proc

One constant of general utility is BOZ0_BSSIZE, which defines the length in characters of
BOS Server character string buffers, including the trailing null. It is defined to be 256
characters.

3.2.1 Status Bits

The following bit values are used in the flags field of struct bozo_status, as defined
in Section 3.3.4. They record whether or not the associated bnode process currently
has a stored core file, whether the bnode execution was stopped because of an excessive
number of errors, and whether the mode bits on server binary directories are incorrect.

‘ Name ‘ Value ‘ Description ‘
BOZ0O_HASCORE 1 Does this bnode have a stored core file?
BOZ0O_ERRORSTOP 2 Was this bnode execution shut down because of an

excessive number of errors (more than 10 in a 10-
second period)?

BOZ0O_BADDIRACCESS 3 Are the mode bits on the /usr/afs directory and
its descendants (etc, bin, logs, backup, db, local,
etc/KeyFile, etc/UserList) correctly set?

3.2.2 Bnode Activity Bits

This section describes the legal values for the bit positions within the flags field of
struct bnode, as defined in Section 3.3.8. They specify conditions related to the basic
activity of the bnode and of the entities relying on it.

‘ Name | Value | Description ‘

BNODE NEEDTIMEQUT | 0x01 | This bnode is utilizing the timeout mechanism for
invoking actions on its behalf.

BNODE_ACTIVE 0x02 | The given bnode is in active service.

BNODE _WAIT 0x04 | Someone is waiting for a status change in this bnode

BNODE DELETE 0x08 | This bnode should be deleted at the earliest
convenience.

BNODE_ERRORSTOP 0x10 | This bnode decommissioned because of an excessive
number of errors in its associated UNIX processes.

BOS Server Interface 16 August 29, 1991 10:26

BOS' Server Specification

3.2.3 Bnode States

The constants defined in this section are used as values within the goal and fileGoal
fields within a struct bnode. They specify either the current state of the associated
bnode, or the anticipated state. In particular, the fileGoal field, which is the value
stored on disk for the bnode, always represents the desired state of the bnode, whether
or not it properly reflects the current state. For this reason, only BSTAT _SHUTDOWN and
BSTAT _NORMAL may be used within the fileGoal field. The goal field may take on any
of these values, and accurately reflects the current status of the bnode.

‘ Name ‘ Value ‘ Description ‘

BSTAT_SHUTDOWN 0 The bnode’s execution has been (should be)
terminated.

BSTAT_NORMAL 1 The bnode is (should be) executing normally.

BSTAT_SHUTTINGDOWN 2 The bnode is currently being shutdown; execution
has not yet ceased.

BSTAT_STARTINGUP 3 The bnode execution is currently being commenced;
execution has not yet begun.

3.2.4 Pruning Server Binaries

The BOZO_Prune() interface function, fully defined in Section 3.6.6.4, allows a properly-
authenticated caller to remove (“prune”) old copies of server binaries and core files
managed by the BOS Server. This section identifies the legal values for the flags
argument to the above function, specifying exactly what is to be pruned.

‘ Name] Value] Description ’
BOZ0O_PRUNEQLD 1 Prune all server binaries with the *. OLD extension.
BOZ0O_PRUNEBAK 2 Prune all server binaries with the * BAK extension.

BOZ0O_PRUNECORE 3 Prune core files.

3.2.5 Flag Bits for struct bnode proc

This section specifies the acceptable bit values for the flags field in the struct bnode _proc
structure, as defined in Section 3.3.9. Basically, they are used to record whether or not
the UNIX binary associated with the bnode has ever been run, and if so whether it has
ever exited.

BOS Server Interface 17 August 29, 1991 10:26

BOS' Server Specification

‘ Name ‘ Value ‘ Description ‘

BPROC_STARTED 1 Has the associated UNIX process ever been started up?
BPROC_EXITED 2 Has the associated UNIX process ever exited?

3.3 Structures

This section describes the major exported BOS Server data structures of interest to
application programmers.

3.3.1 struct bozo netKTime

This structure is used to communicate time values to and from the BOS Server. In par-
ticular, the BOZO_GetRestartTime() and BOZO_SetRestartTime() interface functions,
described in Sections 3.6.2.5 and 3.6.2.6 respectively, use parameters declared to be of
this type.

Four of the fields in this structure specify the hour, minute, second, and day of the event
in question. The first field in the layout serves as a mask, identifying which of the above
four fields are to be considered when matching the specified time to a given reference
time (most often the current time). The bit values that may be used for the mask field
are defined in the afs/ktime.h include file. For convenience, their values are reproduced
here, including some special cases at the end of the table.

‘ Name ‘ Value ‘ Description ‘

KTIME_HOUR 0x01 | Hour should match.
KTIME_MIN 0x02 | Minute should match.
KTIME_SEC 0x04 | Second should match.
KTIME DAY 0x08 | Day should match.

KTIME_TIME | 0x07 | All times should match.
KTIME NEVER | 0x10 | Special case: never matches.
KTIME NOW 0x20 | Special case: right now.

Fields

int mask - A field of bit values used to specify which of the following field are to
be used in computing matches.

short hour - The hour, ranging in value from 0 to 23.

short min - The minute, ranging in value from 0 to 59.

BOS Server Interface 18 August 29, 1991 10:26

BOS' Server Specification

short sec - The second, ranging in value from 0 to 59.

short day - Zero specifies Sunday, other days follow in order.

3.3.2 struct bozo_key

This structure defines the format of an AFS encryption key, as stored in the key file
located at /usr/afs/etc/KeyFile at the host on which the BOS Server runs. It is used
in the argument list of the BOZO_ListKeys() and BOZO_AddKeys() interface functions,

as described in Sections 3.6.4.4 and 3.6.4.5 respectively.

Fields

char data[8] - The array of 8 characters representing an encryption key.

3.3.3 struct bozo keylInfo

This structure defines the information kept regarding a given AFS encryption key, as
represented by a variable of type struct bozo _key, as described in Section 3.3.2 above.
A parameter of this type is used by the BOZO_ListKeys() function (described in Section
3.6.4.4). Tt contains fields holding the associated key’s modification time, a checksum on
the key, and an unused longword field. Note that the mod_sec time field listed below is
a standard UNIX time value.

Fields

long mod _sec - The time in seconds when the associated key was last modified.

long mod_usec - The number of microseconds elapsed since the second reported
in the mod_sec field. This field is never set by the BOS Server, and should
always contain a zero.

unsigned long keyCheckSum - The 32-bit cryptographic checksum of the asso-
ciated key. A block of zeros is encrypted, and the first four bytes of the result
are placed into this field.

long spare2 - This longword field is currently unused, and is reserved for future
use.

BOS Server Interface 19 August 29, 1991 10:26

BOS' Server Specification

3.3.4 struct bozo_status

This structure defines the layout of the information returned by the status parameter
for the interface function BOZO_GetInstancelnfo(), as defined in Section 3.6.2.3. The
enclosed fields include such information as the temporary and long-term goals for the
process instance, an array of bit values recording status information, start and exit times,
and associated error codes and signals.

Fields

long goal - The short-term goal for a process instance. Settings for this field are
BSTAT_SHUTDOWN, BSTAT _NORMAL, BSTAT_SHUTTINGDOWN, and BSTAT _STARTINGUP.
These values are fully defined in Section 3.2.3.

long fileGoal - The long-term goal for a process instance. Accepted settings are
restricted to a subset of those used by the goal field above, as explained in
Section 3.2.3.

long procStartTime - The last time the given process instance was started.

long procStarts - The number of process starts executed on the behalf of the given
bnode.

long last AnyExit - The last time the process instance exited for any reason.
long lastErrorExit - The last time a process exited unexpectedly.

long errorCode - The last exit’s return code.

long errorSignal - The last signal terminating the process.

long flags - BOZO_HASCORE, BOZO_ERRORSTOP, and BOZ0 BADDIRACCESS. These con-
stants are fully defined in Section 3.2.1.

long spare[] - Eight longword spares, currently unassigned and reserved for future
use.

3.3.5 struct bnode_ops

This struture defines the base set of operations that each BOS Server bnode type (struct
bnode_type, see Section 3.3.6 below) must implement. They are called at the appropri-
ate times within the BOS Server code via the BOP_* macros (see Section 3.5 and the
individual descriptions therein). They allow each bnode type to define its own behavior
in response to its particular needs.

BOS Server Interface 20 August 29, 1991 10:26

BOS' Server Specification

Fields

struct bnode *(*create)() - This function is called whenever a bnode of the given

type is created. Typically, this function will create bnode structures peculiar
to its own type and initialize the new records. Each type implementation may
take a different number of parameters. Note: there is no BOP_* macro defined
for this particular function; it is always called directly.

int (*timeout)() - This function is called whenever a timeout action must be taken

for this bnode type. It takes a single argument, namely a pointer to a type-
specific bnode structure. The BOP_TIMEOUT macro is defined to simplify
the construction of a call to this function.

int (*getstat)() - This function is called whenever a caller is attempting to get

status information concerning a bnode of the given type. It takes two parame-
ters, the first being a pointer to a type-specific bnode structure, and the second
being a pointer to a longword in which the desired status value will be placed.
The BOP_GETSTAT macro is defined to simplify the construction of a call to
this function.

int (*setstat)() - This function is called whenever a caller is attempting to set

the status information concerning a bnode of the given type. It takes two
parameters, the first being a pointer to a type-specific bnode structure, and
the second being a longword from which the new status value is obtained. The
BOP_SETSTAT macro is defined to simplify the construction of a call to this
function.

int (*delete)() - This function is called whenever a bnode of this type is being

deleted. It is expected that the proper deallocation and cleanup steps will be
performed here. It takes a single argument, a pointer to a type-specific bnode
structure. The BOP_DELETE macro is defined to simplify the construction of
a call to this function.

int (*procexit)() - This function is called whenever the UNIX process implementing

the given bnode exits. It takes two parameters, the first being a pointer to a
type-specific bnode structure, and the second being a pointer to the struct
bnode proc (defined in Section 3.3.9), describing that process in detail. The
BOP_PROCEXIT macro is defined to simplify the construction of a call to this
function.

int (*getstring)() - This function is called whenever the status string for the given

bnode must be fetched. It takes three parameters. The first is a pointer to a
type-specific bnode structure, the second is a pointer to a character buffer, and
the third is a longword specifying the size, in bytes, of the above buffer. The