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Chapter 1

Introduction

1.1 Goals and Background

This paper provides an architectural overview of Transarc’s wide-area distributed file
system, AFS. Specifically, it covers the current level of available software, the third-
generation AFS-3 system. This document will explore the technological climate in which
AFS was developed, the nature of problem(s) it addresses, and how its design attacks
these problems in order to realize the inherent benefits in such a file system. It also
examines a set of additional features for AFS, some of which are actively being considered.

This document is a member of a reference suite providing programming specifications as
to the operation of and interfaces offered by the various AFS system components. It is
intended to serve as a high-level treatment of distributed file systems in general and of
AFS in particular. This document should ideally be read before any of the others in the
suite, as it provides the organizational and philosophical framework in which they may
best be interpreted.

1.2 Document Layout

Chapter 2 provides a discussion of the technological background and developments that
created the environment in which AFS and related systems were inspired. Chapter 3
examines the specific set of goals that AFS was designed to meet, given the possibilities
created by personal computing and advances in communication technology. Chapter 4
presents the core AFS architecture and how it addresses these goals. Finally, Chapter 5
considers how AFS functionality may be be improved by certain design changes.
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1.3 Related Documents

The names of the other documents in the collection, along with brief summaries of their
contents, are listed below.

• AFS-3 Programmer’s Reference: File Server/Cache Manager Interface: This doc-
ument describes the File Server and Cache Manager agents, which provide the
backbone file managment services for AFS. The collection of File Servers for a cell
supplies centralized file storage for that site, and allows clients running the Cache
Manager component to access those files in a high-performance, secure fashion.

• AFS-3 Programmer’s Reference:Volume Server/Volume Location Server Interface:
This document describes the services through which “containers” of related user
data are located and managed.

• AFS-3 Programmer’s Reference: Protection Server Interface: This paper describes
the server responsible for mapping printable user names to and from their internal
AFS identifiers. The Protection Server also allows users to create, destroy, and
manipulate “groups” of users, which are suitable for placement on Access Control
Lists (ACLs).

• AFS-3 Programmer’s Reference: BOS Server Interface: This paper covers the
“nanny” service which assists in the administrability of the AFS environment.

• AFS-3 Programmer’s Reference: Specification for the Rx Remote Procedure Call
Facility: This document specifies the design and operation of the remote procedure
call and lightweight process packages used by AFS.
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Chapter 2

Technological Background

Certain changes in technology over the past two decades greatly influenced the nature of
computational resources, and the manner in which they were used. These developments
created the conditions under which the notion of a distributed file systems (DFS) was
born. This chapter describes these technological changes, and explores how a distributed
file system attempts to capitalize on the new computing environment’s strengths and
minimize its disadvantages.

2.1 Shift in Computational Idioms

By the beginning of the 1980’s, new classes of computing engines and new methods by
which they may be interconnected were becoming firmly established. At this time, a
shift was occurring away from the conventional mainframe-based, timeshared computing
environment to one in which both workstation-class machines and the smaller personal
computers (PCs) were a strong presence.

The new environment offered many benefits to its users when compared with timeshar-
ing. These smaller, self-sufficient machines moved dedicated computing power and cycles
directly onto people’s desks. Personal machines were powerful enough to support a wide
variety of applications, and allowed for a richer, more intuitive, more graphically-based
interface for them. Learning curves were greatly reduced, cutting training costs and
increasing new-employee productivity. In addition, these machines provided a constant
level of service throughout the day. Since a personal machine was typically only exe-
cuting programs for a single human user, it did not suffer from timesharing’s load-based
response time degradation. Expanding the computing services for an organization was
often accomplished by simply purchasing more of the relatively cheap machines. Even
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small organizations could now afford their own computing resources, over which they
exercised full control. This provided more freedom to tailor computing services to the
specific needs of particular groups.

However, many of the benefits offered by the timesharing systems were lost when the
computing idiom first shifted to include personal-style machines. One of the prime
casualties of this shift was the loss of the notion of a single name space for all files.
Instead, workstation- and PC-based environments each had independent and completely
disconnected file systems. The standardized mechanisms through which files could be
transferred between machines (e.g., FTP) were largely designed at a time when there
were relatively few large machines that were connected over slow links. Although the
newer multi-megabit per second communication pathways allowed for faster transfers,
the problem of resource location in this environment was still not addressed. There was
no longer a system-wide file system, or even a file location service, so individual users
were more isolated from the organization’s collective data. Overall, disk requirements
ballooned, since lack of a shared file system was often resolved by replicating all programs
and data to each machine that needed it. This proliferation of independent copies further
complicated the problem of version control and management in this distributed world.
Since computers were often no longer behind locked doors at a computer center, user
authentication and authorization tasks became more complex. Also, since organizational
managers were now in direct control of their computing facilities, they had to also actively
manage the hardware and software upon which they depended.

Overall, many of the benefits of the proliferation of independent, personal-style machines
were partially offset by the communication and organizational penalties they imposed.
Collaborative work and dissemination of information became more difficult now that the
previously unified file system was fragmented among hundreds of autonomous machines.

2.2 Distributed File Systems

As a response to the situation outlined above, the notion of a distributed file system
(DFS) was developed. Basically, a DFS provides a framework in which access to files
is permitted regardless of their locations. Specifically, a distributed file system offers a
single, common set of file system operations through which those accesses are performed.

There are two major variations on the core DFS concept, classified according to the way
in which file storage is managed. These high-level models are defined below.

• Peer-to-peer: In this symmetrical model, each participating machine provides
storage for specific set of files on its own attached disk(s), and allows others to
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access them remotely. Thus, each node in the DFS is capable of both importing
files (making reference to files resident on foreign machines) and exporting files
(allowing other machines to reference files located locally).

• Server-client: In this model, a set of machines designated as servers provide the
storage for all of the files in the DFS. All other machines, known as clients, must
direct their file references to these machines. Thus, servers are the sole exporters
of files in the DFS, and clients are the sole importers.

The notion of a DFS, whether organized using the peer-to-peer or server-client disci-
pline, may be used as a conceptual base upon which the advantages of personal com-
puting resources can be combined with the single-system benefits of classical timeshared
operation.

Many distributed file systems have been designed and deployed, operating on the fast
local area networks available to connect machines within a single site. These systems
include DOMAIN [9], DS [15], RFS [16], and Sprite [10]. Perhaps the most widespread
of distributed file systems to date is a product from Sun Microsystems, NFS [13] [14],
extending the popular unix file system so that it operates over local networks.

2.3 Wide-Area Distributed File Systems

Improvements in long-haul network technology are allowing for faster interconnection
bandwidths and smaller latencies between distant sites. Backbone services have been set
up across the country, and T1 (1.5 megabit/second) links are increasingly available to
a larger number of locations. Long-distance channels are still at best approximately an
order of magnitude slower than the typical local area network, and often two orders of
magnitude slower. The narrowed difference between local-area and wide-area data paths
opens the window for the notion of a wide-area distributed file system (WADFS).
In a WADFS, the transparency of file access offered by a local-area DFS is extended
to cover machines across much larger distances. Wide-area file system functionality
facilitates collaborative work and dissemination of information in this larger theater of
operation.
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Chapter 3

AFS-3 Design Goals

3.1 Introduction

This chapter describes the goals for the AFS-3 system, the first commercial WADFS in
existence.

The original AFS goals have been extended over the history of the project. The initial
AFS concept was intended to provide a single distributed file system facility capable of
supporting the computing needs of Carnegie Mellon University, a community of roughly
10,000 people. It was expected that most CMU users either had their own workstation-
class machine on which to work, or had access to such machines located in public clusters.
After being successfully implemented, deployed, and tuned in this capacity, it was rec-
ognized that the basic design could be augmented to link autonomous AFS installations
located within the greater CMU campus. As described in Section 2.3, the long-haul net-
working environment developed to a point where it was feasible to further extend AFS so
that it provided wide-area file service. The underlying AFS communication component
was adapted to better handle the widely-varying channel characteristics encountered by
intra-site and inter-site operations.

A more detailed history of AFS evolution may be found in [3] and [18].

3.2 System Goals

At a high level, the AFS designers chose to extend the single-machine unix computing
environment into aWADFS service. The unix system, in all of its numerous incarnations,

AFS-3 Design Goals 6 September 3, 1991 5:08



AFS-3 Architectural Overview

is an important computing standard, and is in very wide use. Since AFS was originally
intended to service the heavily unix-oriented CMU campus, this decision served an
important tactical purpose along with its strategic ramifications.

In addition, the server-client discipline described in Section 2.2 was chosen as the orga-
nizational base for AFS. This provides the notion of a central file store serving as the
primary residence for files within a given organization. These centrally-stored files are
maintained by server machines and are made accessible to computers running the AFS
client software.

Listed in the following sections are the primary goals for the AFS system. Chapter 4
examines how the AFS design decisions, concepts, and implementation meet this list of
goals.

3.2.1 Scale

AFS differs from other existing DFSs in that it has the specific goal of supporting a very
large user community with a small number of server machines. Unlike the rule-of-thumb
ratio of approximately 20 client machines for every server machine (20:1) used by Sun
Microsystem’s widespread NFS distributed file system, the AFS architecture aims at
smoothly supporting client/server ratios more along the lines of 200:1 within a single
installation. In addition to providing a DFS covering a single organization with tens of
thousands of users, AFS also aims at allowing thousands of independent, autonomous
organizations to join in the single, shared name space (see Section 3.2.2 below) without a
centralized control or coordination point. Thus, AFS envisions supporting the file system
needs of tens of millions of users at interconnected yet autonomous sites.

3.2.2 Name Space

One of the primary strengths of the timesharing computing environment is the fact that
it implements a single name space for all files in the system. Users can walk up to any
terminal connected to a timesharing service and refer to its files by the identical name.
This greatly encourages collaborative work and dissemination of information, as everyone
has a common frame of reference. One of the major AFS goals is the extension of this
concept to a WADFS. Users should be able to walk up to any machine acting as an AFS
client, anywhere in the world, and use the identical file name to refer to a given object.

In addition to the common name space, it was also an explicit goal for AFS to pro-
vide complete access transparency and location transparency for its files. Access
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transparency is defined as the system’s ability to use a single mechanism to operate on
a file, regardless of its location, local or remote. Location transparency is defined as
the inability to determine a file’s location from its name. A system offering location
transparency may also provide transparent file mobility, relocating files between server
machines without visible effect to the naming system.

3.2.3 Performance

Good system performance is a critical AFS goal, especially given the scale, client-server
ratio, and connectivity specifications described above. The AFS architecture aims at
providing file access characteristics which, on average, are similar to those of local disk
performance.

3.2.4 Security

A production WADFS, especially one which allows and encourages transparent file access
between different administrative domains, must be extremely conscious of security issues.
AFS assumes that server machines are “trusted” within their own administrative domain,
being kept behind locked doors and only directly manipulated by reliable administrative
personnel. On the other hand, AFS client machines are assumed to exist in inherently
insecure environments, such as offices and dorm rooms. These client machines are recog-
nized to be unsupervisable, and fully accessible to their users. This situation makes AFS
servers open to attacks mounted by possibly modified client hardware, firmware, operat-
ing systems, and application software. In addition, while an organization may actively
enforce the physical security of its own file servers to its satisfaction, other organizations
may be lax in comparison. It is important to partition the system’s security mechanism
so that a security breach in one administrative domain does not allow unauthorized
access to the facilities of other autonomous domains.

The AFS system is targeted to provide confidence in the ability to protect system data
from unauthorized access in the above environment, where untrusted client hardware
and software may attempt to perform direct remote file operations from anywhere in the
world, and where levels of physical security at remote sites may not meet the standards
of other sites.
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3.2.5 Access Control

The standard unix access control mechanism associates mode bits with every file and
directory, applying them based on the user’s numerical identifier and the user’s member-
ship in various groups. This mechanism was considered too coarse-grained by the AFS
designers. It was seen as insufficient for specifying the exact set of individuals and groups
which may properly access any given file, as well as the operations these principals may
perform. The unix group mechanism was also considered too coarse and inflexible. AFS
was designed to provide more flexible and finer-grained control of file access, improving
the ability to define the set of parties which may operate on files, and what their specific
access rights are.

3.2.6 Reliability

The crash of a server machine in any distributed file system causes the information it
hosts to become unavailable to the user community. The same effect is observed when
server and client machines are isolated across a network partition. Given the potential
size of the AFS user community, a single server crash could potentially deny service to a
very large number of people. The AFS design reflects a desire to minimize the visibility
and impact of these inevitable server crashes.

3.2.7 Administrability

Driven once again by the projected scale of AFS operation, one of the system’s goals is to
offer easy administrability. With the large projected user population, the amount of file
data expected to be resident in the shared file store, and the number of machines in the
environment, a WADFS could easily become impossible to administer unless its design
allowed for easy monitoring and manipulation of system resources. It is also imperative to
be able to apply security and access control mechanisms to the administrative interface.

3.2.8 Interoperability/Coexistence

Many organizations currently employ other distributed file systems, most notably Sun
Microsystem’s NFS, which is also an extension of the basic single-machine unix system.
It is unlikely that AFS will receive significant use if it cannot operate concurrently with
other DFSs without mutual interference. Thus, coexistence with other DFSs is an explicit
AFS goal.
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A related goal is to provide a way for other DFSs to interoperate with AFS to various
degrees, allowing AFS file operations to be executed from these competing systems. This
is advantageous, since it may extend the set of machines which are capable of interacting
with the AFS community. Hardware platforms and/or operating systems to which AFS
is not ported may thus be able to use their native DFS system to perform AFS file
references.

These two goals serve to extend AFS coverage, and to provide a migration path by which
potential clients may sample AFS capabilities, and gain experience with AFS. This may
result in data migration into native AFS systems, or the impetus to acquire a native
AFS implementation.

3.2.9 Heterogeneity/Portability

It is important for AFS to operate on a large number of hardware platforms and operating
systems, since a large community of unrelated organizations will most likely utilize a wide
variety of computing environments. The size of the potential AFS user community will
be unduly restricted if AFS executes on a small number of platforms. Not only must
AFS support a largely heterogeneous computing base, it must also be designed to be
easily portable to new hardware and software releases in order to maintain this coverage
over time.
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Chapter 4

AFS High-Level Design

4.1 Introduction

This chapter presents an overview of the system architecture for the AFS-3 WADFS.
Different treatments of the AFS system may be found in several documents, including
[3], [4], [5], and [2]. Certain system features discussed here are examined in more detail
in the set of accompanying AFS programmer specification documents.

After the archtectural overview, the system goals enumerated in Chapter 3 are revisited,
and the contribution of the various AFS design decisions and resulting features is noted.

4.2 The AFS System Architecture

4.2.1 Basic Organization

As stated in Section 3.2, a server-client organization was chosen for the AFS system. A
group of trusted server machines provides the primary disk space for the central store
managed by the organization controlling the servers. File system operation requests for
specific files and directories arrive at server machines from machines running the AFS
client software. If the client is authorized to perform the operation, then the server
proceeds to execute it.

In addition to this basic file access functionality, AFS server machines also provide related
system services. These include authentication service, mapping between printable and
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numerical user identifiers, file location service, time service, and such administrative
operations as disk management, system reconfiguration, and tape backup.

4.2.2 Volumes

4.2.2.1 Definition

Disk partitions used for AFS storage do not directly host individual user files and di-
rectories. Rather, connected subtrees of the system’s directory structure are placed into
containers called volumes. Volumes vary in size dynamically as the objects it houses are
inserted, overwritten, and deleted. Each volume has an associated quota, or maximum
permissible storage. A single unix disk partition may thus host one or more volumes,
and in fact may host as many volumes as physically fit in the storage space. However,
the practical maximum is currently 3,500 volumes per disk partition. This limitation
is imposed by the salvager program, which examines and repairs file system metadata
structures.

There are two ways to identify an AFS volume. The first option is a 32-bit numerical
value called the volume ID. The second is a human-readable character string called the
volume name.

Internally, a volume is organized as an array of mutable objects, representing individual
files and directories. The file system object associated with each index in this internal
array is assigned a uniquifier and a data version number. A subset of these values
are used to compose an AFS file identifier, or FID. FIDs are not normally visible to user
applications, but rather are used internally by AFS. They consist of ordered triplets,
whose components are the volume ID, the index within the volume, and the uniquifier
for the index.

To understand AFS FIDs, let us consider the case where index i in volume v refers to a file
named example.txt. This file’s uniquifier is currently set to one (1), and its data version
number is currently set to zero (0). The AFS client software may then refer to this file
with the following FID: (v, i, 1). The next time a client overwrites the object identified
with the (v, i, 1) FID, the data version number for example.txt will be promoted to one
(1). Thus, the data version number serves to distinguish between different versions of
the same file. A higher data version number indicates a newer version of the file.

Consider the result of deleting file (v, i, 1). This causes the body of example.txt to be
discarded, and marks index i in volume v as unused. Should another program create a
file, say a.out, within this volume, index i may be reused. If it is, the creation operation
will bump the index’s uniquifier to two (2), and the data version number is reset to
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zero (0). Any client caching a FID for the deleted example.txt file thus cannot affect the
completely unrelated a.out file, since the uniquifiers differ.

4.2.2.2 Attachment

The connected subtrees contained within individual volumes are attached to their proper
places in the file space defined by a site, forming a single, apparently seamless unix tree.
These attachment points are called mount points. These mount points are persistent file
system objects, implemented as symbolic links whose contents obey a stylized format.
Thus, AFS mount points differ from NFS-style mounts. In the NFS environment, the
user dynamically mounts entire remote disk partitions using any desired name. These
mounts do not survive client restarts, and do not insure a uniform namespace between
different machines.

A single volume is chosen as the root of the AFS file space for a given organization.
By convention, this volume is named root.afs. Each client machine belonging to this
organization peforms a unix mount() of this root volume (not to be confused with an
AFS mount point) on its empty /afs directory, thus attaching the entire AFS name space
at this point.

4.2.2.3 Administrative Uses

Volumes serve as the administrative unit for AFS file system data, providing as the basis
for replication, relocation, and backup operations.

4.2.2.4 Replication

Read-only snapshots of AFS volumes may be created by administrative personnel. These
clones may be deployed on up to eight disk partitions, on the same server machine or
across different servers. Each clone has the identical volume ID, which must differ from
its read-write parent. Thus, at most one clone of any given volume v may reside on a
given disk partition. File references to this read-only clone volume may be serviced by
any of the servers which host a copy.
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4.2.2.5 Backup

Volumes serve as the unit of tape backup and restore operations. Backups are accom-
plished by first creating an on-line backup volume for each volume to be archived. This
backup volume is organized as a copy-on-write shadow of the original volume, capturing
the volume’s state at the instant that the backup took place. Thus, the backup volume
may be envisioned as being composed of a set of object pointers back to the original
image. The first update operation on the file located in index i of the original volume
triggers the copy-on-write association. This causes the file’s contents at the time of the
snapshot to be physically written to the backup volume before the newer version of the
file is stored in the parent volume.

Thus, AFS on-line backup volumes typically consume little disk space. On average, they
are composed mostly of links and to a lesser extent the bodies of those few files which
have been modified since the last backup took place. Also, the system does not have to
be shut down to insure the integrity of the backup images. Dumps are generated from
the unchanging backup volumes, and are transferred to tape at any convenient time
before the next backup snapshot is performed.

4.2.2.6 Relocation

Volumes may be moved transparently between disk partitions on a given file server, or
between different file server machines. The transparency of volume motion comes from
the fact that neither the user-visible names for the files nor the internal AFS FIDs contain
server-specific location information.

Interruption to file service while a volume move is being executed is typically on the
order of a few seconds, regardless of the amount of data contained within the volume.
This derives from the staged algorithm used to move a volume to a new server. First, a
dump is taken of the volume’s contents, and this image is installed at the new site. The
second stage involves actually locking the original volume, taking an incremental dump
to capture file updates since the first stage. The third stage installs the changes at the
new site, and the fourth stage deletes the original volume. Further references to this
volume will resolve to its new location.

4.2.3 Authentication

AFS uses the Kerberos [22] [23] authentication system developed at MIT’s Project
Athena to provide reliable identification of the principals attempting to operate on the
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files in its central store. Kerberos provides for mutual authentication, not only assur-
ing AFS servers that they are interacting with the stated user, but also assuring AFS
clients that they are dealing with the proper server entities and not imposters. Authen-
tication information is mediated through the use of tickets. Clients register passwords
with the authentication system, and use those passwords during authentication sessions
to secure these tickets. A ticket is an object which contains an encrypted version of
the user’s name and other information. The file server machines may request a caller
to present their ticket in the course of a file system operation. If the file server can
successfully decrypt the ticket, then it knows that it was created and delivered by the
authentication system, and may trust that the caller is the party identified within the
ticket.

Such subjects as mutual authentication, encryption and decryption, and the use of session
keys are complex ones. Readers are directed to the above references for a complete
treatment of Kerberos-based authentication.

4.2.4 Authorization

4.2.4.1 Access Control Lists

AFS implements per-directory Access Control Lists (ACLs) to improve the ability
to specify which sets of users have access to the files within the directory, and which
operations they may perform. ACLs are used in addition to the standard unix mode
bits. ACLs are organized as lists of one or more (principal, rights) pairs. A principal
may be either the name of an individual user or a group of individual users. There are
seven expressible rights, as listed below.

• Read (r): The ability to read the contents of the files in a directory.

• Lookup (l): The ability to look up names in a directory.

• Write (w): The ability to create new files and overwrite the contents of existing
files in a directory.

• Insert (i): The ability to insert new files in a directory, but not to overwrite
existing files.

• Delete (d): The ability to delete files in a directory.

• Lock (k): The ability to acquire and release advisory locks on a given directory.

• Administer (a): The ability to change a directory’s ACL.
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4.2.4.2 AFS Groups

AFS users may create a certain number of groups, differing from the standard unix

notion of group. These AFS groups are objects that may be placed on ACLs, and simply
contain a list of AFS user names that are to be treated identically for authorization
purposes. For example, user erz may create a group called erz:friends consisting of
the kazar, vasilis, and mason users. Should erz wish to grant read, lookup, and insert
rights to this group in directory d, he should create an entry reading (erz:friends, rli) in
d’s ACL.

AFS offers three special, built-in groups, as described below.

1. system:anyuser: Any individual who accesses AFS files is considered by the sys-
tem to be a member of this group, whether or not they hold an authentication
ticket. This group is unusual in that it doesn’t have a stable membership. In fact,
it doesn’t have an explicit list of members. Instead, the system:anyuser “mem-
bership” grows and shrinks as file accesses occur, with users being (conceptually)
added and deleted automatically as they interact with the system.

The system:anyuser group is typically put on the ACL of those directories for
which some specific level of completely public access is desired, covering any user
at any AFS site.

2. system:authuser: Any individual in possession of a valid Kerberos ticket minted
by the organization’s authentication service is treated as a member of this group.
Just as with system:anyuser, this special group does not have a stable member-
ship. If a user acquires a ticket from the authentication service, they are automat-
ically “added” to the group. If the ticket expires or is discarded by the user, then
the given individual will automatically be “removed” from the group.

The system:authuser group is usually put on the ACL of those directories for
which some specific level of intra-site access is desired. Anyone holding a valid
ticket within the organization will be allowed to perform the set of accesses specified
by the ACL entry, regardless of their precise individual ID.

3. system:administrators: This built-in group defines the set of users capable of
performing certain important administrative operations within the cell. Members
of this group have explicit “a” (ACL administration) rights on every directory’s
ACL in the organization. Members of this group are the only ones which may legally
issue administrative commands to the file server machines within the organization.
This group is not like the other two described above in that it does have a stable
membership, where individuals are added and deleted from the group explicitly.
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The system:administrators group is typically put on the ACL of those directo-
ries which contain sensitive administrative information, or on those places where
only administrators are allowed to make changes. All members of this group have
implicit rights to change the ACL on any AFS directory within their organization.
Thus, they don’t have to actually appear on an ACL, or have “a” rights enabled
in their ACL entry if they do appear, to be able to modify the ACL.

4.2.5 Cells

A cell is the set of server and client machines managed and operated by an adminis-
tratively independent organization, as fully described in the original proposal [17] and
specification [18] documents. The cell’s administrators make decisions concerning such
issues as server deployment and configuration, user backup schedules, and replication
strategies on their own hardware and disk storage completely independently from those
implemented by other cell administrators regarding their own domains. Every client
machine belongs to exactly one cell, and uses that information to determine where to
obtain default system resources and services.

The cell concept allows autonomous sites to retain full administrative control over their
facilities while allowing them to collaborate in the establishment of a single, common
name space composed of the union of their individual name spaces. By convention,
any file name beginning with /afs is part of this shared global name space and can be
used at any AFS-capable machine. The original mount point concept was modified to
contain cell information, allowing volumes housed in foreign cells to be mounted in the
file space. Again by convention, the top-level /afs directory contains a mount point to
the root.cell volume for each cell in the AFS community, attaching their individual
file spaces. Thus, the top of the data tree managed by cell xyz is represented by the
/afs/xyz directory.

Creating a new AFS cell is straightforward, with the operation taking three basic steps:

1. Name selection: A prospective site has to first select a unique name for itself.
Cell name selection is inspired by the hierarchical Domain naming system. Domain-
style names are designed to be assignable in a completely decentralized fashion.
Example cell names are transarc.com, ssc.gov, and umich.edu. These names
correspond to the AFS installations at Transarc Corporation in Pittsburgh, PA, the
Superconducting Supercollider Lab in Dallas, TX, and the University of Michigan
at Ann Arbor, MI. respectively.

2. Server installation: Once a cell name has been chosen, the site must bring up
one or more AFS file server machines, creating a local file space and a suite of local

AFS High-Level Design 17 September 3, 1991 5:08



AFS-3 Architectural Overview

services, including authentication (Section 4.2.6.4) and volume location (Section
4.2.6.2).

3. Advertise services: In order for other cells to discover the presence of the new
site, it must advertise its name and which of its machines provide basic AFS services
such as authentication and volume location. An established site may then record
the machines providing AFS system services for the new cell, and then set up its
mount point under /afs. By convention, each cell places the top of its file tree in
a volume named root.cell.

4.2.6 Implementation of Server Functionality

AFS server functionality is implemented by a set of user-level processes which execute
on server machines. This section examines the role of each of these processes.

4.2.6.1 File Server

This AFS entity is responsible for providing a central disk repository for a particular set
of files within volumes, and for making these files accessible to properly-authorized users
running on client machines.

4.2.6.2 Volume Location Server

The Volume Location Server maintains and exports the Volume Location Database
(VLDB). This database tracks the server or set of servers on which volume instances
reside. Among the operations it supports are queries returning volume location and
status information, volume ID management, and creation, deletion, and modification of
VLDB entries.

The VLDB may be replicated to two or more server machines for availability and load-
sharing reasons. A Volume Location Server process executes on each server machine on
which a copy of the VLDB resides, managing that copy.

4.2.6.3 Volume Server

The Volume Server allows administrative tasks and probes to be performed on the set
of AFS volumes residing on the machine on which it is running. These operations

AFS High-Level Design 18 September 3, 1991 5:08



AFS-3 Architectural Overview

include volume creation and deletion, renaming volumes, dumping and restoring volumes,
altering the list of replication sites for a read-only volume, creating and propagating a
new read-only volume image, creation and update of backup volumes, listing all volumes
on a partition, and examining volume status.

4.2.6.4 Authentication Server

The AFS Authentication Server maintains and exports the Authentication Database
(ADB). This database tracks the encrypted passwords of the cell’s users. The Authen-
tication Server interface allows operations that manipulate ADB entries. It also imple-
ments the Kerberos mutual authentication protocol, supplying the appropriate identifi-
cation tickets to successful callers.

The ADB may be replicated to two or more server machines for availability and load-
sharing reasons. An Authentication Server process executes on each server machine on
which a copy of the ADB resides, managing that copy.

4.2.6.5 Protection Server

The Protection Server maintains and exports the Protection Database (PDB), which
maps between printable user and group names and their internal numerical AFS identi-
fiers. The Protection Server also allows callers to create, destroy, query ownership and
membership, and generally manipulate AFS user and group records.

The PDB may be replicated to two or more server machines for availability and load-
sharing reasons. A Protection Server process executes on each server machine on which
a copy of the PDB resides, managing that copy.

4.2.6.6 BOS Server

The BOS Server is an administrative tool which runs on each file server machine in a
cell. This server is responsible for monitoring the health of the AFS agent processess on
that machine. The BOS Server brings up the chosen set of AFS agents in the proper
order after a system reboot, answers requests as to their status, and restarts them when
they fail. It also accepts commands to start, suspend, or resume these processes, and
install new server binaries.
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4.2.6.7 Update Server/Client

The Update Server and Update Client programs are used to distribute important system
files and server binaries. For example, consider the case of distributing a new File Server
binary to the set of Sparcstation server machines in a cell. One of the Sparcstation
servers is declared to be the distribution point for its machine class, and is configured
to run an Update Server. The new binary is installed in the appropriate local directory
on that Sparcstation distribution point. Each of the other Sparcstation servers runs an
Update Client instance, which periodically polls the proper Update Server. The new File
Server binary will be detected and copied over to the client. Thus, new server binaries
need only be installed manually once per machine type, and the distribution to like server
machines will occur automatically.

4.2.7 Implementation of Client Functionality

4.2.7.1 Introduction

The portion of the AFS WADFS which runs on each client machine is called the Cache
Manager. This code, running within the client’s kernel, is a user’s representative in
communicating and interacting with the File Servers. The Cache Manager’s primary
responsibility is to create the illusion that the remote AFS file store resides on the client
machine’s local disk(s).

As implied by its name, the Cache Manager supports this illusion by maintaining a
cache of files referenced from the central AFS store on the machine’s local disk. All file
operations executed by client application programs on files within the AFS name space
are handled by the Cache Manager and are realized on these cached images. Client-side
AFS references are directed to the Cache Manager via the standard VFS and vnode
file system interfaces pioneered and advanced by Sun Microsystems [21]. The Cache
Manager stores and fetches files to and from the shared AFS repository as necessary
to satisfy these operations. It is responsible for parsing unix pathnames on open()
operations and mapping each component of the name to the File Server or group of File
Servers that house the matching directory or file.

The Cache Manager has additional responsibilities. It also serves as a reliable repository
for the user’s authentication information, holding on to their tickets and wielding them
as necessary when challenged during File Server interactions. It caches volume location
information gathered from probes to the VLDB, and keeps the client machine’s local
clock synchronized with a reliable time source.
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4.2.7.2 Chunked Access

In previous AFS incarnations, whole-file caching was performed. Whenever an AFS
file was referenced, the entire contents of the file were stored on the client’s local disk.
This approach had several disadvantages. One problem was that no file larger than the
amount of disk space allocated to the client’s local cache could be accessed.

AFS-3 supports chunked file access, allowing individual 64 kilobyte pieces to be fetched
and stored. Chunking allows AFS files of any size to be accessed from a client. The
chunk size is settable at each client machine, but the default chunk size of 64K was
chosen so that most unix files would fit within a single chunk.

4.2.7.3 Cache Management

The use of a file cache by the AFS client-side code, as described above, raises the thorny
issue of cache consistency. Each client must efficiently determine whether its cached
file chunks are identical to the corresponding sections of the file as stored at the server
machine before allowing a user to operate on those chunks.

AFS employs the notion of a callback as the backbone of its cache consistency algorithm.
When a server machine delivers one or more chunks of a file to a client, it also includes
a callback “promise” that the client will be notified if any modifications are made to the
data in the file at the server. Thus, as long as the client machine is in possession of a
callback for a file, it knows it is correctly synchronized with the centrally-stored version,
and allows its users to operate on it as desired without any further interaction with the
server. Before a file server stores a more recent version of a file on its own disks, it will
first break all outstanding callbacks on this item. A callback will eventually time out,
even if there are no changes to the file or directory it covers.

4.2.8 Communication Substrate: Rx

All AFS system agents employ remote procedure call (RPC) interfaces. Thus, servers
may be queried and operated upon regardless of their location.

The Rx RPC package is used by all AFS agents to provide a high-performance, multi-
threaded, and secure communication mechanism. The Rx protocol is adaptive, conform-
ing itself to widely varying network communication media encountered by a WADFS. It
allows user applications to define and insert their own security modules, allowing them
to execute the precise end-to-end authentication algorithms required to suit their specific
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needs and goals. Rx offers two built-in security modules. The first is the null module,
which does not perform any encryption or authentication checks. The second built-in
security module is rxkad, which utilizes Kerberos authentication.

Although pervasive throughout the AFS distributed file system, all of its agents, and
many of its standard application programs, Rx is entirely separable from AFS and does
not depend on any of its features. In fact, Rx can be used to build applications engaging
in RPC-style communication under a variety of unix-style file systems. There are in-
kernel and user-space implementations of the Rx facility, with both sharing the same
interface.

4.2.9 Database Replication: ubik

The three AFS system databases (VLDB, ADB, and PDB) may be replicated to multiple
server machines to improve their availability and share access loads among the replica-
tion sites. The ubik replication package is used to implement this functionality. A full
description of ubik and of the quorum completion algorithm it implements may be found
in [19] and [20].

The basic abstraction provided by ubik is that of a disk file replicated to multiple server
locations. One machine is considered to be the synchronization site, handling all write
operations on the database file. Read operations may be directed to any of the active
members of the quorum, namely a subset of the replication sites large enough to insure
integrity across such failures as individual server crashes and network partitions. All of
the quorum members participate in regular elections to determine the current synchro-
nization site. The ubik algorithms allow server machines to enter and exit the quorum
in an orderly and consistent fashion.

All operations to one of these replicated “abstract files” are performed as part of a
transaction. If all the related operations performed under a transaction are successful,
then the transaction is committed, and the changes are made permanent. Otherwise, the
transaction is aborted, and all of the operations for that transaction are undone.

Like Rx, the ubik facility may be used by client applications directly. Thus, user appli-
catons may easily implement the notion of a replicated disk file in this fashion.

4.2.10 System Management

There are several AFS features aimed at facilitating system management. Some of these
features have already been mentioned, such as volumes, the BOS Server, and the per-
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vasive use of secure RPCs throughout the system to perform administrative operations
from any AFS client machinein the worldwide community. This section covers additional
AFS features and tools that assist in making the system easier to manage.

4.2.10.1 Intelligent Access Programs

A set of intelligent user-level applications were written so that the AFS system agents
could be more easily queried and controlled. These programs accept user input, then
translate the caller’s instructions into the proper RPCs to the responsible AFS system
agents, in the proper order.

An example of this class of AFS application programs is vos, which mediates access
to the Volume Server and the Volume Location Server agents. Consider the vos move

operation, which results in a given volume being moved from one site to another. The
Volume Server does not support a complex operation like a volume move directly. In
fact, this move operation involves the Volume Servers at the current and new machines,
as well as the Volume Location Server, which tracks volume locations. Volume moves
are accomplished by a combination of full and incremental volume dump and restore
operations, and a VLDB update. The vos move command issues the necessary RPCs in
the proper order, and attempts to recovers from errors at each of the steps.

The end result is that the AFS interface presented to system administrators is much
simpler and more powerful than that offered by the raw RPC interfaces themselves. The
learning curve for administrative personnel is thus flattened. Also, automatic execution
of complex system operations are more likely to be successful, free from human error.

4.2.10.2 Monitoring Interfaces

The various AFS agent RPC interfaces provide calls which allow for the collection of
system status and performance data. This data may be displayed by such programs
as scout, which graphically depicts File Server performance numbers and disk utiliza-
tions. Such monitoring capabilites allow for quick detection of system problems. They
also support detailed performance analyses, which may indicate the need to reconfigure
system resources.

4.2.10.3 Backup System

A special backup system has been designed and implemented for AFS, as described in
[6]. It is not sufficient to simply dump the contents of all File Server partitions onto tape,
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since volumes are mobile, and need to be tracked individually. The AFS backup system
allows hierarchical dump schedules to be built based on volume names. It generates the
appropriate RPCs to create the required backup volumes and to dump these snapshots
to tape. A database is used to track the backup status of system volumes, along with
the set of tapes on which backups reside.

4.2.11 Interoperability

Since the client portion of the AFS software is implemented as a standard VFS/vnode file
system object, AFS can be installed into client kernels and utilized without interference
with other VFS-style file systems, such as vanilla unix and the NFS distributed file
system.

Certain machines either cannot or choose not to run the AFS client software natively.
If these machines run NFS, it is still possible to access AFS files through a protocol
translator. The NFS-AFS Translator may be run on any machine at the given site
that runs both NFS and the AFS Cache Manager. All of the NFS machines that wish to
access the AFS shared store proceed to NFS-mount the translator’s /afs directory. File
references generated at the NFS-based machines are received at the translator machine,
which is acting in its capacity as an NFS server. The file data is actually obtained when
the translator machine issues the corresponding AFS references in its role as an AFS
client.

4.3 Meeting AFS Goals

The AFS WADFS design, as described in this chapter, serves to meet the system goals
stated in Chapter 3. This section revisits each of these AFS goals, and identifies the
specific architectural constructs that bear on them.

4.3.1 Scale

To date, AFS has been deployed to over 140 sites world-wide, with approximately 60 of
these cells visible on the public Internet. AFS sites are currently operating in several
European countries, in Japan, and in Australia. While many sites are modest in size,
certain cells contain more than 30,000 accounts. AFS sites have realized client/server
ratios in excess of the targeted 200:1.
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4.3.2 Name Space

A single uniform name space has been constructed across all cells in the greater AFS user
community. Any pathname beginning with /afs may indeed be used at any AFS client.
A set of common conventions regarding the organization of the top-level /afs directory
and several directories below it have been established. These conventions also assist in
the location of certain per-cell resources, such as AFS configuration files.

Both access transparency and location transparency are supported by AFS, as evidenced
by the common access mechanisms and by the ability to transparently relocate volumes.

4.3.3 Performance

AFS employs caching extensively at all levels to reduce the cost of “remote” references.
Measured data cache hit ratios are very high, often over 95%. This indicates that the
file images kept on local disk are very effective in satisfying the set of remote file ref-
erences generated by clients. The introduction of file system callbacks has also been
demonstrated to be very effective in the efficient implementation of cache synchroniza-
tion. Replicating files and system databases across multiple server machines distributes
load among the given servers. The Rx RPC subsystem has operated successfully at net-
work speeds ranging from 19.2 kilobytes/second to experimental gigabit/second FDDI
networks.

Even at the intra-site level, AFS has been shown to deliver good performance, espe-
cially in high-load situations. One often-quoted study [1] compared the performance of
an older version of AFS with that of NFS on a large file system task named the An-
drew Benchmark. While NFS sometimes outperformed AFS at low load levels, its
performance fell off rapidly at higher loads while AFS performance degradation was not
significantly affected.

4.3.4 Security

The use of Kerberos as the AFS authentication system fits the security goal nicely. Access
to AFS files from untrusted client machines is predicated on the caller’s possession of
the appropriate Kerberos ticket(s). Setting up per-site, Kerveros-based authentication
services compartmentalizes any security breach to the cell which was compromised. Since
the Cache Manager will store multiple tickets for its users, they may take on different
identities depending on the set of file servers being accessed.

AFS High-Level Design 25 September 3, 1991 5:08



AFS-3 Architectural Overview

4.3.5 Access Control

AFS extends the standard unix authorization mechanism with per-directory Access Con-
trol Lists. These ACLs allow specific AFS principals and groups of these principals to be
granted a wide variety of rights on the associated files. Users may create and manipulate
AFS group entities without administrative assistance, and place these tailored groups on
ACLs.

4.3.6 Reliability

A subset of file server crashes are masked by the use of read-only replication on volumes
containing slowly-changing files. Availability of important, frequently-used programs
such as editors and compilers may thus been greatly improved. Since the level of repli-
cation may be chosen per volume, and easily changed, each site may decide the proper
replication levels for certain programs and/or data.

Similarly, replicated system databases help to maintain service in the face of server
crashes and network partitions.

4.3.7 Administrability

Such features as pervasive, secure RPC interfaces to all AFS system components, vol-
umes, overseer processes for monitoring and management of file system agents, intelligent
user-level access tools, interface routines providing performance and statistics informa-
tion, and an automated backup service tailored to a volume-based environment all con-
tribute to the administrability of the AFS system.

4.3.8 Interoperability/Coexistence

Due to its VFS-style implementation, the AFS client code may be easily installed in the
machine’s kernel, and may service file requests without interfering in the operation of
any other installed file system. Machines either not capable of running AFS natively
or choosing not to do so may still access AFS files via NFS with the help of a protocol
translator agent.
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4.3.9 Heterogeneity/Portability

As most modern kernels use a VFS-style interface to support their native file systems,
AFS may usually be ported to a new hardware and/or software environment in a rela-
tively straightforward fashion. Such ease of porting allows AFS to run on a wide variety
of platforms.
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Chapter 5

Future AFS Design Refinements

5.1 Overview

The current AFS WADFS design and implementation provides a high-performance, scal-
able, secure, and flexible computing environment. However, there is room for improve-
ment on a variety of fronts. This chapter considers a set of topics, examining the short-
comings of the current AFS system and considering how additional functionality may be
fruitfully constructed.

Many of these areas are already being addressed in the next-generation AFS system
which is being built as part of Open Software Foundation’s (OSF) Distributed Computing
Environment [7] [8].

5.2 unix Semantics

Any distributed file system which extends the unix file system model to include remote
file accesses presents its application programs with failure modes which do not exist in
a single-machine unix implementation. This semantic difference is difficult to mask.

The current AFS design varies from pure unix semantics in other ways. In a single-
machine unix environment, modifications made to an open file are immediately visible
to other processes with open file descriptors to the same file. AFS does not reproduce
this behavior when programs on different machines access the same file. Changes made
to one cached copy of the file are not made immediately visible to other cached copies.
The changes are only made visible to other access sites when a modified version of a
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file is stored back to the server providing its primary disk storage. Thus, one client’s
changes may be entirely overwritten by another client’s modifications. The situation is
further complicated by the possibility that dirty file chunks may be flushed out to the
File Server before the file is closed.

The version of AFS created for the OSF offering extends the current, untyped callback
notion to a set of multiple, independent synchronization guarantees. These synchroniza-
tion tokens allow functionality not offered by AFS-3, including byte-range mandatory
locking, exclusive file opens, and read and write privileges over portions of a file.

5.3 Improved Name Space Management

Discovery of new AFS cells and their integration into each existing cell’s name space is
a completely manual operation in the current system. As the rate of new cell creations
increases, the load imposed on system administrators also increases. Also, representing
each cell’s file space entry as a mount point object in the /afs directory leads to a
potential problem. As the number of entries in the /afs directory increase, search time
through the directory also grows.

One improvement to this situation is to implement the top-level /afs directory through a
Domain-style database. The database would map cell names to the set of server machines
providing authentication and volume location services for that cell. The Cache Manager
would query the cell database in the course of pathname resolution, and cache its lookup
results.

In this database-style environment, adding a new cell entry under /afs is accomplished by
creating the appropriate database entry. The new cell information is then immediately
accessible to all AFS clients.

5.4 Read/Write Replication

The AFS-3 servers and databases are currently equipped to handle read/only replication
exclusively. However, other distributed file systems have demonstrated the feasibility of
providing full read/write replication of data in environments very similar to AFS [11].
Such systems can serve as models for the set of required changes.
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5.5 Disconnected Operation

Several facilities are provided by AFS so that server failures and network partitions
may be completely or partially masked. However, AFS does not provide for completely
disconnected operation of file system clients. Disconnected operation is a mode in
which a client continues to access critical data during accidental or intentional inability
to access the shared file repository. After some period of autonomous operation on the set
of cached files, the client reconnects with the repository and resynchronizes the contents
of its cache with the shared store.

Studies of related systems provide evidence that such disconnected operation is feasible
[11] [12]. Such a capability may be explored for AFS.

5.6 Multiprocessor Support

The LWP lightweight thread package used by all AFS system processes assumes that
individual threads may execute non-preemeptively, and that all other threads are qui-
escent until control is explicitly relinquished from within the currently active thread.
These assumptions conspire to prevent AFS from operating correctly on a multiproces-
sor platform.

A solution to this restriction is to restructure the AFS code organization so that the
proper locking is performed. Thus, critical sections which were previously only implicitly
defined are explicitly specified.
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