
AFS-3 Programmer’s Reference:
BOS Server Interface

Edward R. Zayas

Transarc Corporation

Version 1.0 of 28 August 1991 11:58

c©Copyright 1991 Transarc Corporation

All Rights Reserved

FS-00-D161

BOS Server Specification

Contents

1 Overview . 1
1.1 Introduction . 1
1.2 Scope . 2
1.3 Document Layout . 2
1.4 Related Documents . 3

2 BOS Server Architecture . 4
2.1 Bnodes . 4

2.1.1 Overview . 4
2.1.2 Bnode Classes . 5
2.1.3 Per-Class Bnode Operations . 6

2.2 BOS Server Directories . 7
2.3 BOS Server Files . 7

2.3.1 /usr/afs/etc/UserList . 7
2.3.2 /usr/afs/etc/CellServDB . 8
2.3.3 /usr/afs/etc/ThisCell . 8
2.3.4 /usr/afs/local/BosConfig . 8
2.3.5 /usr/afs/local/NoAuth . 10
2.3.6 /usr/afs/etc/KeyFile . 10

2.4 Restart Times . 11
2.5 The bosserver Process . 12

2.5.1 Introduction . 12
2.5.2 Threading . 12
2.5.3 Initialization Algorithm . 13
2.5.4 Command Line Switches . 14

3 BOS Server Interface . 15
3.1 Introduction . 15
3.2 Constants . 15

3.2.1 Status Bits . 16
3.2.2 Bnode Activity Bits . 16
3.2.3 Bnode States . 17

Table of Contents i August 29, 1991 10:26

BOS Server Specification

3.2.4 Pruning Server Binaries . 17
3.2.5 Flag Bits for struct bnode proc 17

3.3 Structures . 18
3.3.1 struct bozo netKTime . 18
3.3.2 struct bozo key . 19
3.3.3 struct bozo keyInfo . 19
3.3.4 struct bozo status . 20
3.3.5 struct bnode ops . 20
3.3.6 struct bnode type . 22
3.3.7 struct bnode token . 23
3.3.8 struct bnode . 23
3.3.9 struct bnode proc . 24

3.4 Error Codes . 25
3.5 Macros . 25

3.5.1 BOP TIMEOUT() . 26
3.5.2 BOP GETSTAT() . 26
3.5.3 BOP SETSTAT() . 26
3.5.4 BOP DELETE() . 27
3.5.5 BOP PROCEXIT() . 27
3.5.6 BOP GETSTRING() . 27
3.5.7 BOP GETPARM() . 27
3.5.8 BOP RESTARTP() . 28
3.5.9 BOP HASCORE() . 28

3.6 Functions . 28
3.6.1 Creating and Removing Processes 32

3.6.1.1 BOZO CreateBnode . 33
3.6.1.2 BOZO DeleteBnode . 35

3.6.2 Examining Process Information 36
3.6.2.1 BOZO GetStatus . 37
3.6.2.2 BOZO EnumerateInstance 39
3.6.2.3 BOZO GetInstanceInfo 40
3.6.2.4 BOZO GetInstanceParm 41
3.6.2.5 BOZO GetRestartTime 42
3.6.2.6 BOZO SetRestartTime 43
3.6.2.7 BOZO GetDates . 44
3.6.2.8 StartBOZO GetLog . 45
3.6.2.9 EndBOZO GetLog . 46
3.6.2.10 BOZO GetInstanceStrings 47

3.6.3 Starting, Stopping, and Restarting Processes 48
3.6.3.1 BOZO SetStatus . 49
3.6.3.2 BOZO SetTStatus . 50

Table of Contents ii August 29, 1991 10:26

BOS Server Specification

3.6.3.3 BOZO StartupAll . 51
3.6.3.4 BOZO ShutdownAll . 52
3.6.3.5 BOZO RestartAll . 53
3.6.3.6 BOZO ReBozo . 54
3.6.3.7 BOZO Restart . 55
3.6.3.8 BOZO WaitAll . 56

3.6.4 Security Configuration . 57
3.6.4.1 BOZO AddSUser . 58
3.6.4.2 BOZO DeleteSUser . 59
3.6.4.3 BOZO ListSUsers . 60
3.6.4.4 BOZO ListKeys . 61
3.6.4.5 BOZO AddKey . 62
3.6.4.6 BOZO DeleteKey . 63
3.6.4.7 BOZO SetNoAuthFlag 64

3.6.5 Cell Configuration . 65
3.6.5.1 BOZO GetCellName 66
3.6.5.2 BOZO SetCellName . 67
3.6.5.3 BOZO GetCellHost . 68
3.6.5.4 BOZO AddCellHost . 69
3.6.5.5 BOZO DeleteCellHost 70

3.6.6 Installing/Uninstalling Server Binaries 71
3.6.6.1 StartBOZO Install . 72
3.6.6.2 EndBOZO Install . 74
3.6.6.3 BOZO UnInstall . 75
3.6.6.4 BOZO Prune . 76

3.6.7 Executing Commands at the Server 77
3.6.7.1 BOZO Exec . 78

Table of Contents iii August 29, 1991 10:26

BOS Server Specification

Chapter 1

Overview

1.1 Introduction

One of the important duties of an AFS system administrator is to insure that processes on
file server machines are properly installed and kept running. The BOS Server was written
as a tool for assisting administrators in these tasks. An instance of the BOS Server runs
on each AFS server machine, and has the following specific areas of responsibility:

• Definition of the set of processes that are to be run on the machine on
which a given BOS Server executes. This definition may be changed dynamically
by system administrators. Programs may be marked as continuously or periodically
runnable.

• Automatic startup and restart of these specified processes upon server
bootup and program failure. The BOS Server also responds to administrator re-
quests for stopping and starting one or more of these processes. In addition, the
BOS Server is capable of restarting itself on command.

• Collection of information regarding the current status, command line parame-
ters, execution history, and log files generated by the set of server programs.

• Management of the security information resident on the machine on which
the BOS Server executes. Such information includes the list of administratively
privileged people associated with the machine and the set of AFS File Server
encryption keys used in the course of file service.

• Management of the cell configuration information for the server machine
in question. This includes the name of the cell in which the server resides, along

Overview 1 August 29, 1991 10:26

BOS Server Specification

with the list and locations of the servers within the cell providing AFS database
services (e.g., volume location, authentication, protection).

• Installation of server binaries on the given machine. The BOS Server allows
several “generations” of server software to be kept on its machine. Installation of
new software for one or more server agents is handled by the BOS Server, as is
“rolling back” to a previous version should it prove more stable than the currently-
installed image.

• Execution of commands on the server machine. An administrator may
execute arbitrary unix commands on a machine running the BOS Server.

Unlike many other AFS server processes, the BOS Server does not maintain a cell-wide,
replicated database. It does, however, maintain several databases used exclusively on
every machine on which it runs.

1.2 Scope

This paper describes the design and structure of the AFS-3 BOS Server. The scope of this
work is to provide readers with a sufficiently detailed description of the BOS Server so
that they may construct client applications that call the server’s RPC interface routines.

1.3 Document Layout

The second chapter discusses various aspects of the BOS Server’s architecture. First, one
of the basic concepts is examined, namely the bnode. Providing the complete description
of a program or set of programs to be run on the given server machine, a bnode is the
generic definitional unit for the BOS Server’s duties. After bnodes have been explained,
the set of standard directories on which the BOS Server depends is considered. Also,
the set of well-known files within these directories is explored. Their uses and internal
formats are presented. After these sections, a discussion of BOS Server restart times
follows. The BOS Server has special support for two commonly-used restart occasions,
as described by this section. Finally, the organization and behavior of the bosserver
program itself is presented.

The third and final chapter provides a detailed examination of the programmer-visible
BOS Server constants and structures, along with a full specification of the API for the
RPC-based BOS Server functionality.

Overview 2 August 29, 1991 10:26

BOS Server Specification

1.4 Related Documents

This document is a member of a documentation suite providing programmer-level speci-
fications for the operation of the various AFS servers and agents, and the interfaces they
export, as well as the underlying RPC system they use to communicate. The full suite
of related AFS specification documents is listed below:

• AFS-3 Programmer’s Reference: Architectural Overview: This paper provides an
architectual overview of the AFS distributed file system, describing the full set of
servers and agents in a coherent way, illustrating their relationships to each other
and examining their interactions.

• AFS-3 Programmer’s Reference: File Server/Cache Manager Interface: This doc-
ument describes the File Server and Cache Manager agents, which provide the
backbone file managment services for AFS. The collection of File Servers for a cell
supply centralized file storage for that site, and allow clients running the Cache
Manager component to acces those files in a high-performance, secure fashion.

• AFS-3 Programmer’s Reference:Volume Server/Volume Location Server Interface:
This document describes the services through which “containers” of related user
data are located and managed.

• AFS-3 Programmer’s Reference: Protection Server Interface: This paper describes
the server responsible for mapping printable user names to and from their internal
AFS identifiers. The Protection Server also allows users to create, destroy, and
manipulate “groups” of users, which are suitable for placement on ACLs.

• AFS-3 Programmer’s Reference: Specification for the Rx Remote Procedure Call
Facility: This document specifies the design and operation of the remote procedure
call and lightweight process packages used by AFS.

In addition to these papers, the AFS 3.1 product is delivered with its own user, admin-
istrator, installation, and command reference documents.

Overview 3 August 29, 1991 10:26

BOS Server Specification

Chapter 2

BOS Server Architecture

This chapter considers some of the architectual features of the AFS-3 BOS Server. First,
the basic organizational and functional entity employed by the BOS Server, the bnode,
is discussed. Next, the set of files with which the server interacts is examined. The notion
of restart times is then explained in detail. Finally, the organization and components
of the bosserver program itself, which implements the BOS Server, are presented.

2.1 Bnodes

2.1.1 Overview

The information required to manage each AFS-related program running on a File Server
machine is encapsulated in a bnode object. These bnodes serve as the basic building
blocks for BOS Server services. Bnodes have two forms of existence:

• On-disk: The BosConfig file (see Section 2.3.4 below) defines the set of bnodes
for which the BOS Server running on that machine will be responsible, along with
specifying other information such as values for the two restart times. This file
provides permanent storage (i.e., between bootups) for the desired list of programs
for that server platform.

• In-memory: The contents of the BosConfig file are parsed and internalized by
the BOS Server when it starts execution. The basic data for a particular server
program is placed into a struct bnode structure.

BOS Server Architecture 4 August 29, 1991 10:26

BOS Server Specification

The initial contents of the BosConfig file are typically set up during system installation.
The BOS Server can be directed, via its RPC interface, to alter existing bnode entries in
the BosConfig file, add new ones, and delete old ones. Typically, this file is never edited
directly.

2.1.2 Bnode Classes

The descriptions of the members of the AFS server suite fall into three broad classes of
programs:

• Simple programs: This server class is populated by programs that simply need
to be kept running, and do not depend on other programs for correctness or ef-
fectiveness. Examples of AFS servers falling into this category are the Volume
Location Server, Authentication Server, and Protection Server. Since its members
exhibit such straightforward behavior, this class of programs is referred to as the
simple class.

• Interrelated programs: The File Server program depends on two other pro-
grams, and requires that they be executed at the appropriate times and in the
appropriate sequence, for correct operation. The first of these programs is the
Volume Server, which must be run concurrently with the File Server. The second
is the salvager, which repairs the AFS volume metadata on the server partitions
should the metadata become damaged. The salvagermust not be run at the same
time as the File Server. In honor of the File Server trio that inspired it, the class
of programs consisting of groups of interrelated processes is named the fs class.

• Periodic programs: Some AFS servers, such as the BackupServer, only need to
run every so often, but on a regular and well-defined basis. The name for this class
is taken from the unix tool that is typically used to define such regular executions,
namely the cron class.

The recognition and definition of these three server classes is exploited by the BOS
Server. Since all of the programs in a given class share certain common characteristics,
they may all utilize the same basic data structures to record and manage their special
requirements. Thus, it is not necessary to reimplement all the operations required to
satisfy the capabilities promised by the BOS Server RPC interface for each and every
program the BOS Server manages. Implementing one set of operations for each server
class is sufficient to handle any and all server binaries to be run on the platform.

BOS Server Architecture 5 August 29, 1991 10:26

BOS Server Specification

2.1.3 Per-Class Bnode Operations

As mentioned above, only one set of basic routines must be implemented for each AFS
server class. Much like Sun’s VFS/vnode interface [8], providing a common set of routines
for interacting with a given file system, regardless of its underlying implementation and
semantics, the BOS Server defines a common vector of operations for a class of programs
to be run under the BOS Server’s tutelage. In fact, it was this standardized file system
interface that inspired the “bnode” name.

The BOS Server manipulates the process or processes that are described by each bnode
by invoking the proper functions in the appropriate order from the operation vector for
that server class. Thus, the BOS Server itself operates in a class-independent fashion.
This allows each class to take care of the special circumstances associated with it, yet to
have the BOS Server itself be totally unaware of what special actions (if any) are needed
for the class. This abstraction also allows more server classes to be implemented without
any significant change to the BOS Server code itself.

There are ten entries in this standardized class function array. The purpose and usage
of each individual class function is described in detail in Section 3.3.5. Much like the
VFS system, a collection of macros is also provided in order to simplify the invocation
of these functions. These macros are described in Section 3.5. The ten function slots are
named here for convenience:

• create()

• timeout()

• getstat()

• setstat()

• delete()

• procexit()

• getstring()

• getparm()

• restartp()

• hascore()

BOS Server Architecture 6 August 29, 1991 10:26

BOS Server Specification

2.2 BOS Server Directories

The BOS Server expects the existence of the following directories on the local disk of
the platform on which it runs. These directories define where the system binaries, log
files, ubik databases, and other files lie.

• /usr/afs/bin: This directory houses the full set of AFS server binaries. Such ex-
ecutables as bosserver, fileserver, vlserver, volserver, kaserver, and ptserver reside
here.

• /usr/afs/db: This directory serves as the well-known location on the server’s local
disk for the ubik database replicas for this machine. Specifically, the Authentication
Server, Protection Server, and the Volume Location Server maintain their local
database images here.

• /usr/afs/etc: This directory hosts the files containing the security, cell, and autho-
rized system administrator list for the given machine. Specifically, the CellServDB,
KeyFile, License, ThisCell, and UserList files are stored here.

• /usr/afs/local: This directory houses the BosConfig file, which supplies the BOS
Server with the permanent set of bnodes to support. Also contained in this direc-
tory are files used exclusively by the salvager.

• /usr/afs/logs: All of the AFS server programs that maintain log files deposit them
in this directory.

2.3 BOS Server Files

Several files, some mentioned above, are maintained on the server’s local disk and ma-
nipulated by the BOS Server. This section examines many of these files, and describes
their formats.

2.3.1 /usr/afs/etc/UserList

This file contains the names of individuals who are allowed to issue “restricted” BOS
Server commands (e.g., creating & deleting bnodes, setting cell information, etc.) on the
given hardware platform. The format is straightforward, with one administrator name
per line. If a cell grants joe and schmoe these rights on a machine, that particular
UserList will have the following two lines:

BOS Server Architecture 7 August 29, 1991 10:26

BOS Server Specification

joe
schmoe

2.3.2 /usr/afs/etc/CellServDB

This file identifies the name of the cell to which the given server machine belongs, along
with the set of machines on which its ubik database servers are running. Unlike the
CellServDB found in /usr/vice/etc on AFS client machines, this file contains only the
entry for the home cell. It shares the formatting rules with the /usr/vice/etc version
of CellServDB. The contents of the CellServDB file used by the BOS Server on host
grand.central.org are:

>grand.central.org #DARPA clearinghouse cell
192.54.226.100 #grand.central.org
192.54.226.101 #penn.central.org

2.3.3 /usr/afs/etc/ThisCell

The BOS Server obtains its notion of cell membership from the ThisCell file in the
specified directory. As with the version of ThisCell found in /usr/vice/etc on AFS client
machines, this file simply contains the character string identifying the home cell name.
For any server machine in the grand.central.org cell, this file contains the following:

grand.central.org

2.3.4 /usr/afs/local/BosConfig

The BosConfig file is the on-disk representation of the collection of bnodes this particular
BOS Server manages. The BOS Server reads and writes to this file in the normal course
of its affairs. The BOS Server itself, in fact, should be the only agent that modifies this
file. Any changes to BosConfig should be carried out by issuing the proper RPCs to the
BOS Server running on the desired machine.

The following is the text of the BosConfig file on grand.central.org. A discussion of
the contents follows immediately afterwards.

BOS Server Architecture 8 August 29, 1991 10:26

BOS Server Specification

restarttime 11 0 4 0 0
checkbintime 3 0 5 0 0
bnode simple kaserver 1
parm /usr/afs/bin/kaserver
end
bnode simple ptserver 1
parm /usr/afs/bin/ptserver
end
bnode simple vlserver 1
parm /usr/afs/bin/vlserver
end
bnode fs fs 1
parm /usr/afs/bin/fileserver
parm /usr/afs/bin/volserver
parm /usr/afs/bin/salvager
end
bnode simple runntp 1
parm /usr/afs/bin/runntp -localclock transarc.com
end
bnode simple upserver 1
parm /usr/afs/bin/upserver
end
bnode simple budb_server 1
parm /usr/afs/bin/budb_server
end
bnode cron backup 1
parm /usr/afs/backup/clones/lib/backup.csh daily
parm 05:00
end

The first two lines of this file set the system and new-binary restart times (see Section
2.4, below). They are optional, with the default system restart time being every Sunday
at 4:00am and the new-binary restart time being 5:00am daily. Following the reserved
words restarttime and checkbintime are five integers, providing the mask, day, hour,
minute, and second values (in decimal) for the restart time, as diagrammed below:

restarttime <mask> <day> <hour> <minute> <second>
checkbintime <mask> <day> <hour> <minute> <second>

The range of acceptable values for these fields is presented in Section 3.3.1. In this ex-
ample, the restart line specifies a (decimal) mask value of 11, selecting the KTIME HOUR,
KTIME MIN, and KTIME DAY bits. This indicates that the hour, minute, and day values are
the ones to be used when matching times. Thus, this line requests that system restarts
occur on day 0 (Sunday), hour 4 (4:00am), and minute 0 within that hour.

The sets of lines that follow define the individual bnodes for the particular machine. The
first line of the bnode definition set must begin with the reserved word bnode, followed
by the type name, the instance name, and the initial bnode goal:

BOS Server Architecture 9 August 29, 1991 10:26

BOS Server Specification

bnode <type_name> <instance_name> <goal_val>

The <type name> and <instance name> fields are both character strings, and the
<goal val> field is an integer. Acceptable values for the <type name> are simple, fs,
and cron. Acceptable values for <goal val> are defined in Section 3.2.3, and are nor-
mally restricted to the integer values representing BSTAT NORMAL and BSTAT SHUTDOWN.
Thus, in the bnode line defining the Authentication Server, it is declared to be of type
simple, have instance name kaserver, and have 1 (BSTAT NORMAL) as a goal (e.g., it
should be brought up and kept running).

Following the bnode line in the BosConfig file may be one or more parm lines. These
entries represent the command line parameters that will be used to invoke the proper
related program or programs. The entire text of the line after the parm reserved word
up to the terminating newline is stored as the command line string.

parm <command_line_text>

After the parm lines, if any, the reserved word end must appear alone on a line, marking
the end of an individual bnode definition.

2.3.5 /usr/afs/local/NoAuth

The appearance of this file is used to mark whether the BOS Server is to insist on
properly authenticated connections for its restricted operations or whether it will allow
any caller to exercise these commands. Not only is the BOS Server affected by the
presence of this file, but so are all of the bnodes objects the BOS Server starts up. If
/usr/afs/local/NoAuth is present, the BOS Server will start all of its bnodes with the
-noauth flag.

Completely unauthenticated AFS operation will result if this file is present when the
BOS Server starts execution. The file itself is typically empty. If any data is put into
the NoAuth file, it will be ignored by the system.

2.3.6 /usr/afs/etc/KeyFile

This file stores the set of AFS encryption keys used for file service operations. The
file follows the format defined by struct afsconf key and struct afsconf keys in
include file afs/keys.h. For the reader’s convenience, these structures are detailed below:

BOS Server Architecture 10 August 29, 1991 10:26

BOS Server Specification

#define AFSCONF_MAXKEYS 8

struct afsconf_key {
long kvno;
char key[8];

};

struct afsconf_keys {
long nkeys;
struct afsconf_key key[AFSCONF_MAXKEYS];

};

The first longword of the file reveals the number of keys that may be found there, with
a maximum of AFSCONF MAXKEYS (8). The keys themselves follow, each preceded by its
key version number.

All information in this file is stored in network byte order. Each BOS Server converts
the data to the appropriate host byte order befor storing and manipulating it.

2.4 Restart Times

It is possible to manually start or restart any server defined within the set of BOS
Server bnodes from any AFS client machine, simply by making the appropriate call to
the RPC interface while authenticated as a valid administrator (i.e., a principal listed
in the UserList file on the given machine). However, two restart situations merit the
implementation of special functionality within the BOS Server. There are two common
occasions, occuring on a regular basis, where the entire system or individual server
programs should be brought down and restarted:

• Complete system restart: To guard against the reliability and performance
problems caused by any core leaks in long-running programs, the entire AFS system
should be occasionally shut down and restarted periodically. This action “clears
out” the memory system, and may result in smaller memory images for these
servers, as internal data structures are reinitialized back to their starting sizes. It
also allows AFS partitions to be regularly examined, and salvaged if necessary.

Another reason for performing a complete system restart is to commence execution
of a new release of the BOS Server itself. The new-binary restarts described below
do not restart the BOS Server if a new version of its software has been installed
on the machine.

• New-binary restarts: New server software may be installed at any time with
the assistance of the BOS Server. However, it is often not the case that such

BOS Server Architecture 11 August 29, 1991 10:26

BOS Server Specification

software installations occur as a result of the discovery of an error in the program
or programs requiring immediate restart. On these occasions, restarting the given
processes in prime time so that the new binaries may begin execution is counter-
productive, causing system downtime and interfering with user productivity. The
system administrator may wish to set an off-peak time when the server binaries are
automatically compared to the running program images, and restarts take place
should the on-disk binary be more recent than the currently running program.
These restarts would thus minimize the resulting service disruption.

Automatically performing these restart functions could be accomplished by creating
cron-type bnodes that were defined to execute at the desired times. However, rather
than force the system administrator to create and supervise such bnodes, the BOS Server
supports

the notion of an internal LWP thread with the same effect (see Section 2.5.2). As part
of the BosConfig file defined above, the administrator may simply specify the values for
the complete system restart and new-binary restart times, and a dedicated BOS Server
thread will manage the restarts.

Unless otherwise instructed, the BOS Server selects default times for the two above
restart times. A complete system restart is carried out every Sunday at 4:00am by
default, and a new-binary restart is executed for each updated binary at 5:00am every
day.

2.5 The bosserver Process

2.5.1 Introduction

The user-space bosserver process is in charge of managing the AFS server processes and
software images, the local security and cell database files, and allowing administrators to
execute arbitrary programs on the server machine on which it runs. It also implements
the RPC interface defined in the bosint.xg Rxgen definition file.

2.5.2 Threading

As with all the other AFS server agents, the BOS Server is a multithreaded program. It
is configured so that a minimum of two lightweight threads are guaranteed to be allocated

BOS Server Architecture 12 August 29, 1991 10:26

BOS Server Specification

to handle incoming RPC calls to the BOS Server, and a maximum of four threads are
commissioned for this task.

In addition to these threads assigned to RPC duties, there is one other thread employed
by the BOS Server, the BozoDaemon(). This thread is responsible for keeping track
of the two major restart events, namely the system restart and the new binary restart
(see Section 2.4). Every 60 seconds, this thread is awakened, at which time it checks
to see if either deadline has occurred. If the complete system restart is then due, it
invokes internal BOS Server routines to shut down the entire suite of AFS agents on
that machine and then reexecute the BOS Server binary, which results in the restart of
all of the server processes. If the new-binary time has arrived, the BOS Server shuts
down the bnodes for which binaries newer than those running are available, and then
invokes the new software.

In general, the following procedure is used when stopping and restarting processes. First,
the restart() operation defined for each bnode’s class is invoked via the BOP RESTART()
macro. This allows each server to take any special steps required before cycling its
service. After that function completes, the standard mechanisms are used to shut down
each bnode’s process, wait until it has truly stopped its execution, and then start it back
up again.

2.5.3 Initialization Algorithm

This section describes the procedure followed by the BOS Server from the time when
it is invoked to the time it has properly initialized the server machine upon which it is
executing.

The first check performed by the BOS Server is whether or not it is running as root. It
needs to manipulate local unix files and directories in which only root has been given
access, so it immediately exits with an error message if this is not the case. The BOS
Server’s unix working directory is then set to be /usr/afs/logs in order to more easily
service incoming RPC requests to fetch the contents of the various server log files at this
location. Also, changing the working directory in this fashion results in any core images
dumped by the BOS Server’s wards will be left in /usr/afs/logs.

The command line is then inspected, and the BOS Server determines whether it will
insist on authenticated RPC connections for secure administrative operations by setting
up the /usr/afs/local/NoAuth file appropriately (see Section 2.3.5). It initializes the
underlying bnode package and installs the three known bnode types (simple, fs, and
cron).

BOS Server Architecture 13 August 29, 1991 10:26

BOS Server Specification

After the bnode package is thus set up, the BOS Server ensures that the set of local
directories on which it will depend are present; refer to Section 2.2 for more details
on this matter. The license file in /usr/afs/etc/License is then read to determine the
number of AFS server machines the site is allowed to operate, and whether the cell is
allowed to run the NFS/AFS Translator software. This file is typically obtained in the
initial system installation, taken from the installation tape. The BOS Server will exit
unless this file exists and is properly formatted.

In order to record its actions, any existing /usr/afs/logs/BosLog file is moved to BosLog.old,
and a new version is opened in append mode. The BOS Server immediately writes a log
entry concerning the state of the above set of important directories.

At this point, the BOS Server reads the BosConfig file, which lists the set of bnodes for
which it will be responsible. It starts up the processes associated with the given bnodes.
Once accomplished, it invokes its internal system restart LWP thread (covered in Section
2.5.2 above).

Rx initialization begins at this point, setting up the RPC infrastructure to receive its
packets on the AFSCONF NANNYPORT, UDP port 7007. The local cell database is then read
and internalized, followed by acquisition of the AFS encryption keys.

After all of these steps have been carried out, the BOS Server has gleaned all of the
necessary information from its environemnt and has also started up its wards. The final
initialization action required is to start all of its listener LWP threads, which are devoted
to executing incoming requests for the BOS Server RPC interface.

2.5.4 Command Line Switches

The BOS Server recognizes exactly one command line argument: -noauth. By de-
fault, the BOS Server attempts to use authenticated RPC connections (unless the
/usr/afs/local/NoAuth file is present; see Section 2.3.5). The appearance of the -noauth
command line flag signals that this server incarnation is to use unauthenticated connec-
tions for even those operations that are normally restricted to system administrators.
This switch is essential during the initial AFS system installation, where the procedures
followed to bootstrap AFS onto a new machine require the BOS Server to run before
some system databases have been created.

BOS Server Architecture 14 August 29, 1991 10:26

BOS Server Specification

Chapter 3

BOS Server Interface

3.1 Introduction

This chapter documents the API for the BOS Server facility, as defined by the bosint.xg
Rxgen interface file and the bnode.h include file. Descriptions of all the constants, struc-
tures, macros, and interface functions available to the application programmer appear
in this chapter.

3.2 Constants

This section covers the basic constant definitions of interest to the BOS Server application
programmer. These definitions appear in the bosint.h file, automatically generated from
the bosint.xg Rxgen interface file. Another file is exported to the programmer, namely
bnode.h.

Each subsection is devoted to describing constants falling into each of the following
categories:

• Status bits

• Bnode activity bits

• Bnode states

• Pruning server binaries

BOS Server Interface 15 August 29, 1991 10:26

BOS Server Specification

• Flag bits for struct bnode proc

One constant of general utility is BOZO BSSIZE, which defines the length in characters of
BOS Server character string buffers, including the trailing null. It is defined to be 256
characters.

3.2.1 Status Bits

The following bit values are used in the flags field of struct bozo status, as defined
in Section 3.3.4. They record whether or not the associated bnode process currently
has a stored core file, whether the bnode execution was stopped because of an excessive
number of errors, and whether the mode bits on server binary directories are incorrect.

Name Value Description

BOZO HASCORE 1 Does this bnode have a stored core file?
BOZO ERRORSTOP 2 Was this bnode execution shut down because of an

excessive number of errors (more than 10 in a 10-
second period)?

BOZO BADDIRACCESS 3 Are the mode bits on the /usr/afs directory and
its descendants (etc, bin, logs, backup, db, local,
etc/KeyFile, etc/UserList) correctly set?

3.2.2 Bnode Activity Bits

This section describes the legal values for the bit positions within the flags field of
struct bnode, as defined in Section 3.3.8. They specify conditions related to the basic
activity of the bnode and of the entities relying on it.

Name Value Description

BNODE NEEDTIMEOUT 0x01 This bnode is utilizing the timeout mechanism for
invoking actions on its behalf.

BNODE ACTIVE 0x02 The given bnode is in active service.
BNODE WAIT 0x04 Someone is waiting for a status change in this bnode
BNODE DELETE 0x08 This bnode should be deleted at the earliest

convenience.
BNODE ERRORSTOP 0x10 This bnode decommissioned because of an excessive

number of errors in its associated unix processes.

BOS Server Interface 16 August 29, 1991 10:26

BOS Server Specification

3.2.3 Bnode States

The constants defined in this section are used as values within the goal and fileGoal

fields within a struct bnode. They specify either the current state of the associated
bnode, or the anticipated state. In particular, the fileGoal field, which is the value
stored on disk for the bnode, always represents the desired state of the bnode, whether
or not it properly reflects the current state. For this reason, only BSTAT SHUTDOWN and
BSTAT NORMAL may be used within the fileGoal field. The goal field may take on any
of these values, and accurately reflects the current status of the bnode.

Name Value Description

BSTAT SHUTDOWN 0 The bnode’s execution has been (should be)
terminated.

BSTAT NORMAL 1 The bnode is (should be) executing normally.
BSTAT SHUTTINGDOWN 2 The bnode is currently being shutdown; execution

has not yet ceased.
BSTAT STARTINGUP 3 The bnode execution is currently being commenced;

execution has not yet begun.

3.2.4 Pruning Server Binaries

The BOZO Prune() interface function, fully defined in Section 3.6.6.4, allows a properly-
authenticated caller to remove (“prune”) old copies of server binaries and core files
managed by the BOS Server. This section identifies the legal values for the flags

argument to the above function, specifying exactly what is to be pruned.

Name Value Description

BOZO PRUNEOLD 1 Prune all server binaries with the *.OLD extension.
BOZO PRUNEBAK 2 Prune all server binaries with the *.BAK extension.
BOZO PRUNECORE 3 Prune core files.

3.2.5 Flag Bits for struct bnode proc

This section specifies the acceptable bit values for the flags field in the struct bnode proc

structure, as defined in Section 3.3.9. Basically, they are used to record whether or not
the unix binary associated with the bnode has ever been run, and if so whether it has
ever exited.

BOS Server Interface 17 August 29, 1991 10:26

BOS Server Specification

Name Value Description

BPROC STARTED 1 Has the associated unix process ever been started up?
BPROC EXITED 2 Has the associated unix process ever exited?

3.3 Structures

This section describes the major exported BOS Server data structures of interest to
application programmers.

3.3.1 struct bozo netKTime

This structure is used to communicate time values to and from the BOS Server. In par-
ticular, the BOZO GetRestartTime() and BOZO SetRestartTime() interface functions,
described in Sections 3.6.2.5 and 3.6.2.6 respectively, use parameters declared to be of
this type.

Four of the fields in this structure specify the hour, minute, second, and day of the event
in question. The first field in the layout serves as a mask, identifying which of the above
four fields are to be considered when matching the specified time to a given reference
time (most often the current time). The bit values that may be used for the mask field
are defined in the afs/ktime.h include file. For convenience, their values are reproduced
here, including some special cases at the end of the table.

Name Value Description

KTIME HOUR 0x01 Hour should match.
KTIME MIN 0x02 Minute should match.
KTIME SEC 0x04 Second should match.
KTIME DAY 0x08 Day should match.

KTIME TIME 0x07 All times should match.
KTIME NEVER 0x10 Special case: never matches.
KTIME NOW 0x20 Special case: right now.

Fields

int mask - A field of bit values used to specify which of the following field are to
be used in computing matches.

short hour - The hour, ranging in value from 0 to 23.

short min - The minute, ranging in value from 0 to 59.

BOS Server Interface 18 August 29, 1991 10:26

BOS Server Specification

short sec - The second, ranging in value from 0 to 59.

short day - Zero specifies Sunday, other days follow in order.

3.3.2 struct bozo key

This structure defines the format of an AFS encryption key, as stored in the key file
located at /usr/afs/etc/KeyFile at the host on which the BOS Server runs. It is used
in the argument list of the BOZO ListKeys() and BOZO AddKeys() interface functions,
as described in Sections 3.6.4.4 and 3.6.4.5 respectively.

Fields

char data[8] - The array of 8 characters representing an encryption key.

3.3.3 struct bozo keyInfo

This structure defines the information kept regarding a given AFS encryption key, as
represented by a variable of type struct bozo key, as described in Section 3.3.2 above.
A parameter of this type is used by the BOZO ListKeys() function (described in Section
3.6.4.4). It contains fields holding the associated key’s modification time, a checksum on
the key, and an unused longword field. Note that the mod sec time field listed below is
a standard unix time value.

Fields

long mod sec - The time in seconds when the associated key was last modified.

long mod usec - The number of microseconds elapsed since the second reported
in the mod sec field. This field is never set by the BOS Server, and should
always contain a zero.

unsigned long keyCheckSum - The 32-bit cryptographic checksum of the asso-
ciated key. A block of zeros is encrypted, and the first four bytes of the result
are placed into this field.

long spare2 - This longword field is currently unused, and is reserved for future
use.

BOS Server Interface 19 August 29, 1991 10:26

BOS Server Specification

3.3.4 struct bozo status

This structure defines the layout of the information returned by the status parameter
for the interface function BOZO GetInstanceInfo(), as defined in Section 3.6.2.3. The
enclosed fields include such information as the temporary and long-term goals for the
process instance, an array of bit values recording status information, start and exit times,
and associated error codes and signals.

Fields

long goal - The short-term goal for a process instance. Settings for this field are
BSTAT SHUTDOWN, BSTAT NORMAL, BSTAT SHUTTINGDOWN, and BSTAT STARTINGUP.
These values are fully defined in Section 3.2.3.

long fileGoal - The long-term goal for a process instance. Accepted settings are
restricted to a subset of those used by the goal field above, as explained in
Section 3.2.3.

long procStartTime - The last time the given process instance was started.

long procStarts - The number of process starts executed on the behalf of the given
bnode.

long lastAnyExit - The last time the process instance exited for any reason.

long lastErrorExit - The last time a process exited unexpectedly.

long errorCode - The last exit’s return code.

long errorSignal - The last signal terminating the process.

long flags - BOZO HASCORE, BOZO ERRORSTOP, and BOZO BADDIRACCESS. These con-
stants are fully defined in Section 3.2.1.

long spare[] - Eight longword spares, currently unassigned and reserved for future
use.

3.3.5 struct bnode ops

This struture defines the base set of operations that each BOS Server bnode type (struct
bnode type, see Section 3.3.6 below) must implement. They are called at the appropri-
ate times within the BOS Server code via the BOP * macros (see Section 3.5 and the
individual descriptions therein). They allow each bnode type to define its own behavior
in response to its particular needs.

BOS Server Interface 20 August 29, 1991 10:26

BOS Server Specification

Fields

struct bnode *(*create)() - This function is called whenever a bnode of the given
type is created. Typically, this function will create bnode structures peculiar
to its own type and initialize the new records. Each type implementation may
take a different number of parameters. Note: there is no BOP * macro defined
for this particular function; it is always called directly.

int (*timeout)() - This function is called whenever a timeout action must be taken
for this bnode type. It takes a single argument, namely a pointer to a type-
specific bnode structure. The BOP TIMEOUT macro is defined to simplify
the construction of a call to this function.

int (*getstat)() - This function is called whenever a caller is attempting to get
status information concerning a bnode of the given type. It takes two parame-
ters, the first being a pointer to a type-specific bnode structure, and the second
being a pointer to a longword in which the desired status value will be placed.
The BOP GETSTAT macro is defined to simplify the construction of a call to
this function.

int (*setstat)() - This function is called whenever a caller is attempting to set
the status information concerning a bnode of the given type. It takes two
parameters, the first being a pointer to a type-specific bnode structure, and
the second being a longword from which the new status value is obtained. The
BOP SETSTAT macro is defined to simplify the construction of a call to this
function.

int (*delete)() - This function is called whenever a bnode of this type is being
deleted. It is expected that the proper deallocation and cleanup steps will be
performed here. It takes a single argument, a pointer to a type-specific bnode
structure. The BOP DELETE macro is defined to simplify the construction of
a call to this function.

int (*procexit)() - This function is called whenever the unix process implementing
the given bnode exits. It takes two parameters, the first being a pointer to a
type-specific bnode structure, and the second being a pointer to the struct
bnode proc (defined in Section 3.3.9), describing that process in detail. The
BOP PROCEXIT macro is defined to simplify the construction of a call to this
function.

int (*getstring)() - This function is called whenever the status string for the given
bnode must be fetched. It takes three parameters. The first is a pointer to a
type-specific bnode structure, the second is a pointer to a character buffer, and
the third is a longword specifying the size, in bytes, of the above buffer. The
BOP GETSTRING macro is defined to simplify the construction of a call to
this function.

BOS Server Interface 21 August 29, 1991 10:26

BOS Server Specification

int (*getparm)() - This function is called whenever a particular parameter string
for the given bnode must be fetched. It takes four parameters. The first is
a pointer to a type-specific bnode structure, the second is a longword iden-
tifying the index of the desired parameter string, the third is a pointer to a
character buffer to receive the parameter string, and the fourth and final ar-
gument is a longword specifying the size, in bytes, of the above buffer. The
BOP GETPARM macro is defined to simplify the construction of a call to this
function.

int (*restartp)() - This function is called whenever the unix process implementing
the bnode of this type is being restarted. It is expected that the stored process
command line will be parsed in preparation for the coming execution. It takes
a single argument, a pointer to a type-specific bnode structure from which
the command line can be located. The BOP RESTARTP macro is defined to
simplify the construction of a call to this function.

int (*hascore)() - This function is called whenever it must be determined if the
attached process currently has a stored core file. It takes a single argument,
a pointer to a type-specific bnode structure from which the name of the core
file may be constructed. The BOP HASCORE macro is defined to simplify the
construction of a call to this function.

3.3.6 struct bnode type

This structure encapsulates the defining characteristics for a given bnode type. Bnode
types are placed on a singly-linked list within the BOS Server, and are identified by a
null-terminated character string name. They also contain the function array defined in
Section 3.3.5, that implements the behavior of that object type. There are three pre-
defined bnode types known to the BOS Server. Their names are simple, fs, and cron.
It is not currently possible to dynamically define and install new BOS Server types.

Fields

struct bnode type *next - Pointer to the next bnode type definition structure in
the list.

char *name - The null-terminated string name by which this bnode type is iden-
tified.

bnode ops *ops - The function array that defines the behavior of this given bnode
type.

BOS Server Interface 22 August 29, 1991 10:26

BOS Server Specification

3.3.7 struct bnode token

This structure is used internally by the BOS Server when parsing the command lines
with which it will start up process instances. This structure is made externally visible
should more types of bnode types be implemented.

Fields

struct bnode token *next - The next token structure queued to the list.

char *key - A pointer to the token, or parsed character string, associated with this
entry.

3.3.8 struct bnode

This structure defines the essence of a BOS Server process instance. It contains such
important information as the identifying string name, numbers concerning periodic ex-
ecution on its behalf, the bnode’s type, data on start and error behavior, a reference
count used for garbage collection, and a set of flag bits.

Fields

char *name - The null-terminated character string providing the instance name
associated with this bnode.

long nextTimeout - The next time this bnode should be awakened. At the speci-
fied time, the bnode’s flags field will be examined to see if BNODE NEEDTIMEOUT

is set. If so, its timeout() operation will be invoked via the BOP TIMEOUT()
macro. This field will then be reset to the current time plus the value kept in
the period field.

long period - This field specifies the time period between timeout calls. It is only
used by processes that need to have periodic activity performed.

long rsTime - The time that the BOS Server started counting restarts for this
process instance.

long rsCount - The count of the number of restarts since the time recorded in the
rsTime field.

struct bnode type *type - The type object defining this bnode’s behavior.

struct bnode ops *ops - This field is a pointer to the function array defining this
bnode’s basic behavior. Note that this is identical to the value of type->ops.

BOS Server Interface 23 August 29, 1991 10:26

BOS Server Specification

This pointer is duplicated here for convenience. All of the BOP * macros,
discussed in Section 3.5, reference the bnode’s operation array through this
pointer.

long procStartTime - The last time this process instance was started (executed).

long procStarts - The number of starts (executions) for this process instance.

long lastAnyExit - The last time this process instance exited for any reason.

long lastErrorExit - The last time this process instance exited unexpectedly.

long errorCode - The last exit return code for this process instance.

long errorSignal - The last signal that terminated this process instance.

char *lastErrorName - The name of the last core file generated.

short refCount - A reference count maintained for this bnode.

short flags - This field contains a set of bit fields that identify additional sta-
tus information for the given bnode. The meanings of the legal bit values,
explained in Section 3.2.2, are: BOZO NEEDTIMEOUT, BOZO ACTIVE, BOZO WAIT,
BOZO DELETE, and BOZO ERRORSTOP.

char goal - The current goal for the process instance. It may take on any of
the values defined in Section 3.2.3, namely BSTAT SHUTDOWN, BSTAT NORMAL,
BSTAT SHUTTINGDOWN, and BSTAT STARTINGUP.

This goal may be changed at will by an authorized caller. Such changes af-
fect the current status of the process instance. See the description of the
BOZO SetStatus() and BOZO SetTStatus() interface functions, defined in Sec-
tions 3.6.3.1 and 3.6.3.2 respectively, for more details.

char fileGoal - This field is similar to goal, but represents the goal stored in the
on-file BOS Server description of this process instance. As with the goal field,
see functions the description of the BOZO SetStatus() and BOZO SetTStatus()
interface functions defined in Sections 3.6.3.1 and 3.6.3.2 respectively for more
details.

3.3.9 struct bnode proc

This structure defines all of the information known about each unix process the BOS
Server is currently managing. It contains a reference to the bnode defining the process,
along with the command line to be used to start the process, the optional core file name,
the unix pid, and such things as a flag field to keep additional state information. The
BOS Server keeps these records on a global singly-linked list.

BOS Server Interface 24 August 29, 1991 10:26

BOS Server Specification

Fields

struct bnode proc *next - A pointer to the BOS Server’s next process record.

struct bnode *bnode - A pointer to the bnode creating and defining this unix

process.

char *comLine - The text of the command line used to start this process.

char *coreName - An optional core file component name for this process.

long pid - The unix pid, if successfully created.

long lastExit - This field keeps the last termination code for this process.

long lastSignal - The last signal used to kill this process.

long flags - A set of bits providing additional process state. These bits are fully
defined in Section 3.2.5, and are: BPROC STARTED and BPROC EXITED.

3.4 Error Codes

This section covers the set of error codes exported by the BOS Server, displaying the
printable phrases with which they are associated.

Name Value Description

BZNOTACTIVE (39424L) process not active.
BZNOENT (39425L) no such entity.
BZBUSY (39426L) can’t do operation now.
BZEXISTS (39427L) entity already exists.
BZNOCREATE (39428L) failed to create entity.
BZDOM (39429L) index out of range.
BZACCESS (39430L) you are not authorized for this operation.
BZSYNTAX (39431L) syntax error in create parameter.
BZIO (39432L) I/O error.
BZNET (39433L) network problem.
BZBADTYPE (39434L) unrecognized bnode type.

3.5 Macros

The BOS Server defines a set of macros that are externally visible via the bnode.h file.
They are used to facilitate the invocation of the members of the struct bnode ops

BOS Server Interface 25 August 29, 1991 10:26

BOS Server Specification

function array, which defines the basic operations for a given bnode type. Invocations
appear throughout the BOS Server code, wherever bnode type-specific operations are
required. Note that the only member of the struct bnode ops function array that does
not have a corresponding invocation macro defined is create(), which is always called
directly.

3.5.1 BOP TIMEOUT()

#define BOP_TIMEOUT(bnode) \
((*(bnode)->ops->timeout)((bnode)))

Execute the bnode type-specific actions required when a timeout action must be taken.
This macro takes a single argument, namely a pointer to a type-specific bnode structure.

3.5.2 BOP GETSTAT()

#define BOP_GETSTAT(bnode, a) \
((*(bnode)->ops->getstat)((bnode),(a)))

Execute the bnode type-specific actions required when a caller is attempting to get status
information concerning the bnode. It takes two parameters, the first being a pointer to
a type-specific bnode structure, and the second being a pointer to a longword in which
the desired status value will be placed.

3.5.3 BOP SETSTAT()

#define BOP_SETSTAT(bnode, a) \
((*(bnode)->ops->setstat)((bnode),(a)))

Execute the bnode type-specific actions required when a caller is attempting to set the
status information concerning the bnode. It takes two parameters, the first being a
pointer to a type-specific bnode structure, and the second being a longword from which
the new status value is obtained.

BOS Server Interface 26 August 29, 1991 10:26

BOS Server Specification

3.5.4 BOP DELETE()

#define BOP_DELETE(bnode) \
((*(bnode)->ops->delete)((bnode)))

Execute the bnode type-specific actions required when a bnode is deleted. This macro
takes a single argument, namely a pointer to a type-specific bnode structure.

3.5.5 BOP PROCEXIT()

#define BOP_PROCEXIT(bnode, a) \
((*(bnode)->ops->procexit)((bnode),(a)))

Execute the bnode type-specific actions required whenever the unix process implement-
ing the given bnode exits. It takes two parameters, the first being a pointer to a type-
specific bnode structure, and the second being a pointer to the struct bnode proc

(defined in Section 3.3.9), describing that process in detail.

3.5.6 BOP GETSTRING()

#define BOP_GETSTRING(bnode, a, b) \
((*(bnode)->ops->getstring)((bnode),(a), (b)))

Execute the bnode type-specific actions required when the status string for the given
bnode must be fetched. It takes three parameters. The first is a pointer to a type-
specific bnode structure, the second is a pointer to a character buffer, and the third is a
longword specifying the size, in bytes, of the above buffer.

3.5.7 BOP GETPARM()

#define BOP_GETPARM(bnode, n, b, l) \
((*(bnode)->ops->getparm)((bnode),(n),(b),(l)))

Execute the bnode type-specific actions required when a particular parameter string
for the given bnode must be fetched. It takes four parameters. The first is a pointer
to a type-specific bnode structure, the second is a longword identifying the index of

BOS Server Interface 27 August 29, 1991 10:26

BOS Server Specification

the desired parameter string, the third is a pointer to a character buffer to receive the
parameter string, and the fourth and final argument is a longword specifying the size, in
bytes, of the above buffer.

3.5.8 BOP RESTARTP()

#define BOP_RESTARTP(bnode) \
((*(bnode)->ops->restartp)((bnode)))

Execute the bnode type-specific actions required when the unix process implementing
the bnode of this type is restarted. It is expected that the stored process command line
will be parsed in preparation for the coming execution. It takes a single argument, a
pointer to a type-specific bnode structure from which the command line can be located.

3.5.9 BOP HASCORE()

#define BOP_HASCORE(bnode) ((*(bnode)->ops->hascore)((bnode)))

Execute the bnode type-specific actions required when it must be determined whether
or not the attached process currently has a stored core file. It takes a single argument,
a pointer to a type-specific bnode structure from which the name of the core file may be
constructed.

3.6 Functions

This section covers the BOS Server RPC interface routines. They are generated from
the bosint.xg Rxgen file. At a high level, these functions may be seen as belonging to
seven basic classes:

• Creating and removing process entries

• Examining process information

• Starting, stopping, and restarting processes

• Security configuration

BOS Server Interface 28 August 29, 1991 10:26

BOS Server Specification

• Cell configuration

• Installing/uninstalling server binaries

• Executing commands at the server

The following is a summary of the interface functions and their purpose, divided accord-
ing to the above classifications:

Creating & Removing Process Entries

Function Name Description

BOZO CreateBnode() Create a process instance.
BOZO DeleteBnode() Delete a process instance.

Examining Process Information

Function Name Description

BOZO GetStatus() Get status information for the given process instance.
BOZO EnumerateInstance() Get instance name from the i’th bnode.
BOZO GetInstanceInfo() Get information on the given process instance.
BOZO GetInstanceParm() Get text of command line associated with the given

process instance.
BOZO GetRestartTime() Get one of the BOS Server restart times.
BOZO SetRestartTime() Set one of the BOS Server restart times.
BOZO GetDates() Get the modification times for versions of a server

binary file.
StartBOZO GetLog() Pass the IN params when fetching a BOS Server log

file.
EndBOZO GetLog() Get the OUT params when fetching a BOS Server log

file.
BOZO GetInstanceStrings() Get strings related to a given process instance.

BOS Server Interface 29 August 29, 1991 10:26

BOS Server Specification

Starting, Stopping & Restarting Processes

Function Name Description

BOZO SetStatus() Set process instance status and goal.
BOZO SetTStatus() Temporarily set process instance status and goal.
BOZO StartupAll() Start all existing process instances.
BOZO ShutdownAll() Shut down all process instances.
BOZO RestartAll() Shut down, then restart all process instances.
BOZO ReBozo() Shut down, then restart all process instances and the BOS

Server itself.
BOZO Restart() Restart a given process instance.
BOZO WaitAll() Wait until all process instances have reached their goals.

Security Configuration

Function Name Description

BOZO AddSUser() Add a user to the UserList.
BOZO DeleteSUser() Delete a user from the UserList.
BOZO ListSUsers() Get the name of the user in the given position in the

UserList file.
BOZO ListKeys() List info about the key at a given index in the key file.
BOZO AddKey() Add a key to the key file.
BOZO DeleteKey() Delete the entry for an AFS key.
BOZO SetNoAuthFlag() Enable or disable authenticated call requirements.

Cell Configuration

Function Name Description

BOZO GetCellName() Get the name of the cell to which the BOS Server
belongs.

BOZO SetCellName() Set the name of the cell to which the BOS Server belongs.
BOZO GetCellHost() Get the name of a database host given its index.
BOZO AddCellHost() Add an entry to the list of database server hosts.
BOZO DeleteCellHost() Delete an entry from the list of database server hosts.

Installing/Uninstalling Server Binaries

Function Name Description

StartBOZO Install() Pass the IN params when installing a server binary.
EndBOZO Install() Get the OUT params when installing a server binary.
BOZO UnInstall() Roll back from a server binary installation.
BOZO Prune() Throw away old versions of server binaries and core files.

BOS Server Interface 30 August 29, 1991 10:26

BOS Server Specification

Executing Commands at the Server

Function Name Description

BOZO Exec() Execute a shell command at the server.

All of the string parameters in these functions are expected to point to character buffers
that are at least BOZO BSSIZE long.

BOS Server Interface 31 August 29, 1991 10:26

BOS Server Specification

3.6.1 Creating and Removing Processes

The two interface routines defined in this section are used for creating and deleting
bnodes, thus determining which processe instances the BOS Server must manage.

BOS Server Interface 32 August 29, 1991 10:26

BOS Server Specification

3.6.1.1 BOZO CreateBnode — Create a process instance

int BOZO CreateBnode(IN struct rx connection *z conn,

IN char *type,

IN char *instance,

IN char *p1,

IN char *p2,

IN char *p3,

IN char *p4,

IN char *p5,

IN char *p6)

Description

This interface function allows the caller to create a bnode (process instance) on the server
machine executing the routine.

The instance’s type is declared to be the string referenced in the type argument. There
are three supported instance type names, namely simple, fs, and cron (see Section 2.1
for a detailed examination of the types of bnodes available).

The bnode’s name is specified via the instance parameter. Any name may be chosen
for a BOS Server instance. However, it is advisable to choose a name related to the
name of the actual binary being instantiated. There are eight well-known names already
in common use, corresponding to the ASF system agents. They are as follows:

• kaserver for the Authentication Server.

• runntp for the Network Time Protocol Daemon (ntpd).

• ptserver for the Protection Server.

• upclient for the client portion of the UpdateServer, which brings over binary files
from /usr/afs/bin directory and configuration files from /usr/afs/etc directory on
the system control machine.

• upclientbin for the client portion of the UpdateServer, which uses the /usr/afs/bin
directory on the binary distribution machine for this platform’s CPU/operating
system type.

BOS Server Interface 33 August 29, 1991 10:26

BOS Server Specification

• upclientetc for the client portion of theUpdateServer, which references the /usr/afs/etc
directory on the system control machine.

• upserver for the server portion of the UpdateServer.

• vlserver for the Volume Location Server.

Up to six command-line strings may be communicated in this routine, residing in argu-
ments p1 through p6. Different types of bnodes allow for different numbers of actual
server processes to be started, and the command lines required for such instantiation are
passed in this manner.

The given bnode’s setstat() routine from its individual ops array will be called in the
course of this execution via the BOP SETSTAT() macro.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to create new instances. If successfully created, the new BOS Server instance will be
appended to the BosConfig file kept on the machine’s local disk. The UserList and
BosConfig files are examined in detail in Sections 2.3.1 and 2.3.4 respectively.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

BZEXISTS The given instance already exists.

BZBADTYPE Illegal value provided in the type parameter.

BZNOCREATE Failed to create desired entry.

BOS Server Interface 34 August 29, 1991 10:26

BOS Server Specification

3.6.1.2 BOZO DeleteBnode — Delete a process instance

int BOZO DeleteBnode(IN struct rx connection *z conn,

IN char *instance)

Description

This routine deletes the BOS Server bnode whose name is specified by the instance
parameter. If an instance with that name does not exist, this operation fails. Similarly,
if the process or processes associated with the given bnode have not been shut down
(see the descriptions for the BOZO ShutdownAll() and BOZO ShutdownAll() interface
functions), the operation also fails.

The given bnode’s setstat() and delete() routines from its individual ops array will be
called in the course of this execution via the BOP SETSTAT() and BOP DELETE()
macros.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to delete existing instances. If successfully deleted, the old BOS Server instance will be
removed from the BosConfig file kept on the machine’s local disk.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

BZNOENT The given instance name not registered with the BOS Server.

BZBUSY The process(es) associated with the given instance are still active (i.e., a
shutdown has not yet been performed or has not yet completed).

BOS Server Interface 35 August 29, 1991 10:26

BOS Server Specification

3.6.2 Examining Process Information

This section describes the ten interface functions that collectively allow callers to obtain
and modify the information stored by the BOS Server to describe the set of process that
it manages. Among the operations supported by the functions examined here are getting
and setting status information, obtaining the instance parameters, times, and dates, and
getting the text of log files on the server machine

BOS Server Interface 36 August 29, 1991 10:26

BOS Server Specification

3.6.2.1 BOZO GetStatus — Get status information for the given process
instance

int BOZO GetStatus(IN struct rx connection *z conn,

IN char *instance,

OUT long *intStat,

OUT char **statdescr)

Description

This interface function looks up the bnode for the given process instance and places
its numerical status indicator into intStat and its status string (if any) into a buffer
referenced by statdescr.

The set of values that may be returned in the intStat argument are defined fully in
Section 3.2.3. Briefly, they are BSTAT STARTINGUP, BSTAT NORMAL, BSTAT SHUTTINGDOWN,
and BSTAT SHUTDOWN.

A buffer holding BOZO BSSIZE (256) characters is allocated, and statdescr is set to
point to it. Not all bnodes types implement status strings, which are used to provide
additional status information for the class. An example of one bnode type that does
define these strings is fs, which exports the following status strings:

• "file server running"

• "file server up; volser down"

• "salvaging file system"

• "starting file server"

• "file server shutting down"

• "salvager shutting down"

• "file server shut down"

The given bnode’s getstat() routine from its individual ops array will be called in the
course of this execution via the BOP GETSTAT() macro.

BOS Server Interface 37 August 29, 1991 10:26

BOS Server Specification

Error Codes

BZNOENT The given process instance is not registered with the BOS Server.

BOS Server Interface 38 August 29, 1991 10:26

BOS Server Specification

3.6.2.2 BOZO EnumerateInstance —Get instance name from i’th bnode

int BOZO EnumerateInstance(IN struct rx connection *z conn,

IN long instance,

OUT char **iname);

Description

This routine will find the bnode describing process instance number instance and return
that instance’s name in the buffer to which the iname parameter points. This function
is meant to be used to enumerate all process instances at a BOS Server. The first
legal instance number value is zero, which will return the instance name from the first
registered bnode. Successive values for instance will return information from successive
bnodes. When all bnodes have been thus enumerated, the BOZO EnumerateInstance()
function will return BZDOM, indicating that the list of bnodes has been exhausted.

Error Codes

BZDOM The instance number indicated in the instance parameter does not exist.

BOS Server Interface 39 August 29, 1991 10:26

BOS Server Specification

3.6.2.3 BOZO GetInstanceInfo — Get information on the given process
instance

int BOZO GetInstanceInfo(IN struct rx connection *z conn,

IN char *instance,

OUT char **type,

OUT struct bozo status *status)

Description

Given the string name of a BOS Server instance, this interface function returns the
type of the instance and its associated status descriptor. The set of values that may be
placed into the type parameter are simple, fs, and cron (see Section 2.1 for a detailed
examination of the types of bnodes available). The status structure filled in by the call
includes such information as the goal and file goals, the process start time, the number
of times the process has started, exit information, and whether or not the process has a
core file.

Error Codes

BZNOENT The given process instance is not registered with the BOS Server.

BOS Server Interface 40 August 29, 1991 10:26

BOS Server Specification

3.6.2.4 BOZO GetInstanceParm —Get text of command line associated
with the given process instance

int BOZO GetInstanceParm(IN struct rx connection *z conn,

IN char *instance,

IN long num,

OUT char **parm)

Description

Given the string name of a BOS Server process instance and an index identifying the
associated command line of interest, this routine returns the text of the desired command
line. The first associated command line text for the instance may be acquired by setting
the index parameter, num, to zero. If an index is specified for which there is no matching
command line stored in the bnode, then the function returns BZDOM.

Error Codes

BZNOENT The given process instance is not registered with the BOS Server.

BZDOM There is no command line text associated with index num for this bnode.

BOS Server Interface 41 August 29, 1991 10:26

BOS Server Specification

3.6.2.5 BOZO GetRestartTime — Get one of the BOS Server restart
times

int BOZO GetRestartTime(IN struct rx connection *z conn,

IN long type,

OUT struct bozo netKTime *restartTime)

Description

The BOS Server maintains two different restart times, for itself and all server processes
it manages, as described in Section 2.4. Given which one of the two types of restart
time is desired, this routine fetches the information from the BOS Server. The type

argument is used to specify the exact restart time to fetch. If type is set to one (1), then
the general restart time for all agents on the machine is fetched. If type is set to two
(2), then the new-binary restart time is returned. A value other than these two for the
type parameter results in a return value of BZDOM.

Error Codes

BZDOM All illegal value was passed in via the type parameter.

BOS Server Interface 42 August 29, 1991 10:26

BOS Server Specification

3.6.2.6 BOZO SetRestartTime — Set one of the BOS Server restart times

int BOZO SetRestartTime(IN struct rx connection *z conn,

IN long type,

IN struct bozo netKTime *restartTime)

Description

This function is the inverse of the BOZO GetRestartTime() interface routine described
in Section 3.6.2.5 above. Given the type of restart time and its new value, this routine
will set the desired restart time at the BOS Server receiving this call. The values for the
type parameter are identical to those used by BOZO GetRestartTime(), namely one (1)
for the general restart time and two (2) for the new-binary restart time.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to set its restart times.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

BZDOM All illegal value was passed in via the type parameter.

BOS Server Interface 43 August 29, 1991 10:26

BOS Server Specification

3.6.2.7 BOZO GetDates — Get the modification times for versions of a
server binary file

int BOZO GetDates(IN struct rx connection *z conn,

IN char *path,

OUT long *newtime,

OUT long *baktime,

OUT long *oldtime)

Description

Given a fully-qualified pathname identifying the particular server binary to examine in
the path argument, this interface routine returns the modification time of that file, along
with the modification times for the intermediate (.BAK) and old (.OLD) versions. The
above-mentioned times are deposited into the newtime, baktime and oldtime arguments.
Any one or all of the reported times may be set to zero, indicating that the associated
file does not exist.

Error Codes

--- None.

BOS Server Interface 44 August 29, 1991 10:26

BOS Server Specification

3.6.2.8 StartBOZO GetLog — Pass the IN params when fetching a BOS
Server log file

int BOZO StartGetLog(IN struct rx connection *z conn,

IN char *name)

Description

The BOZO GetLog() function defined in the BOS Server Rxgen interface file is used to
acquire the contents of the given log file from the machine processing the call. It is
defined to be a streamed function, namely one that can return an arbitrary amount of
data. For full details on the definition and use of streamed functions, please refer to the
Streamed Function Calls section in [4].

This function is created by Rxgen in response to the BOZO GetLog() interface definition
in the bosint.xg file. The StartBOZO GetLog() routine handles passing the IN parameters
of the streamed call to the BOS Server. Specifically, the name parameter is used to convey
the string name of the desired log file. For the purposes of opening the specified files at the
machine being contacted, the current working directory for the BOS Server is considered
to be /usr/afs/logs. If the caller is included in the locally-maintained UserList file, any
pathname may be specified in the name parameter, and the contents of the given file
will be fetched. All other callers must provide a string that does not include the slash
character, as it might be used to construct an unauthorized request for a file outside the
/usr/afs/logs directory.

Error Codes

RXGEN CC MARSHAL The transmission of the GetLog() IN parameters failed. This
and all rxgen constant definitions are available from the rxgen consts.h include
file.

BOS Server Interface 45 August 29, 1991 10:26

BOS Server Specification

3.6.2.9 EndBOZO GetLog — Get the OUT params when fetching a BOS
Server log file

int BOZO EndGetLog(IN struct rx connection *z conn)

Description

This function is created by Rxgen in response to the BOZO GetLog() interface definition
in the bosint.xg file. The EndBOZO GetLog() routine handles the recovery of the OUT
parameters for this interface call (of which there are none). The utility of such functions
is often the value they return. In this case, however, EndBOZO GetLog() always returns
success. Thus, it is not even necessary to invoke this particular function, as it is basically
a no-op.

Error Codes

--- Always returns successfully.

BOS Server Interface 46 August 29, 1991 10:26

BOS Server Specification

3.6.2.10 BOZO GetInstanceStrings — Get strings related to a given
process instance

int BOZO GetInstanceStrings(IN struct rx connection *z conn,

IN char *instance,

OUT char **errorName,

OUT char **spare1,

OUT char **spare2,

OUT char **spare3)

Description

This interface function takes the string name of a BOS Server instance and returns a
set of strings associated with it. At the current time, there is only one string of interest
returned by this routine. Specifically, the errorName parameter is set to the error string
associated with the bnode, if any. The other arguments, spare1 through spare3, are
set to the null string. Note that memory is allocated for all of the OUT parameters, so
the caller should be careful to free them once it is done.

Error Codes

BZNOENT The given process instance is not registered with the BOS Server.

BOS Server Interface 47 August 29, 1991 10:26

BOS Server Specification

3.6.3 Starting, Stopping, and Restarting Processes

The eight interface functions described in this section allow BOS Server clients to ma-
nipulate the execution of the process instances the BOS Server controls.

BOS Server Interface 48 August 29, 1991 10:26

BOS Server Specification

3.6.3.1 BOZO SetStatus — Set process instance status and goal

int BOZO SetStatus(IN struct rx connection *z conn,

IN char *instance,

IN long status)

Description

This routine sets the actual status field, as well as the “file goal”, of the given instance to
the value supplied in the status parameter. Legal values for status are taken from the
set described in Section 3.2.3, specifically BSTAT NORMAL and BSTAT SHUTDOWN. For more
information about these constants (and about goals/file goals), please refer to Section
3.2.3.

The given bnode’s setstat() routine from its individual ops array will be called in the
course of this execution via the BOP SETSTAT() macro.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to perform this operation. If successfully modified, the BOS Server bnode defining the
given instance will be written out to the BosConfig file kept on the machine’s local disk.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

BZNOENT The given instance name not registered with the BOS Server.

BOS Server Interface 49 August 29, 1991 10:26

BOS Server Specification

3.6.3.2 BOZO SetTStatus — Temporarily set process instance status and
goal

int BOZO SetTStatus(IN struct rx connection *z conn,

IN char *instance,

IN long status)

Description

This interface routine is much like the BOZO SetStatus(), defined in Section 3.6.3.1
above, except that its effect is to set the instance status on a temporary basis. Specifically,
the status field is set to the given status value, but the “file goal” field is not changed.
Thus, the instance’s stated goal has not changed, just its current status.

The given bnode’s setstat() routine from its individual ops array will be called in the
course of this execution via the BOP SETSTAT() macro.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to perform this operation. If successfully modified, the BOS Server bnode defining the
given instance will be written out to the BosConfig file kept on the machine’s local disk.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

BZNOENT The given instance name not registered with the BOS Server.

BOS Server Interface 50 August 29, 1991 10:26

BOS Server Specification

3.6.3.3 BOZO StartupAll — Start all existing process instances

int BOZO StartupAll(IN struct rx connection *z conn)

Description

This interface function examines all bnodes and attempts to restart all of those that
have not been explicitly been marked with the BSTAT SHUTDOWN file goal. Specifically,
BOP SETSTAT() is invoked, causing the setstat() routine from each bnode’s ops array
to be called. The bnode’s flags field is left with the BNODE ERRORSTOP bit turned off
after this call.

The given bnode’s setstat() routine from its individual ops array will be called in the
course of this execution via the BOP SETSTAT() macro.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to start up bnode process instances.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

BOS Server Interface 51 August 29, 1991 10:26

BOS Server Specification

3.6.3.4 BOZO ShutdownAll — Shut down all process instances

int BOZO ShutdownAll(IN struct rx connection *z conn)

Description

This interface function iterates through all bnodes and attempts to shut them all down.
Specifically, the BOP SETSTAT() is invoked, causing the setstat() routine from each
bnode’s ops array to be called, setting that bnode’s goal field to BSTAT SHUTDOWN.

The given bnode’s setstat() routine from its individual ops array will be called in the
course of this execution via the BOP SETSTAT() macro.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to perform this operation.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

BOS Server Interface 52 August 29, 1991 10:26

BOS Server Specification

3.6.3.5 BOZO RestartAll — Shut down, then restart all process instances

int BOZO RestartAll(IN struct rx connection *z conn)

Description

This interface function shuts down every BOS Server process instance, waits until the
shutdown is complete (i.e., all instances are registered as being in state BSTAT SHUTDOWN),
and then starts them all up again. While all the processes known to the BOS Server
are thus restarted, the invocation of the BOS Server itself does not share this fate. For
simulation of a truly complete machine restart, as is necessary when an far-reaching
change to a database file has been made, use the BOZO ReBozo() interface routine
defined in Section 3.6.3.6 below.

The given bnode’s getstat() and setstat() routines from its individual ops array will be
called in the course of this execution via the BOP GETSTAT() and BOP SETSTAT()
macros.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to restart bnode process instances.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

BOS Server Interface 53 August 29, 1991 10:26

BOS Server Specification

3.6.3.6 BOZO ReBozo — Shut down, then restart all process instances and
the BOS Server itself

int BOZO ReBozo(IN struct rx connection *z conn)

Description

This interface routine is identical to the BOZO RestartAll() call, defined in Section
3.6.3.5 above, except for the fact that the BOS Server itself is restarted in addition to
all the known bnodes. All of the BOS Server’s open file descriptors are closed, and the
standard BOS Server binary image is started via execve().

The given bnode’s getstat() and setstat() routines from its individual ops array will be
called in the course of this execution via the BOP GETSTAT() and BOP SETSTAT()
macros.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to restart bnode process instances.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

BOS Server Interface 54 August 29, 1991 10:26

BOS Server Specification

3.6.3.7 BOZO Restart — Restart a given process instance

int BOZO Restart(IN struct rx connection *z conn,

IN char *instance)

Description

This interface function is used to shut down and then restart the process instance iden-
tified by the instance string passed as an argument.

The given bnode’s getstat() and setstat() routines from its individual ops array will be
called in the course of this execution via the BOP GETSTAT() and BOP SETSTAT()
macros.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to restart bnode process instances.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

BZNOENT The given instance name not registered with the BOS Server.

BOS Server Interface 55 August 29, 1991 10:26

BOS Server Specification

3.6.3.8 BOZO WaitAll —Wait until all process instances have reached their
goals

int BOZO WaitAll(IN struct rx connection *z conn)

Description

This interface function is used to synchronize with the status of the bnodes managed
by the BOS Server. Specifically, the BOZO WaitAll() call returns when each bnode’s
current status matches the value in its short-term goal field. For each bnode it manages,
the BOS Server thread handling this call invokes the BOP GETSTAT() macro, waiting
until the bnode’s status and goals line up.

Typically, the BOZO WaitAll() routine is used to allow a program to wait until all bnodes
have terminated their execution (i.e., all goal fields have been set to BSTAT SHUTDOWN

and all corresponding processes have been killed). Note, however, that this routine may
also be used to wait until all bnodes start up. The true utility of this application of
BOZO WaitAll() is more questionable, since it will return when all bnodes have simply
commenced execution, which does not imply that they have completed their initialization
phases and are thus rendering their normal services.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to wait on bnodes through this interface function.

The given bnode’s getstat() routine from its individual ops array will be called in the
course of this execution via the BOP GETSTAT() macro.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

BOS Server Interface 56 August 29, 1991 10:26

BOS Server Specification

3.6.4 Security Configuration

This section describes the seven BOS Server interface functions that allow a properly-
authorized person to examine and modify certain data relating to system security. Specif-
ically, it allows for manipulation of the list of adminstratively “privileged” individuals,
the set of Kerberos keys used for file service, and whether authenticated connections
should be required by the BOS Server and all other AFS server agents running on the
machine.

BOS Server Interface 57 August 29, 1991 10:26

BOS Server Specification

3.6.4.1 BOZO AddSUser — Add a user to the UserList

int BOZO AddSUser(IN struct rx connection *z conn,

IN char *name);

Description

This interface function is used to add the given user name to the UserList file of priv-
iledged BOS Server principals. Only individuals already appearing in the UserList are
permitted to add new entries. If the given user name already appears in the file, the
function fails. Otherwise, the file is opened in append mode and the name is written at
the end with a trailing newline.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

EEXIST The individual specified by name is already on the UserList.

EIO If the UserList file could not be opened or closed.

BOS Server Interface 58 August 29, 1991 10:26

BOS Server Specification

3.6.4.2 BOZO DeleteSUser — Delete a user from the UserList

int BOZO DeleteSUser(IN struct rx connection *z conn,

IN char *name)

Description

This interface function is used to delete the given user name from the UserList file of
priviledged BOS Server principals. Only individuals already appearing in the UserList
are permitted to delete existing entries. The file is opened in read mode, and a new file
named UserList.NXX is created in the same directory and opened in write mode. The
original UserList is scanned, with each entry copied to the new file if it doesn’t match
the given name. After the scan is done, all files are closed, and the UserList.NXX file is
renamed to UserList, overwriting the original.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

-1 The UserList file could not be opened.

EIO The UserList.NXX file could not be opened, or an error occured in the file
close operations.

ENOENT The given name was not found in the original UserList file.

BOS Server Interface 59 August 29, 1991 10:26

BOS Server Specification

3.6.4.3 BOZO ListSUsers — Get the name of the user in the given position
in the UserList file

int BOZO ListSUsers(IN struct rx connection *z conn,

IN long an,

OUT char **name)

Description

This interface function is used to request the name of priviledged user in the an’th slot
in the BOS Server’s UserList file. The string placed into the name parameter may be up
to 256 characters long, including the trailing null.

Error Codes

1 The UserList file could not be opened, or an invalid value was specified for an.

BOS Server Interface 60 August 29, 1991 10:26

BOS Server Specification

3.6.4.4 BOZO ListKeys — List info about the key at a given index in the
key file

int BOZO ListKeys(IN struct rx connection *z conn,

IN long an,

OUT long *kvno,

OUT struct bozo key *key,

OUT struct bozo keyInfo *keyinfo)

Description

This interface function allows its callers to specify the index of the desired AFS encryption
key, and to fetch information regarding that key. If the caller is properly authorized,
the version number of the specified key is placed into the kvno parameter. Similarly, a
description of the given key is placed into the keyinfo parameter. When the BOS Server
is running in noauth mode, the key itself will be copied into the key argument, otherwise
the key structure will be zeroed. The data placed into the keyinfo argument, declared as
a struct bozo keyInfo as defined in Section 3.3.3, is obtained as follows. The mod sec

field is taken from the value of st mtime after stat()ing /usr/afs/etc/KeyFile, and the
mod usec field is zeroed. The keyCheckSum is computed by an Authentication Server
routine, which calculates a 32-bit cryptographic checksum of the key, encrypting a block
of zeros and then using the first 4 bytes as the checksum.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to obtain information regarding the list of AFS keys held by the given BOS Server.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

BZDOM An invalid index was found in the an parameter.

KABADKEY Defined in the exported kautils.h header file corresponding to the Au-
thentication Server, this return value indicates a problem with generating the
checksum field of the keyinfo parameter.

BOS Server Interface 61 August 29, 1991 10:26

BOS Server Specification

3.6.4.5 BOZO AddKey — Add a key to the key file

int BOZO AddKey(IN struct rx connection *z conn,

IN long an,

IN struct bozo key *key)

Description

This interface function allows a properly-authorized caller to set the value of key version
number an to the given AFS key. If a slot is found in the key file /usr/afs/etc/KeyFile
marked as key version number an, its value is overwritten with the key provided. If an
entry for the desired key version number does not exist, the key file is grown, and the
new entry filled with the specified information.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to add new entries into the list of AFS keys held by the BOS Server.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

AFSCONF FULL The system key file already contains the maximum number of keys
(AFSCONF MAXKEYS, or 8). These two constant defintions are available from the
cellconfig.h and keys.h AFS include files respectively.

BOS Server Interface 62 August 29, 1991 10:26

BOS Server Specification

3.6.4.6 BOZO DeleteKey — Delete the entry for an AFS key

int BOZO DeleteKey(IN struct rx connection *z conn,

IN long an)

Description

This interface function allows a properly-authorized caller to delete key version number
an from the key file, /usr/afs/etc/KeyFile. The existing keys are scanned, and if one
with key version number an is found, it is removed. Any keys occurring after the deleted
one are shifted to remove the file entry entirely.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to delete entries from the list of AFS keys held by the BOS Server.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

AFSCONF NOTFOUND An entry for key version number an was not found. This con-
stant defintion is available from the cellconfig.h AFS include file.

BOS Server Interface 63 August 29, 1991 10:26

BOS Server Specification

3.6.4.7 BOZO SetNoAuthFlag — Enable or disable requirement for au-
thenticated calls

int BOZO SetNoAuthFlag(IN struct rx connection *z conn,

IN long flag)

Description

This interface routine controls the level of authentication imposed on the BOS Server
and all other AFS server agents on the machine by manipulating the NoAuth file in the
/usr/afs/local directory on the server. If the flag parameter is set to zero (0), the NoAuth
file will be removed, instructing the BOS Server and AFS agents to authenenticate the
RPCs they receive. Otherwise, the file is created as an indication to honor all RPC calls
to the BOS Server and AFS agents, regardless of the credentials carried by callers.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

BOS Server Interface 64 August 29, 1991 10:26

BOS Server Specification

3.6.5 Cell Configuration

The five interface functions covered in this section all have to do with manipulating the
configuration information of the machine on which the BOS Server runs. In particular,
one may get and set the cell name for that server machine, enumerate the list of server
machines running database servers for the cell, and add and delete machines from this
list.

BOS Server Interface 65 August 29, 1991 10:26

BOS Server Specification

3.6.5.1 BOZO GetCellName —Get the name of the cell to which the BOS
Server belongs

int BOZO GetCellName(IN struct rx connection *z conn,

OUT char **name)

Description

This interface routine returns the name of the cell to which the given BOS Server belongs.
The BOS Server consults a file on its local disk, /usr/afs/etc/ThisCell to obtain this
information. If this file does not exist, then the BOS Server will return a null string.

Error Codes

AFSCONF UNKNOWN The BOS Server could not access the cell name file. This constant
defintion is available from the cellconfig.h AFS include file.

BOS Server Interface 66 August 29, 1991 10:26

BOS Server Specification

3.6.5.2 BOZO SetCellName — Set the name of the cell to which the BOS
Server belongs

int BOZO SetCellName(IN struct rx connection *z conn,

IN char *name)

Description

This interface function allows the caller to set the name of the cell to which the given
BOS Server belongs. The BOS Server writes this information to a file on its local disk,
/usr/afs/etc/ThisCell. The current contents of this file are first obtained, along with
other information about the current cell. If this operation fails, then BOZO SetCellName()
also fails. The string name provided as an argument is then stored in ThisCell.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to set the name of the cell to which the machine executing the given BOS Server belongs.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

AFSCONF NOTFOUND Information about the current cell could not be obtained. This
constant definition, along with AFSCONF FAILURE appearing below, is availabel
from the cellconfig.h AFS include file.

AFSCONF FAILURE New cell name could not be written to file.

BOS Server Interface 67 August 29, 1991 10:26

BOS Server Specification

3.6.5.3 BOZO GetCellHost — Get the name of a database host given its
index

int BOZO GetCellHost(IN struct rx connection *z conn,

IN long awhich,

OUT char **name)

Description

This interface routine allows the caller to get the name of the host appearing in position
awhich in the list of hosts acting as database servers for the BOS Server’s cell. The first
valid position in the list is index zero. The host’s name is deposited in the character
buffer pointed to by name. If the value of the index provided in awhich is out of range,
the function fails and a null string is placed in name.

Error Codes

BZDOM The host index in awhich is out of range.

AFSCONF NOTFOUND Information about the current cell could not be obtained. This
constant defintion may be found in the cellconfig.h AFS include file.

BOS Server Interface 68 August 29, 1991 10:26

BOS Server Specification

3.6.5.4 BOZO AddCellHost — Add an entry to the list of database server
hosts

int BOZO AddCellHost(IN struct rx connection *z conn,

IN char *name)

Description

This interface function allows properly-authorized callers to add a name to the list of
hosts running AFS database server processes for the BOS Server’s home cell. If the given
name does not already appear in the database server list, a new entry will be created.
Regardless, the mapping from the given name to its IP address will be recomputed, and
the cell database file, /usr/afs/etc/CellServDB will be updated.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to add an entry to the list of host names providing database services for the BOS Server’s
home cell.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

AFSCONF NOTFOUND Information about the current cell could not be obtained. This
constant defintion may be found in the cellconfig.h AFS include file.

BOS Server Interface 69 August 29, 1991 10:26

BOS Server Specification

3.6.5.5 BOZO DeleteCellHost —Delete an entry from the list of database
server hosts

int BOZO DeleteCellHost(IN struct rx connection *z conn,

IN char *name)

Description

This interface routine allows properly-authorized callers to remove a given name from the
list of hosts running AFS database server processes for the BOS Server’s home cell. If the
given name does not appear in the database server list, this function will fail. Otherwise,
the matching entry will be removed, and the cell database file, /usr/afs/etc/CellServDB
will be updated.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to delete an entry from the list of host names providing database services for the BOS
Server’s home cell.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

AFSCONF NOTFOUND Information about the current cell could not be obtained. This
constant defintion may be found in the cellconfig.h AFS include file.

BOS Server Interface 70 August 29, 1991 10:26

BOS Server Specification

3.6.6 Installing/Uninstalling Server Binaries

There are four BOS Server interface routines that allow administrators to install new
server binaries and to roll back to older, perhaps more reliable, executables. They also
allow for stored images of the old binaries (as well as core files) to be “pruned”, or
selectively deleted.

BOS Server Interface 71 August 29, 1991 10:26

BOS Server Specification

3.6.6.1 StartBOZO Install — Pass the IN params when installing a server
binary

int StartBOZO Install(IN struct rx connection *z conn,

IN char *path,

IN long size,

IN long flags,

IN long date)

Description

The BOZO Install() function defined in the BOS Server Rxgen interface file is used
to deliver the executable image of an AFS server process to the given server machine
and then installing it in the appropriate directory there. It is defined to be a streamed
function, namely one that can deliver an arbitrary amount of data. For full details on
the definition and use of streamed functions, please refer to the Streamed Function Calls
section in [4].

This function is created by Rxgen in response to the BOZO Install() interface definition in
the bosint.xg file. The StartBOZO Install() routine handles passing the IN parameters of
the streamed call to the BOS Server. Specifically, the apath argument specifies the name
of the server binary to be installed (including the full pathname prefix, if necessary). Also,
the length of the binary is communicated via the size argument, and the modification
time the caller wants the given file to carry is placed in date. The flags argument is
currently ignored by the BOS Server.

After the above parameters are delivered with StartBOZO Install(), the BOS Server
creates a file with the name given in the path parameter followed by a .NEW postfix.
The size bytes comprising the text of the executable in question are then read over
the RPC channel and stuffed into this new file. When the transfer is complete, the file
is closed. The existing versions of the server binary are then “demoted”; the *.BAK
version (if it exists) is renamed to *.OLD. overwriting the existing *.OLD version if and
only if an *.OLD version does not exist, or if a *.OLD exists and the .BAK file is at
least seven days old. The main binary is then renamed to *.BAK. Finally, the *.NEW
file is renamed to be the new standard binary image to run, and its modification time is
set to date.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to install server software onto the machine on which the BOS Server runs.

BOS Server Interface 72 August 29, 1991 10:26

BOS Server Specification

Error Codes

BZACCESS The caller is not authorized to perform this operation.

100 An error was encountered when writing the binary image to the local disk file.
The truncated file was closed and deleted on the BOS Server.

101 More than size bytes were delivered to the BOS Server in the RPC transfer
of the executable image.

102 Fewer than size bytes were delivered to the BOS Server in the RPC transfer
of the executable image.

BOS Server Interface 73 August 29, 1991 10:26

BOS Server Specification

3.6.6.2 EndBOZO Install — Get the OUT params when installing a server
binary

int EndBOZO Install(IN struct rx connection *z conn)

Description

This function is created by Rxgen in response to the BOZO Install() interface definition
in the bosint.xg file. The EndBOZO Install() routine handles the recovery of the OUT

parameters for this interface call, of which there are none. The utility of such functions
is often the value they return. In this case, however, EndBOZO Install() always returns
success. Thus, it is not even necessary to invoke this particular function, as it is basically
a no-op.

Error Codes

--- Always returns successfully.

BOS Server Interface 74 August 29, 1991 10:26

BOS Server Specification

3.6.6.3 BOZO UnInstall — Roll back from a server binary installation

int BOZO UnInstall(IN struct rx connection *z conn,

IN char *path)

Description

This interface function allows a properly-authorized caller to “roll back” from the instal-
lation of a server binary. If the *.BAK version of the server named path exists, it will
be renamed to be the main executable file. In this case, the *.OLD version, if it exists,
will be renamed to *.BAK. If a *.BAK version of the binary in question is not found,
the *.OLD version is renamed as the new standard binary file. If neither a *.BAK or a
*.OLD version of the executable can be found, the function fails, returning the low-level
unix error generated at the server.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to roll back server software on the machine on which the BOS Server runs.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

BOS Server Interface 75 August 29, 1991 10:26

BOS Server Specification

3.6.6.4 BOZO Prune — Throw away old versions of server binaries and core
files

int BOZO Prune(IN struct rx connection *z conn,

IN long flags)

Description

This interface routine allows a properly-authorized caller to prune the saved versions of
server binaries resident on the machine on which the BOS Server runs. The /usr/afs/bin
directory on the server machine is scanned in directory order. If the BOZO PRUNEOLD

bit is set in the flags argument, every file with the *.OLD extension is deleted. If
the BOZO PRUNEBAK bit is set in the flags argument, every file with the *.BAK exten-
sion is deleted. Next, the /usr/afs/logs directory is scanned in directory order. If the
BOZO PRUNECORE bit is set in the flags argument, every file with a name beginning with
the prefix core is deleted.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to prune server software binary versions and core files on the machine on which the BOS
Server runs.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

BOS Server Interface 76 August 29, 1991 10:26

BOS Server Specification

3.6.7 Executing Commands at the Server

There is a single interface function defined by the BOS Server that allows execution of
arbitrary programs or scripts on any server machine on which a BOS Server process is
active.

BOS Server Interface 77 August 29, 1991 10:26

BOS Server Specification

3.6.7.1 BOZO Exec — Execute a shell command at the server

int BOZO Exec(IN struct rx connection *z conn,

IN char *cmd)

Description

This interface routine allows a properly-authorized caller to execute any desired shell
command on the server on which the given BOS Server runs. There is currently no
provision made to pipe the output of the given command’s execution back to the caller
through the RPC channel.

The BOS Server will only allow individuals listed in its locally-maintained UserList file
to execute arbitrary shell commands on the server machine on which the BOS Server
runs via this call.

Error Codes

BZACCESS The caller is not authorized to perform this operation.

BOS Server Interface 78 August 29, 1991 10:26

BOS Server Specification

Bibliography

[1] CMU Information Technology Center. Synchronization and Caching Issues in the
Andrew File System, USENIX Proceedings, Dallas, TX, Winter 1988.

[2] Transarc Corporation. AFS 3.0 Command Reference Manual, F-30-0-D103, Pitts-
burgh, PA, April 1990.

[3] Zayas, Edward R., Transarc Corporation. AFS-3 Programmer’s Reference: Speci-
fication for the Rx Remote Procedure Call Facility, FS-00-D164, Pittsburgh, PA,
April 1991.

[4] Zayas, Edward R., Transarc Corporation. AFS-3 Programmer’s Reference: File
Server/Cache Manager Interface, FS-00-D162, Pittsburgh, PA, April 1991.

[5] Transarc Corporation. AFS 3.0 System Administrator’s Guide, F-30-0-D102, Pitts-
burgh, PA, April 1990.

[6] Kazar, Michael L., Information Technology Center, Carnegie Mellon University.
Ubik - A Library For Managing Ubiquitous Data, ITCID, Pittsburgh, PA, Month,
1988.

[7] Kazar, Michael L., Information Technology Center, Carnegie Mellon University.
Quorum Completion, ITCID, Pittsburgh, PA, Month, 1988.

[8] S. R. Kleinman. Vnodes: An Architecture for Multiple file System Types in Sun
UNIX, Conference Proceedings, 1986 Summer Usenix Technical Conference, pp.
238-247, El Toro, CA, 1986.

BOS Server Interface 79 August 29, 1991 10:26

Index

bnode, cron, 5
bnode, fs, 5
bnode, simple, 5

const AFSCONF MAXKEYS, 11, 62
const BNODE ACTIVE, 16
const BNODE DELETE, 16
const BNODE ERRORSTOP, 16
const BNODE NEEDTIMEOUT, 16
const BNODE WAIT, 16
const BOZO BADDIRACCESS, 16, 20
const BOZO BSSIZE, 16, 31, 37
const BOZO ERRORSTOP, 16, 20
const BOZO HASCORE, 16, 20
const BOZO PRUNEBAK, 17
const BOZO PRUNECORE, 17
const BOZO PRUNEOLD, 17
const BPROC EXITED, 18, 25
const BPROC STARTED, 18, 25
const BSTAT NORMAL, 10, 17, 20, 24, 37,

49
const BSTAT SHUTDOWN, 10, 17, 20, 24, 37,

49, 51–53, 56
const BSTAT SHUTTINGDOWN, 17, 20, 24,

37
const BSTAT STARTINGUP, 17, 20, 24, 37
const BZACCESS, 25
const BZBADTYPE, 25
const BZBUSY, 25
const BZDOM, 25
const BZEXISTS, 25
const BZIO, 25
const BZNET, 25
const BZNOCREATE, 25

const BZNOENT, 25
const BZNOTACTIVE, 25
const BZSYNTAX, 25
const KTIME DAY, 9, 18
const KTIME HOUR, 9, 18
const KTIME MIN, 9, 18
const KTIME NEVER, 18
const KTIME NOW, 18
const KTIME SEC, 18
const KTIME TIME, 18
const BOZO ACTIVE, 24
const BOZO DELETE, 24
const BOZO ERRORSTOP, 24
const BOZO NEEDTIMEOUT, 24
const BOZO WAIT, 24
constant BSTAT NORMAL, 17

file bnode.h, 15, 25
file bosint.h, 15
file bosint.xg, 12, 15, 45, 46, 72, 74
file ptint.xg, 28
function BOZO AddCellHost(), 30, 69
function BOZO AddKey(), 30, 62
function BOZO AddKeys(), 19
function BOZO AddSUser(), 30, 58
function BOZO CreateBnode(), 29, 33
function BOZO DeleteBnode(), 29, 35
function BOZO DeleteCellHost(), 30, 70
function BOZO DeleteKey(), 30, 63
function BOZO DeleteSUser(), 30, 59
function BOZO EnumerateInstance(), 29,

39
function BOZO Exec(), 31, 78
function BOZO GetCellHost(), 30, 68

i

BOS Server Specification

function BOZO GetCellName(), 30, 66
function BOZO GetDates(), 29, 44
function BOZO GetInstanceInfo(), 20, 29,

40
function BOZO GetInstanceParm(), 29,

41
function BOZO GetInstanceStrings(), 29,

47
function BOZO GetRestartTime(), 18, 29,

42, 43
function BOZO GetStatus(), 29, 37
function BOZO ListKeys(), 19, 30, 61
function BOZO ListKeys, 19
function BOZO ListSUsers(), 30, 60
function BOZO Prune(), 17, 30, 76
function BOZO ReBozo(), 30, 53, 54
function BOZO Restart(), 30, 55
function BOZO RestartAll(), 30, 53, 54
function BOZO SetCellName(), 30, 67
function BOZO SetNoAuthFlag(), 30, 64
function BOZO SetRestartTime(), 18, 29,

43
function BOZO SetStatus(), 24, 30, 49,

50
function BOZO SetTStatus(), 24, 30, 50
function BOZO ShutdownAll(), 30, 35, 52
function BOZO StartupAll(), 30, 51
function BOZO UnInstall(), 30, 75
function BOZO WaitAll(), 30, 56
function EndBOZO GetLog(), 29, 46
function EndBOZO Install(), 30, 74
function StartBOZO GetLog(), 29, 45
function StartBOZO Install(), 30, 72

macro BOP DELETE(), 27, 35
macro BOP DELETE, 21
macro BOP GETPARM(), 27
macro BOP GETPARM, 22
macro BOP GETSTAT(), 26, 37, 53–56
macro BOP GETSTAT, 21
macro BOP GETSTRING(), 27
macro BOP GETSTRING, 21

macro BOP HASCORE(), 28
macro BOP HASCORE, 22
macro BOP PROCEXIT(), 27
macro BOP PROCEXIT, 21
macro BOP RESTART(), 13
macro BOP RESTARTP(), 28
macro BOP RESTARTP, 22
macro BOP SETSTAT(), 26, 34, 35, 49–

55
macro BOP SETSTAT, 21
macro BOP TIMEOUT(), 23, 26
macro BOP TIMEOUT, 21

struct bnode ops, 20, 25, 26
struct bnode proc, 17, 21, 24
struct bnode token, 23
struct bnode type, 20, 22
struct bnode, 4, 17, 23
struct bozo keyInfo, 19, 61
struct bozo key, 19
struct bozo netKTime, 18
struct bozo status, 20
structbnode proc, 27

Index ii August 29, 1991 10:26

