
AFS-3 Programmer’s Reference:
Specification for the Rx Remote Procedure

Call Facility

Edward R. Zayas

Transarc Corporation

Version 1.2 of 28 August 1991 10:11

c©Copyright 1991 Transarc Corporation

All Rights Reserved

FS-00-D164

Rx Specification

Contents

1 Overview . 1
1.1 Introduction . 1
1.2 Basic Concepts . 1

1.2.1 Security . 2
1.2.2 Services . 2
1.2.3 Connections . 3
1.2.4 Peers . 3
1.2.5 Calls . 3
1.2.6 Quotas . 4
1.2.7 Packet Skew . 4
1.2.8 Multicasting . 4

1.3 Scope . 4
1.4 Document Layout . 5
1.5 Related Documents . 5

2 The LWP Lightweight Process Package 7
2.1 Introduction . 7
2.2 Description . 8

2.2.1 LWP Overview . 8
2.2.2 Locking . 11
2.2.3 IOMGR . 13
2.2.4 Timer . 14
2.2.5 Fast Time . 15
2.2.6 Preemption . 15

2.3 Interface Specifications . 16
2.3.1 LWP . 16

2.3.1.1 LWP InitializeProcessSupport 16
2.3.1.2 LWP TerminateProcessSupport 17
2.3.1.3 LWP CreateProcess . 17
2.3.1.4 LWP DestroyProcess 18
2.3.1.5 LWP WaitProcess . 19
2.3.1.6 LWP MwaitProcess . 19

Table of Contents i August 28, 1991 10:38

Rx Specification

2.3.1.7 LWP SignalProcess . 20
2.3.1.8 LWP NoYieldSignal . 21
2.3.1.9 LWP DispatchProcess 21
2.3.1.10 LWP CurrentProcess 22
2.3.1.11 LWP ActiveProcess . 22
2.3.1.12 LWP StackUsed . 22
2.3.1.13 LWP NewRock . 23
2.3.1.14 LWP GetRock . 24

2.3.2 Locking . 24
2.3.2.1 Lock Init . 24
2.3.2.2 ObtainReadLock . 25
2.3.2.3 ObtainWriteLock . 25
2.3.2.4 ObtainSharedLock . 26
2.3.2.5 ReleaseReadLock . 27
2.3.2.6 ReleaseWriteLock . 27
2.3.2.7 ReleaseSharedLock . 28
2.3.2.8 CheckLock . 28
2.3.2.9 BoostLock . 29
2.3.2.10 UnboostLock . 29

2.3.3 IOMGR . 30
2.3.3.1 IOMGR Initialize . 30
2.3.3.2 IOMGR Finalize . 31
2.3.3.3 IOMGR Select . 31
2.3.3.4 IOMGR Signal . 32
2.3.3.5 IOMGR CancelSignal 32
2.3.3.6 IOMGR Sleep . 33

2.3.4 Timer . 33
2.3.4.1 TM Init . 34
2.3.4.2 TM Final . 34
2.3.4.3 TM Insert . 35
2.3.4.4 TM Rescan . 35
2.3.4.5 TM GetExpired . 36
2.3.4.6 TM GetEarliest . 36
2.3.4.7 TM eql . 37

2.3.5 Fast Time . 37
2.3.5.1 FT Init . 37
2.3.5.2 FT GetTimeOfDay . 38

2.3.6 Preemption . 39
2.3.6.1 PRE InitPreempt . 39
2.3.6.2 PRE EndPreempt . 39
2.3.6.3 PRE PreemptMe . 40

Table of Contents ii August 28, 1991 10:38

Rx Specification

2.3.6.4 PRE BeginCritical . 40
2.3.6.5 PRE EndCritical . 41

3 Rxkad . 42
3.1 Introduction . 42
3.2 Definitions . 42
3.3 Exported Objects . 43

3.3.1 Server-Side Mechanisms . 43
3.3.1.1 Security Operations . 43
3.3.1.2 Security Object . 44

3.3.2 Client-Side Mechanisms . 44
3.3.2.1 Security Operations . 44
3.3.2.2 Security Object . 45

4 Rx Support Packages . 47
4.1 Introduction . 47
4.2 The rx queue Package . 47

4.2.1 struct queue . 48
4.2.2 Internal Operations . 48

4.2.2.1 Q(): Coerce type to a queue element 48
4.2.2.2 QA(): Add a queue element before/after another element 48
4.2.2.3 QR(): Remove a queue element 49
4.2.2.4 QS(): Splice two queues together 49

4.2.3 External Operations . 49
4.2.3.1 queue Init(): Initialize a queue header 49
4.2.3.2 queue Prepend(): Put element at the head of a queue . 49
4.2.3.3 queue Append(): Put an element a the tail of a queue . 50
4.2.3.4 queue InsertBefore(): Insert a queue element before an-

other element . 50
4.2.3.5 queue InsertAfter(): Insert a queue element after an-

other element . 50
4.2.3.6 queue SplicePrepend(): Splice one queue before another 50
4.2.3.7 queue SpliceAppend(): Splice one queue after another . 50
4.2.3.8 queue Replace(): Replace the contents of a queue with

that of another . 51
4.2.3.9 queue Remove(): Remove an element from its queue . . 51
4.2.3.10 queue MoveAppend(): Move an element from its queue

to the end of another queue 51
4.2.3.11 queue MovePrepend(): Move an element from its queue

to the head of another queue 51
4.2.3.12 queue First(): Return the first element of a queue, co-

erced to a particular type 52

Table of Contents iii August 28, 1991 10:38

Rx Specification

4.2.3.13 queue Last(): Return the last element of a queue, co-
erced to a particular type 52

4.2.3.14 queue Next(): Return the next element of a queue, co-
erced to a particular type 52

4.2.3.15 queue Prev(): Return the next element of a queue, co-
erced to a particular type 52

4.2.3.16 queue IsEmpty(): Is the given queue empty? 53
4.2.3.17 queue IsNotEmpty(): Is the given queue not empty? . . 53
4.2.3.18 queue IsOnQueue(): Is an element currently queued? . . 53
4.2.3.19 queue IsFirst(): Is an element the first on a queue? . . . 53
4.2.3.20 queue IsLast(): Is an element the last on a queue? . . . 53
4.2.3.21 queue IsEnd(): Is an element the end of a queue? 54
4.2.3.22 queue Scan(): for loop test for scanning a queue in a

forward direction . 54
4.2.3.23 queue ScanBackwards(): for loop test for scanning a

queue in a reverse direction 55
4.3 The rx clock Package . 55

4.3.1 struct clock . 55
4.3.2 clock nUpdates . 56
4.3.3 Operations . 56

4.3.3.1 clock Init(): Initialize the clock package 56
4.3.3.2 clock UpdateTime(): Compute the current time 56
4.3.3.3 clock GetTime(): Return the current clock time 56
4.3.3.4 clock Sec(): Get the current clock time, truncated to

seconds . 56
4.3.3.5 clock ElapsedTime(): Measure milliseconds between two

given clock values . 57
4.3.3.6 clock Advance(): Advance the recorded clock time by a

specified clock value . 57
4.3.3.7 clock Gt(): Is a clock value greater than another? 57
4.3.3.8 clock Ge(): Is a clock value greater than or equal to

another? . 57
4.3.3.9 clock Gt(): Are two clock values equal? 57
4.3.3.10 clock Le(): Is a clock value less than or equal to another? 57
4.3.3.11 clock Lt(): Is a clock value less than another? 58
4.3.3.12 clock IsZero(): Is a clock value zero? 58
4.3.3.13 clock Zero(): Set a clock value to zero 58
4.3.3.14 clock Add(): Add two clock values together 58
4.3.3.15 clock Sub(): Subtract two clock values 58
4.3.3.16 clock Float(): Convert a clock time into floating point . 58

4.4 The rx event Package . 59

Table of Contents iv August 28, 1991 10:38

Rx Specification

4.4.1 struct rxevent . 59
4.4.2 Operations . 59

4.4.2.1 rxevent Init(): Initialize the event package 59
4.4.2.2 rxevent Post(): Schedule an event 60
4.4.2.3 rxevent Cancel 1(): Cancel an event (internal use) . . . 60
4.4.2.4 rxevent Cancel(): Cancel an event (external use) 60
4.4.2.5 rxevent RaiseEvents(): Initialize the event package . . . 61
4.4.2.6 rxevent TimeToNextEvent(): Get amount of time until

the next event expires 61

5 Programming Interface . 62
5.1 Introduction . 62
5.2 Constants . 62

5.2.1 Configuration Quantities . 63
5.2.2 Waiting Options . 64
5.2.3 Connection ID Operations . 65
5.2.4 Connection Flags . 65
5.2.5 Connection Types . 65
5.2.6 Call States . 66
5.2.7 Call Flags . 66
5.2.8 Call Modes . 67
5.2.9 Packet Header Flags . 67
5.2.10 Packet Sizes . 68
5.2.11 Packet Types . 69
5.2.12 Packet Classes . 70
5.2.13 Conditions Prompting Ack Packets 71
5.2.14 Acknowledgement Types . 71
5.2.15 Error Codes . 72
5.2.16 Debugging Values . 72

5.2.16.1 Version Information . 72
5.2.16.2 Opcodes . 73
5.2.16.3 Queuing . 74

5.3 Structures . 74
5.3.1 Security Objects . 75

5.3.1.1 struct rx securityOps 75
5.3.1.2 struct rx securityClass 76
5.3.1.3 struct rx securityObjectStats 77

5.3.2 Protocol Objects . 78
5.3.2.1 struct rx service . 78
5.3.2.2 struct rx connection 79
5.3.2.3 struct rx peer . 81

Table of Contents v August 28, 1991 10:38

Rx Specification

5.3.2.4 struct rx call . 82
5.3.3 Packet Formats . 85

5.3.3.1 struct rx header . 85
5.3.3.2 struct rx packet . 86
5.3.3.3 struct rx ackPacket 87

5.3.4 Debugging and Statistics . 88
5.3.4.1 struct rx stats . 88
5.3.4.2 struct rx debugIn . 89
5.3.4.3 struct rx debugStats 90
5.3.4.4 struct rx debugConn 90
5.3.4.5 struct rx debugConn vL 91

5.4 Exported Variables . 92
5.4.1 rx connDeadTime . 92
5.4.2 rx idleConnectionTime . 92
5.4.3 rx idlePeerTime . 92
5.4.4 rx extraQuota . 93
5.4.5 rx extraPackets . 93
5.4.6 rx nPackets . 93
5.4.7 rx nFreePackets . 93
5.4.8 rx stackSize . 94
5.4.9 rx packetTypes . 94
5.4.10 rx stats . 94

5.5 Macros . 94
5.5.1 Field Selections/Assignments . 95

5.5.1.1 rx ConnectionOf() . 95
5.5.1.2 rx PeerOf() . 96
5.5.1.3 rx HostOf() . 96
5.5.1.4 rx PortOf() . 96
5.5.1.5 rx GetLocalStatus() . 96
5.5.1.6 rx SetLocalStatus() . 97
5.5.1.7 rx GetRemoteStatus() 97
5.5.1.8 rx Error() . 97
5.5.1.9 rx DataOf() . 97
5.5.1.10 rx GetDataSize() . 98
5.5.1.11 rx SetDataSize() . 98
5.5.1.12 rx GetPacketCksum() 98
5.5.1.13 rx SetPacketCksum() 99
5.5.1.14 rx GetRock() . 99
5.5.1.15 rx SetRock() . 99
5.5.1.16 rx SecurityClassOf() . 99
5.5.1.17 rx SecurityObjectOf() 100

Table of Contents vi August 28, 1991 10:38

Rx Specification

5.5.2 Boolean Operations . 100
5.5.2.1 rx IsServerConn() . 100
5.5.2.2 rx IsClientConn() . 100
5.5.2.3 rx IsUsingPktCksum() 101

5.5.3 Service Attributes . 101
5.5.3.1 rx SetStackSize() . 101
5.5.3.2 rx SetMinProcs() . 102
5.5.3.3 rx SetMaxProcs() . 102
5.5.3.4 rx SetIdleDeadTime() 102
5.5.3.5 rx SetServiceDeadTime() 103
5.5.3.6 rx SetRxDeadTime() 103
5.5.3.7 rx SetConnDeadTime() 103
5.5.3.8 rx SetConnHardDeadTime() 104
5.5.3.9 rx GetBeforeProc() . 104
5.5.3.10 rx SetBeforeProc() . 105
5.5.3.11 rx GetAfterProc() . 105
5.5.3.12 rx SetAfterProc() . 106
5.5.3.13 rx SetNewConnProc() 106
5.5.3.14 rx SetDestroyConnProc() 106

5.5.4 Security-Related Operations . 107
5.5.4.1 rx GetSecurityHeaderSize() 107
5.5.4.2 rx SetSecurityHeaderSize() 107
5.5.4.3 rx GetSecurityMaxTrailerSize() 108
5.5.4.4 rx SetSecurityMaxTrailerSize() 108

5.5.5 Sizing Operations . 108
5.5.5.1 rx UserDataOf() . 109
5.5.5.2 rx MaxUserDataSize() 109

5.5.6 Complex Operations . 109
5.5.6.1 rx Read() . 110
5.5.6.2 rx Write() . 110

5.5.7 Security Operation Invocations 111
5.5.7.1 RXS OP() . 111
5.5.7.2 RXS Close() . 112
5.5.7.3 RXS NewConnection() 112
5.5.7.4 RXS PreparePacket() 112
5.5.7.5 RXS SendPacket() . 113
5.5.7.6 RXS CheckAuthentication() 114
5.5.7.7 RXS CreateChallenge() 114
5.5.7.8 RXS GetChallenge() . 115
5.5.7.9 RXS GetResponse() . 115
5.5.7.10 RXS CheckResponse() 116

Table of Contents vii August 28, 1991 10:38

Rx Specification

5.5.7.11 RXS CheckPacket() . 116
5.5.7.12 RXS DestroyConnection() 117
5.5.7.13 RXS GetStats() . 117

5.6 Functions . 118
5.6.1 Exported Operations . 118
5.6.2 rx Init . 118
5.6.3 rx NewService . 119
5.6.4 rx NewConnection . 120
5.6.5 rx NewCall . 121
5.6.6 rx EndCall . 121
5.6.7 rx StartServer . 122
5.6.8 rx PrintStats . 123
5.6.9 rx PrintPeerStats . 124
5.6.10 rx Finalize . 124
5.6.11 Semi-Exported Operations . 125
5.6.12 rx WriteProc . 125
5.6.13 rx ReadProc . 126
5.6.14 rx FlushWrite . 126
5.6.15 rx SetArrivalProc . 127

6 Example Server and Client . 128
6.1 Introduction . 128
6.2 Human-Generated Files . 129

6.2.1 Interface File: rxdemo.xg . 129
6.2.2 Client Program: rxdemo client.c 132
6.2.3 Server Program: rxdemo server.c 138
6.2.4 Makefile . 145

6.3 Computer-Generated Files . 147
6.3.1 Client-Side Routines: rxdemo.cs.c 147
6.3.2 Server-Side Routines: rxdemo.ss.c 151
6.3.3 External Data Rep File: rxdemo.xdr.c 154

6.4 Sample Output . 155

Table of Contents viii August 28, 1991 10:38

Rx Specification

Chapter 1

Overview

1.1 Introduction

The Rx package provides a high-performance, multi-threaded, and secure mechanism by
which remote procedure calls (RPCs) may be performed between programs executing
anywhere in a network of computers. The Rx protocol is adaptive, conforming itself
to widely varying network communication media. It allows user applications to define
and insert their own security modules, allowing them to execute the precise end-to-end
authentication algorithms required to suit their needs and goals. Although pervasive
throughout the AFS distributed file system, all of its agents, and many of its standard
application programs, Rx is entirely separable from AFS and does not depend on any
of its features. In fact, Rx can be used to build applications engaging in RPC-style
communication under a variety of unix-style file systems. There are in-kernel and user-
space implementations of the Rx facility, with both sharing the same interface.

This document provides a comprehensive and detailed treatment of the Rx RPC package.

1.2 Basic Concepts

The Rx design operates on the set of basic concepts described in this section.

Overview 1 August 28, 1991 10:38

Rx Specification

1.2.1 Security

The Rx architecture provides for tight integration between the RPC mechanism and
methods for making this communication medium secure. As elaborated in Section 5.3.1.3
and illustrated by the built-in rxkad security system described in Chapter 3, Rx defines
the format for a generic security module, and then allows application programmers to
define and activate instantiations of these modules. Rx itself knows nothing about the
internal details of any particular security model, or the module-specific state it requires.
It does, however, know when to call the generic security operations, and so can easily
execute the security algorithm defined. Rx does maintain basic state per connection on
behalf of any given security class.

1.2.2 Services

An Rx-based server exports services, or specific RPC interfaces that accomplish certain
tasks. Services are identified by (host-address, UDP-port, serviceID) triples. An Rx
service is installed and initialized on a given host through the use of the rx NewService()
routine (See Section 5.6.3). Incoming calls are stamped with the Rx service type, and
must match an installed service to be accepted. Internally, Rx services also carry string
names which identify them, which is useful for remote debugging and statistics-gathering
programs. The use of a service ID allows a single server process to export multiple,
independently-specified Rx RPC services.

Each Rx service contains one or more security classes, as implemented by individual
security objects. These security objects implement end-to-end security protocols. Indi-
vidual peer-to-peer connections established on behalf of an Rx service will select exactly
one of the supported security objects to define the authentication procedures followed
by all calls associated with the connection. Applications are not limited to using only
the core set of built-in security objects offered by Rx. They are free to define their own
security objects in order to execute the specific protocols they require.

It is possible to specify both the minimum and maximum number of lightweight processes
available to handle simultaneous calls directed to an Rx service. In addition, certain
procedures may be registered with the service and called at specific times in the course
of handling an RPC request.

Overview 2 August 28, 1991 10:38

Rx Specification

1.2.3 Connections

An Rx connection represents an authenticated communication path, allowing a sequence
of multiple asynchronous conversations (calls). Each connection is identified by a con-
nection ID. The low-order bits of the connection ID are reserved so that they may be
stamped with the index of a particular call channel. With up to RX MAXCALLS concurrent
calls (set to 4 in this implementation), the bottom two bits are set aside for this pur-
pose. The connection ID is not sufficient to uniquely identify an Rx connection by itself.
Should a client crash and restart, it may reuse a connection ID, causing inconsistent
results. Included with the connection ID is the epoch, or start time for the client side
of the connection. After a crash, the next incarnation of the client will choose a different
epoch value. This will differentiate the new incarnation from the orphaned connection
record on the server side.

Each connection is associated with a parent service, which defines a set of supported se-
curity models. At creation time, an Rx connection selects the particular security protocol
it will implement, referencing the associated service. The connection structure maintains
state for each individual call simultaneously handled.

1.2.4 Peers

For each connection, Rx maintains information describing the entity, or peer, on the
other side of the wire. A peer is identified by a (host, UDP-port) pair, with an IP address
used to identify the host. Included in the information kept on this remote communication
endpoint are such network parameters as the maximum packet size supported by the
host, current readings on round trip time and retransmission delays, and packet skew
(see Section 1.2.7). There are also congestion control fields, including retransmission
statistics and descriptions of the maximum number of packets that may be sent to the
peer without pausing. Peer structures are shared between connections whenever possible,
and, hence, are reference-counted. A peer object may be garbage-collected if it is not
actively referenced by any connection structure and a sufficient period of time has lapsed
since the reference count dropped to zero.

1.2.5 Calls

An Rx call represents an individual RPC being executed on a given connection. As
described above, each connection may have up to RX MAXCALLS calls active at any one
instant. The information contained in each call structure is specific to the given call.

Overview 3 August 28, 1991 10:38

Rx Specification

“Permanent” call state, such as the call number, is maintained in the connection structure
itself.

1.2.6 Quotas

Each attached server thread must be able to make progress to avoid system deadlock.
The Rx facility ensures that it can always handle the arrival of the next unacknowledged
data packet for an attached call with its system of packet quotas. A certain number
of packets are reserved per server thread for this purpose, allowing the server threads to
queue up an entire window full of data for an active call and still have packet buffers left
over to be able to read its input without blocking.

1.2.7 Packet Skew

If a packet is received n packets later than expected (based on packet serial numbers),
then we define it to have a skew of n. The maximum skew values allow us to decide
when a packet hasn’t been received yet because it is out of order, as opposed to when it
is likely to have been dropped.

1.2.8 Multicasting

The rx multi.c module provides for multicast abilities, sending an RPC to several targets
simultaneously. While true multicasting is not achieved, it is simulated by a rapid
succession of packet transmissions and a collection algorithm for the replies. A client
program, though, may be programmed as if multicasting were truly taking place. Thus,
Rx is poised to take full advantage of a system supporting true multicasting with minimal
disruption to the existing client code base.

1.3 Scope

This paper is a member of a documentation suite providing specifications as to the
operation and interfaces offered by the various AFS servers and agents. Rx is an integral
part of the AFS environment, as it provides the high-performance, secure pathway by
which these system components communicate across the network. Although AFS is

Overview 4 August 28, 1991 10:38

Rx Specification

dependent on Rx’s services, the reverse is not true. Rx is a fully independent RPC
package, standing on its own and usable in other environments.

The intent of this work is to provide readers with a sufficiently detailed description of
Rx that they may proceed to write their own applications on top of it. In fact, code for
a sample Rx server and client are provided.

One topic related to Rx will not be covered by this document, namely the Rxgen stub
generator. Rather, rxgen is addressed in a separate document.

1.4 Document Layout

After this introduction, Chapter 2 will introduce and describe various facilities and tools
that support Rx. In particular, the threading and locking packages used by Rx will
be examined, along with a set of timer and preemption tools. Chapter 3 proceeds to
examine the details of one of the built-in security modules offered by Rx. Based on the
Kerberos system developed by MIT’s Project Athena, this rxkad module allows secure,
ecrypted communication between the server and client ends of the RPC. Chapter 5 then
provides the full Rx programming interface, and Chapter 6 illustrates the use of this
programming interface by providing a fully-operational programming example employing
Rx. This rxdemo suite is examined in detail, ranging all the way from a step-by-step
analysis of the human-authored files, and the Rxgen-generated files upon which they are
based, to the workings of the associated Makefile. Output from the example rxdemo
server and client is also provided.

1.5 Related Documents

Titles for the full suite of AFS specification documents are listed below. All of the servers
and agents making up the AFS computing environment, whether running in the unix

kernel or in user space, utilize an Rx RPC interface through which they export their
services.

• AFS-3 Programmer’s Reference: Architectural Overview: This paper provides an
architectual overview of the AFS distributed file system, describing the full set of
servers and agents in a coherent way, illustrating their relationships to each other
and examining their interactions.

Overview 5 August 28, 1991 10:38

Rx Specification

• AFS-3 Programmer’s Reference: File Server/Cache Manager Interface: This docu-
ment describes the workings and interfaces of the two primary AFS agents, the File
Server and Cache Manager. The File Server provides a centralized disk repository
for sets of files, regulating access to them. End users sitting on client machines
rely on the Cache Manager agent, running in their kernel, to act as their agent in
accessing the data stored on File Server machines, making those files appear as if
they were really housed locally.

• AFS-3 Programmer’s Reference:Volume Server/Volume Location Server Interface:
This document describes the services through which “containers” of related user
data are located and managed.

• AFS-3 Programmer’s Reference: Protection Server Interface: This paper describes
the server responsible for mapping printable user names to and from their internal
AFS identifiers. The Protection Server also allows users to create, destroy, and
manipulate “groups” of users, which are suitable for placement on access control
lists (ACLs).

• AFS-3 Programmer’s Reference: BOS Server Interface: This paper explicates the
“nanny” service which assists in the administrability of the AFS environment.

In addition to these papers, the AFS 3.1 product is delivered with its own user, system
administrator, installation, and command reference documents.

Overview 6 August 28, 1991 10:38

Rx Specification

Chapter 2

The LWP Lightweight Process
Package

2.1 Introduction

This chapter describes a package allowing multiple threads of control to coexist and co-
operate within one unix process. Each such thread of control is also referred to as a
lightweight process, in contrast to the traditional unix (heavyweight) process. Except for
the limitations of a fixed stack size and non-preemptive scheduling, these lightweight pro-
cesses possess all the properties usually associated with full-fledged processes in typical
operating systems. For the purposes of this document, the terms lightweight process,
LWP, and thread are completely interchangeable, and they appear intermixed in this
chapter. Included in this lightweight process facility are various sub-packages, including
services for locking, I/O control, timers, fast time determination, and preemption.

The Rx facility is not the only client of the LWP package. Other LWP clients within
AFS include the File Server, Protection Server, BOS Server, Volume Server, Volume
Location Server, and the Authentication Server, along with many of the AFS application
programs.

The LWP Lightweight Process Package 7 August 28, 1991 10:38

Rx Specification

2.2 Description

2.2.1 LWP Overview

The LWP package implements primitive functions that provide the basic facilities re-
quired to enable procedures written in C to execute concurrently and asynchronously.
The LWP package is meant to be general-purpose (note the applications mentioned
above), with a heavy emphasis on simplicity. Interprocess communication facilities can
be built on top of this basic mechanism and in fact, many different IPC mechanisms
could be implemented.

In order to set up the threading support environment, a one-time invocation of the
LWP InitializeProcessSupport() function must precede the use of the facilities described
here. This initialization function carves an initial process out of the currently executing C
procedure and returns its thread ID. For symmetry, an LWP TerminateProcessSupport()
function may be used explicitly to release any storage allocated by its counterpart.
If this function is used, it must be issued from the thread created by the original
LWP InitializeProcessSupport() invocation.

When any of the lightweight process functions completes, an integer value is returned to
indicate whether an error condition was encountered. By convention, a return value of
zero indicates that the operation succeeded.

Macros, typedefs, and manifest constants for error codes needed by the threading mech-
anism are exported by the lwp.h include file. A lightweight process is identified by an
object of type PROCESS, which is defined in the include file.

The process model supported by the LWP operations is based on a non-preemptive pri-
ority dispatching scheme. A priority is an integer in the range [0..LWP MAX PRIORITY],
where 0 is the lowest priority. Once a given thread is selected and dispatched, it remains
in control until it voluntarily relinquishes its claim on the CPU. Control may be relin-
quished by either explicit means (LWP DispatchProcess()) or implicit means (through
the use of certain other LWP operations with this side effect). In general, all LWP oper-
ations that may cause a higher-priority process to become ready for dispatching preempt
the process requesting the service. When this occurs, the dispatcher mechanism takes
over and automatically schedules the highest-priority runnable process. Routines in this
category, where the scheduler is guaranteed to be invoked in the absence of errors, are:

• LWP WaitProcess()

• LWP MwaitProcess()

The LWP Lightweight Process Package 8 August 28, 1991 10:38

Rx Specification

• LWP SignalProcess()

• LWP DispatchProcess()

• LWP DestroyProcess()

The following functions are guaranteed not to cause preemption, and so may be issued
with no fear of losing control to another thread:

• LWP InitializeProcessSupport()

• LWP NoYieldSignal()

• LWP CurrentProcess()

• LWP ActiveProcess()

• LWP StackUsed()

• LWP NewRock()

• LWP GetRock()

The symbol LWP NORMAL PRIORITY, whose value is (LWP MAX PRIORITY-2), provides a
reasonable default value to use for process priorities.

The lwp debug global variable can be set to activate or deactivate debugging messages
tracing the flow of control within the LWP routines. To activate debugging messages,
set lwp debug to a non-zero value. To deactivate, reset it to zero. All debugging output
from the LWP routines is sent to stdout.

The LWP package checks for stack overflows at each context switch. The variable that
controls the action of the package when an overflow occurs is lwp overflowAction. If
it is set to LWP SOMESSAGE, then a message will be printed on stderr announcing the
overflow. If lwp overflowAction is set to LWP SOABORT, the abort() LWP routine will
be called. Finally, if lwp overflowAction is set to LWP SOQUIET, the LWP facility will
ignore the errors. By default, the LWP SOABORT setting is used.

Here is a sketch of a simple program (using some psuedocode) demonstrating the high-
level use of the LWP facility. The opening #include line brings in the exported LWP
definitions. Following this, a routine is defined to wait on a “queue” object until some-
thing is deposited in it, calling the scheduler as soon as something arrives. Please note
that various LWP routines are introduced here. Their definitions will appear later, in
Section 2.3.1.

The LWP Lightweight Process Package 9 August 28, 1991 10:38

Rx Specification

#include <afs/lwp.h>

static read_process(id)
int *id;

{
/*
* Just relinquish control for now
*/
LWP_DispatchProcess();

for (;;) {
/*
* Wait until there is something in the queue
*/
while (empty(q))

LWP_WaitProcess(q);

/*
* Process the newly-arrived queue entry
*/
LWP_DispatchProcess();

}
}

The next routine, write process(), sits in a loop, putting messages on the shared queue
and signalling the reader, which is waiting for activity on the queue. Signalling a thread
is accomplished via the LWP SignalProcess() library routine.

static write_process()

{
. . .

/*
* Loop, writing data to the shared queue.
*/
for (mesg = messages; *mesg != 0; mesg++) {

insert(q, *mesg);
LWP_SignalProcess(q);

}
}

Finally, here is the main routine for this demo pseudocode. It starts by calling the
LWP initialization routine. Next, it creates some number of reader threads with calls to
LWP CreateProcess() in addition to the single writer thread. When all threads terminate,
they will signal the main routine on the done variable. Once signalled, the main routine
will reap all the threads with the help of the LWP DestroyProcess() function.

The LWP Lightweight Process Package 10 August 28, 1991 10:38

Rx Specification

main(argc, argv)
int argc;
char **argv;

{
PROCESS *id; /*Initial thread ID*/

/*
* Set up the LWP package, create the initial thread ID.
*/
LWP_InitializeProcessSupport(0, &id);

/*
* Create a set of reader threads.
*/
for (i = 0; i < nreaders; i++)

LWP_CreateProcess(read_process,
STACK_SIZE,
0,
i,
"Reader",
&readers[i]);

/*
* Create a single writer thread.
*/
LWP_CreateProcess(write_process,

STACK_SIZE,
1,
0,
"Writer",
&writer);

/*
* Wait for all the above threads to terminate.
*/
for (i = 0; i <= nreaders; i++)

LWP_WaitProcess(&done);

/*
* All threads are done. Destroy them all.
*/
for (i = nreaders-1; i >= 0; i--)

LWP_DestroyProcess(readers[i]);
}

2.2.2 Locking

The LWP locking facility exports a number of routines and macros that allow a C pro-
grammer using LWP threading to place read and write locks on shared data structures.

The LWP Lightweight Process Package 11 August 28, 1991 10:38

Rx Specification

This locking facility was also written with simplicity in mind.

In order to invoke the locking mechanism, an object of type struct Lock must be associ-
ated with the object. After being initialized with a call to LockInit(), the lock object is
used in invocations of various macros, including ObtainReadLock(), ObtainWriteLock(),
ReleaseReadLock(), ReleaseWriteLock(), ObtainSharedLock(), ReleaseSharedLock(), and
BoostSharedLock().

Lock semantics specify that any number of readers may hold a lock in the absence of
a writer. Only a single writer may acquire a lock at any given time. The lock package
guarantees fairness, legislating that each reader and writer will eventually obtain a given
lock. However, this fairness is only guaranteed if the priorities of the competing processes
are identical. Note that ordering is not guaranteed by this package.

Shared locks are read locks that can be “boosted” into write locks. These shared locks
have an unusual locking matrix. Unboosted shared locks are compatible with read locks,
yet incompatible with write locks and other shared locks. In essence, a thread holding a
shared lock on an object has effectively read-locked it, and has the option to promote it
to a write lock without allowing any other writer to enter the critical region during the
boost operation itself.

It is illegal for a process to request a particular lock more than once without first releasing
it. Failure to obey this restriction will cause deadlock. This restriction is not enforced
by the LWP code.

Here is a simple pseudocode fragment serving as an example of the available locking oper-
ations. It defines a struct Vnode object, which contains a lock object. The get vnode()
routine will look up a struct Vnode object by name, and then either read-lock or write-
lock it.

As with the high-level LWP example above, the locking routines introduced here will be
fully defined later, in Section 2.3.2.

#include <afs/lock.h>

struct Vnode {
. . .
struct Lock lock; /* Used to lock this vnode */
. . .

};

#define READ 0
#define WRITE 1

struct Vnode *get_vnode(name, how)
char *name;

The LWP Lightweight Process Package 12 August 28, 1991 10:38

Rx Specification

int how;

{
struct Vnode *v;

v = lookup(name);
if (how == READ)

ObtainReadLock(&v->lock);
else

ObtainWriteLock(&v->lock);
}

2.2.3 IOMGR

The IOMGR facility associated with the LWP service allows threads to wait on various
unix events. The exported IOMGR Select() routine allows a thread to wait on the same
set of events as the unix select() call. The parameters to these two routines are identical.
IOMGR Select() puts the calling LWP to sleep until no threads are active. At this point,
the built-in IOMGR thread, which runs at the lowest priority, wakes up and coalesces all of
the select requests together. It then performs a single select() and wakes up all threads
affected by the result.

The IOMGR Signal() routine allows an LWP to wait on the delivery of a unix signal.
The IOMGR thread installs a signal handler to catch all deliveries of the unix signal. This
signal handler posts information about the signal delivery to a global data structure.
The next time that the IOMGR thread runs, it delivers the signal to any waiting LWP.

Here is a pseudocode example of the use of the IOMGR facility, providing the blueprint
for an implemention a thread-level socket listener.

void rpc_SocketListener()

{
int ReadfdMask, WritefdMask, ExceptfdMask, rc;
struct timeval *tvp;

while(TRUE) {
. . .
ExceptfdMask = ReadfdMask = (1 << rpc_RequestSocket);
WritefdMask = 0;

rc = IOMGR_Select(8*sizeof(int),
&ReadfdMask,
&WritefdMask,
&ExceptfdMask,

The LWP Lightweight Process Package 13 August 28, 1991 10:38

Rx Specification

tvp);

switch(rc) {
case 0: /*Timeout*/

continue; /*Main while loop*/

case -1: /*Error*/
SystemError("IOMGR_Select");
exit(-1);

case 1: /*RPC packet arrived!*/
. . . process packet . . .
break;

default: /*Should never occur*/
}

}

}

2.2.4 Timer

The timer package exports a number of routines that assist in manipulating lists of
objects of type struct TM Elem. These struct TM Elem timers are assigned a timeout
value by the user and inserted in a package-maintained list. The time remaining to each
timer’s timeout is kept up to date by the package under user control. There are routines
to remove a timer from its list, to return an expired timer from a list, and to return the
next timer to expire.

A timer is commonly used by inserting a field of type struct TM Elem into a structure.
After setting the desired timeout value, the structure is inserted into a list by means of
its timer field.

Here is a simple pseudocode example of how the timer package may be used. After
calling the package initialization function, TM Init(), the pseudocode spins in a loop.
First, it updates all the timers via TM Rescan() calls. Then, it pulls out the first expired
timer object with TM GetExpired() (if any), and processes it.

static struct TM_Elem *requests;

. . .

TM_Init(&requests); /*Initialize timer list*/
. . .

The LWP Lightweight Process Package 14 August 28, 1991 10:38

Rx Specification

for (;;) {
TM_Rescan(requests); /* Update the timers */
expired = TM_GetExpired(requests);
if (expired == 0)

break;
. . . process expired element . . .
}

2.2.5 Fast Time

The fast time routines allows a caller to determine the current time of day without
incurring the expense of a kernel call. It works by mapping the page of the kernel that
holds the time-of-day variable and examining it directly. Currently, this package only
works on Suns. The routines may be called on other architectures, but they will run
more slowly.

The initialization routine for this package is fairly expensive, since it does a lookup of
a kernel symbol via nlist(). If the client application program only runs for only a short
time, it may wish to call FT Init() with the notReally parameter set to TRUE in order
to prevent the lookup from taking place. This is useful if you are using another package
that uses the fast time facility.

2.2.6 Preemption

The preemption package provides a mechanism by which control can pass between
lightweight processes without the need for explicit calls to LWP DispatchProcess(). This
effect is achieved by periodically interrupting the normal flow of control to check if other
(higher priority) procesess are ready to run.

The package makes use of the BSD interval timer facilities, and so will cause programs
that make their own use of these facilities to malfunction. In particular, use of alarm(3) or
explicit handling of SIGALRM is disallowed. Also, calls to sleep(3)may return prematurely.

Care should be taken that routines are re-entrant where necessary. In particular, note
that stdio(3) is not re-entrant in general, and hence multiple threads performing I/O on
the same FILE structure may function incorrectly.

An example pseudocode routine illustrating the use of this preemption facility appears
below.

The LWP Lightweight Process Package 15 August 28, 1991 10:38

Rx Specification

#include <sys/time.h>
#include "preempt.h"

...
struct timeval tv;

LWP_InitializeProcessSupport(...);
tv.tv_sec = 10;
tv.tv_usec = 0;
PRE_InitPreempt(&tv);
PRE_PreemptMe();
...
PRE_BeginCritical();
...
PRE_EndCritical();
...
PRE_EndPreempt();

2.3 Interface Specifications

2.3.1 LWP

This section covers the calling interfaces to the LWP package. Please note that LWP
macros (e.g., ActiveProcess) are also included here, rather than being relegated to a
different section.

2.3.1.1 LWP InitializeProcessSupport — Initialize the LWP package

int LWP InitializeProcessSupport(IN int priority;

OUT PROCESS *pid)

Description

This function initializes the LWP package. In addition, it turns the current thread of
control into the initial process with the specified priority. The process ID of this initial
thread is returned in the pid parameter. This routine must be called before any other

The LWP Lightweight Process Package 16 August 28, 1991 10:38

Rx Specification

routine in the LWP library. The scheduler will NOT be invoked as a result of calling
LWP InitializeProcessSupport().

Error Codes

LWP EBADPRI The given priority is invalid, either negative or too large.

2.3.1.2 LWP TerminateProcessSupport — End process support, per-
form cleanup

int LWP TerminateProcessSupport()

Description

This routine terminates the LWP threading support and cleans up after it by freeing any
auxiliary storage used. This routine must be called from within the process that invoked
LWP InitializeProcessSupport(). After LWP TerminateProcessSupport() has been called,
it is acceptable to call LWP InitializeProcessSupport() again in order to restart LWP
process support.

Error Codes

--- Always succeeds, or performs an abort().

2.3.1.3 LWP CreateProcess — Create a new thread

int LWP CreateProcess(IN int (*ep)();

IN int stacksize;

IN int priority;

The LWP Lightweight Process Package 17 August 28, 1991 10:38

Rx Specification

IN char *parm;

IN char *name;

OUT PROCESS *pid)

Description

This function is used to create a new lightweight process with a given printable name.
The ep argument identifies the function to be used as the body of the thread. The
argument to be passed to this function is contained in parm. The new thread’s stack
size in bytes is specified in stacksize, and its execution priority in priority. The pid
parameter is used to return the process ID of the new thread.

If the thread is successfully created, it will be marked as runnable. The scheduler is called
before the LWP CreateProcess() call completes, so the new thread may indeed begin its
execution before the completion. Note that the new thread is guaranteed NOT to run
before the call completes if the specified priority is lower than the caller’s. On the
other hand, if the new thread’s priority is higher than the caller’s, then it is guaranteed
to run before the creation call completes.

Error Codes

LWP EBADPRI The given priority is invalid, either negative or too large.

LWP NOMEM Could not allocate memory to satisfy the creation request.

2.3.1.4 LWP DestroyProcess — Create a new thread

int LWP DestroyProcess(IN PROCESS pid)

Description

This routine destroys the thread identified by pid. It will be terminated immediately,
and its internal storage will be reclaimed. A thread is allowed to destroy itself. In this

The LWP Lightweight Process Package 18 August 28, 1991 10:38

Rx Specification

case, of course, it will only get to see the return code if the operation fails. Note that a
thread may also destroy itself by returning from the parent C routine.

The scheduler is called by this operation, which may cause an arbitrary number of threads
to execute before the caller regains the processor.

Error Codes

LWP EINIT The LWP package has not been initialized.

2.3.1.5 LWP WaitProcess — Wait on an event

int LWP WaitProcess(IN char *event)

Description

This routine puts the thread making the call to sleep until another LWP calls the
LWP SignalProcess() or LWP NoYieldSignal() routine with the specified event. Note
that signalled events are not queued. If a signal occurs and no thread is awakened, the
signal is lost. The scheduler is invoked by the LWP WaitProcess() routine.

Error Codes

LWP EINIT The LWP package has not been initialized.

LWP EBADEVENT The given event pointer is null.

2.3.1.6 LWP MwaitProcess — Wait on a set of events

int LWP MwaitProcess(IN int wcount;

IN char *evlist[])

The LWP Lightweight Process Package 19 August 28, 1991 10:38

Rx Specification

Description

This function allows a thread to wait for wcount signals on any of the items in the given
evlist. Any number of signals of a particular event are only counted once. The evlist
is a null-terminated list of events to wait for. The scheduler will be invoked.

Error Codes

LWP EINIT The LWP package has not been initialized.

LWP EBADCOUNT An illegal number of events has been supplied.

2.3.1.7 LWP SignalProcess — Signal an event

int LWP SignalProcess(IN char *event)

Description

This routine causes the given event to be signalled. All threads waiting for this event
(exclusively) will be marked as runnable, and the scheduler will be invoked. Note
that threads waiting on multiple events via LWP MwaitProcess() may not be marked
as runnable. Signals are not queued. Therefore, if no thread is waiting for the signalled
event, the signal will be lost.

Error Codes

LWP EINIT The LWP package has not been initialized.

LWP EBADEVENT A null event pointer has been provided.

LWP ENOWAIT No thread was waiting on the given event.

The LWP Lightweight Process Package 20 August 28, 1991 10:38

Rx Specification

2.3.1.8 LWP NoYieldSignal — Signal an event without invoking scheduler

int LWP NoYieldSignal(IN char *event)

Description

This function is identical to LWP SignalProcess() except that the scheduler will not be
invoked. Thus, control will remain with the signalling process.

Error Codes

LWP EINIT The LWP package has not been initialized.

LWP EBADEVENT A null event pointer has been provided.

LWP ENOWAIT No thread was waiting on the given event.

2.3.1.9 LWP DispatchProcess — Yield control to the scheduler

int LWP DispatchProcess()

Description

This routine causes the calling thread to yield voluntarily to the LWP scheduler. If no
other thread of appropriate priority is marked as runnable, the caller will continue its
execution.

Error Codes

LWP EINIT The LWP package has not been initialized.

The LWP Lightweight Process Package 21 August 28, 1991 10:38

Rx Specification

2.3.1.10 LWP CurrentProcess — Get the current thread’s ID

int LWP CurrentProcess(IN PROCESS *pid)

Description

This call places the current lightweight process ID in the pid parameter.

Error Codes

LWP EINIT The LWP package has not been initialized.

2.3.1.11 LWP ActiveProcess — Get the current thread’s ID (macro)

int LWP ActiveProcess()

Description

This macro’s value is the current lightweight process ID. It generates a value identical
to that acquired by calling the LWP CurrentProcess() function described above if the
LWP package has been initialized. If no such initialization has been done, it will return
a value of zero.

2.3.1.12 LWP StackUsed — Calculate stack usage

The LWP Lightweight Process Package 22 August 28, 1991 10:38

Rx Specification

int LWP StackUsed(IN PROCESS pid;

OUT int *max;

OUT int *used)

Description

This function returns the amount of stack space allocated to the thread whose identifier
is pid, and the amount actually used so far. This is possible if the global variable
lwp stackUseEnabled was TRUE when the thread was created (it is set this way by
default). If so, the thread’s stack area was initialized with a special pattern. The
memory still stamped with this pattern can be determined, and thus the amount of
stack used can be calculated. The max parameter is always set to the thread’s stack
allocation value, and used is set to the computed stack usage if lwp stackUseEnabled

was set when the process was created, or else zero.

Error Codes

LWP NO STACK Stack usage was not enabled at thread creation time.

2.3.1.13 LWP NewRock — Establish thread-specific storage

int LWP NewRock(IN int tag;

IN char **value)

Description

This function establishes a “rock”, or thread-specific information, associating it with the
calling LWP. The tag is intended to be any unique integer value, and the value is a
pointer to a character array containing the given data.

Users of the LWP package must coordinate their choice of tag values. Note that a tag’s
value cannot be changed. Thus, to obtain a mutable data structure, another level of
indirection is required. Up to MAXROCKS (4) rocks may be associated with any given
thread.

The LWP Lightweight Process Package 23 August 28, 1991 10:38

Rx Specification

Error Codes

LWP EBADROCK A rock with the given tag field already exists.

LWP ENOROCKS All of the MAXROCKS are in use.

2.3.1.14 LWP GetRock — Retrieve thread-specific storage

int LWP GetRock(IN int tag;

OUT **value)

Description

This routine recovers the thread-specific information associated with the calling process
and the given tag, if any. Such a rock had to be established through a LWP NewRock()
call. The rock’s value is deposited into value.

Error Codes

LWP EBADROCK A rock has not been associated with the given tag for this thread.

2.3.2 Locking

This section covers the calling interfaces to the locking package. Many of the user-callable
routines are actually implemented as macros.

2.3.2.1 Lock Init — Initialize lock structure

void Lock Init(IN struct Lock *lock)

The LWP Lightweight Process Package 24 August 28, 1991 10:38

Rx Specification

Description

This function must be called on the given lock object before any other operations can
be performed on it.

Error Codes

--- No value is returned.

2.3.2.2 ObtainReadLock — Acquire a read lock

void ObtainReadLock(IN struct Lock *lock)

Description

This macro obtains a read lock on the specified lock object. Since this is a macro and
not a function call, results are not predictable if the value of the lock parameter is a
side-effect producing expression, as it will be evaluated multiple times in the course of
the macro interpretation.

Read locks are incompatible with write, shared, and boosted shared locks.

Error Codes

--- No value is returned.

2.3.2.3 ObtainWriteLock — Acquire a write lock

void ObtainWriteLock(IN struct Lock *lock)

The LWP Lightweight Process Package 25 August 28, 1991 10:38

Rx Specification

Description

This macro obtains a write lock on the specified lock object. Since this is a macro and
not a function call, results are not predictable if the value of the lock parameter is a
side-effect producing expression, as it will be evaluated multiple times in the course of
the macro interpretation.

Write locks are incompatible with all other locks.

Error Codes

--- No value is returned.

2.3.2.4 ObtainSharedLock — Acquire a shared lock

void ObtainSharedLock(IN struct Lock *lock)

Description

This macro obtains a shared lock on the specified lock object. Since this is a macro and
not a function call, results are not predictable if the value of the lock parameter is a
side-effect producing expression, as it will be evaluated multiple times in the course of
the macro interpretation.

Shared locks are incompatible with write and boosted shared locks, but are compatible
with read locks.

Error Codes

--- No value is returned.

The LWP Lightweight Process Package 26 August 28, 1991 10:38

Rx Specification

2.3.2.5 ReleaseReadLock — Release read lock

void ReleaseReadLock(IN struct Lock *lock)

Description

This macro releases the specified lock. The lock must have been previously read-locked.
Since this is a macro and not a function call, results are not predictable if the value of
the lock parameter is a side-effect producing expression, as it will be evaluated multiple
times in the course of the macro interpretation. The results are also unpredictable if the
lock was not previously read-locked by the thread calling ReleaseReadLock().

Error Codes

--- No value is returned.

2.3.2.6 ReleaseWriteLock — Release write lock

void ReleaseWriteLock(IN struct Lock *lock)

Description

This macro releases the specified lock. The lockmust have been previously write-locked.
Since this is a macro and not a function call, results are not predictable if the value of
the lock parameter is a side-effect producing expression, as it will be evaluated multiple
times in the course of the macro interpretation. The results are also unpredictable if the
lock was not previously write-locked by the thread calling ReleaseWriteLock().

Error Codes

--- No value is returned.

The LWP Lightweight Process Package 27 August 28, 1991 10:38

Rx Specification

2.3.2.7 ReleaseSharedLock — Release shared lock

void ReleaseSharedLock(IN struct Lock *lock)

Description

This macro releases the specified lock. The lockmust have been previously share-locked.
Since this is a macro and not a function call, results are not predictalbe if the value of
the lock parameter is a side-effect producing expression, as it will be evaluated multiple
times in the course of the macro interpretation. The results are also unpredictable if the
lock was not previously share-locked by the thread calling ReleaseSharedLock().

Error Codes

--- No value is returned.

2.3.2.8 CheckLock — Determine state of a lock

void CheckLock(IN struct Lock *lock)

Description

This macro produces an integer that specifies the status of the indicated lock. The value
will be -1 if the lock is write-locked, 0 if unlocked, or otherwise a positive integer that
indicates the number of readers (threads holding read locks). Since this is a macro and
not a function call, results are not predictable if the value of the lock parameter is a
side-effect producing expression, as it will be evaluated multiple times in the course of
the macro interpretation.

The LWP Lightweight Process Package 28 August 28, 1991 10:38

Rx Specification

Error Codes

--- No value is returned.

2.3.2.9 BoostLock — Boost a shared lock

void BoostLock(IN struct Lock *lock)

Description

This macro promotes (“boosts”) a shared lock into a write lock. Such a boost operation
guarantees that no other writer can get into the critical section in the process. Since this
is a macro and not a function call, results are not predictable if the value of the lock
parameter is a side-effect producing expression, as it will be evaluated multiple times in
the course of the macro interpretation.

Error Codes

--- No value is returned.

2.3.2.10 UnboostLock — Unboost a shared lock

void UnboostLock(IN struct Lock *lock)

The LWP Lightweight Process Package 29 August 28, 1991 10:38

Rx Specification

Description

This macro demotes a boosted shared lock back down into a regular shared lock. Such
an unboost operation guarantees that no other writer can get into the critical section in
the process. Since this is a macro and not a function call, results are not predictable
if the value of the lock parameter is a side-effect producing expression, as it will be
evaluated multiple times in the course of the macro interpretation.

Error Codes

--- No value is returned.

2.3.3 IOMGR

This section covers the calling interfaces to the I/O management package.

2.3.3.1 IOMGR Initialize — Initialize the package

int IOMGR Initialize()

Description

This function initializes the IOMGR package. Its main task is to create the IOMGR
thread itself, which runs at the lowest possible priority (0). The remainder of the
lightweight processes must be running at priority 1 or greater (up to a maximum of
LWP MAX PRIORITY (4)) for the IOMGR package to function correctly.

Error Codes

-1 The LWP and/or timer package haven’t been initialized.

<misc> Any errors that may be returned by the LWP CreateProcess() routine.

The LWP Lightweight Process Package 30 August 28, 1991 10:38

Rx Specification

2.3.3.2 IOMGR Finalize — Clean up the IOMGR facility

int IOMGR Finalize()

Description

This routine cleans up after the IOMGR package when it is no longer needed. It releases
all storage and destroys the IOMGR thread itself.

Error Codes

<misc> Any errors that may be returned by the LWP DestroyProcess() routine.

2.3.3.3 IOMGR Select — Perform a thread-level select()

int IOMGR Select(IN int numfds;

IN int *rfds;

IN int *wfds;

IN int *xfds;

IN struct timeval *timeout)

Description

This routine performs an LWP version of unix select() operation. The parameters have
the same meanings as with the unix call. However, the return values will be simplified
(see below). If this is a polling select (i.e., the value of timeout is null), it is done and
the IOMGR Select() function returns to the user with the results. Otherwise, the calling
thread is put to sleep. If at some point the IOMGR thread is the only runnable process,
it will awaken and collect all select requests. The IOMGR will then perform a single
select and awaken the appropriate processes. This will force a return from the affected
IOMGR Select() calls.

The LWP Lightweight Process Package 31 August 28, 1991 10:38

Rx Specification

Error Codes

-1 An error occurred.

0 A timeout occurred.

1 Some number of file descriptors are ready.

2.3.3.4 IOMGR Signal — Associate unix and LWP signals

int IOMGR Signal(IN int signo;

IN char *event)

Description

This function associates an LWP signal with a unix signal. After this call, when the
given unix signal signo is delivered to the (heavyweight unix) process, the IOMGR
thread will deliver an LWP signal to the event via LWP NoYieldSignal(). This wakes
up any lightweight processes waiting on the event. Multiple deliveries of the signal
may be coalesced into one LWP wakeup. The call to LWP NoYieldSignal() will happen
synchronously. It is safe for an LWP to check for some condition and then go to sleep
waiting for a unix signal without having to worry about delivery of the signal happening
between the check and the call to LWP WaitProcess().

Error Codes

LWP EBADSIG The signo value is out of range.

LWP EBADEVENT The event pointer is null.

2.3.3.5 IOMGR CancelSignal — Cancel unix and LWP signal association

The LWP Lightweight Process Package 32 August 28, 1991 10:38

Rx Specification

int IOMGR CancelSignal(IN int signo)

Description

This routine cancels the association between a unix signal and an LWP event. After
calling this function, the unix signal signo will be handled however it was handled
before the corresponding call to IOMGR Signal().

Error Codes

LWP EBADSIG The signo value is out of range.

2.3.3.6 IOMGR Sleep — Sleep for a given period

void IOMGR Sleep(IN unsigned seconds)

Description

This function calls IOMGR Select() with zero file descriptors and a timeout structure
set up to cause the thread to sleep for the given number of seconds.

Error Codes

--- No value is returned.

2.3.4 Timer

This section covers the calling interface to the timer package associated with the LWP
facility.

The LWP Lightweight Process Package 33 August 28, 1991 10:38

Rx Specification

2.3.4.1 TM Init — Initialize a timer list

int TM Init(IN struct TM Elem **list)

Description

This function causes the specified timer list to be initialized. TM Init() must be called
before any other timer operations are applied to the list.

Error Codes

-1 A null timer list could not be produced.

2.3.4.2 TM Final — Clean up a timer list

int TM Final(IN struct TM Elem **list)

Description

This routine is called when the given empty timer list is no longer needed. All storage
associated with the list is released.

Error Codes

-1 The list parameter is invalid.

The LWP Lightweight Process Package 34 August 28, 1991 10:38

Rx Specification

2.3.4.3 TM Insert — Insert an object into a timer list

void TM Insert(IN struct TM Elem **list;

IN struct TM Elem *elem)

Description

This routine enters an new element, elem, into the list denoted by list. Before the new
element is queued, its TimeLeft field (the amount of time before the object comes due)
is set to the value stored in its TotalTime field. In order to keep TimeLeft fields current,
the TM Rescan() function may be used.

Error Codes

--- No return value is generated.

2.3.4.4 TM Rescan — Update all timers in the list

int TM Rescan(IN struct TM Elem *list)

Description

This function updates the TimeLeft fields of all timers on the given list. This is done
by checking the time-of-day clock. Note: this is the only routine other than TM Init()
that updates the TimeLeft field in the elements on the list.

Instead of returning a value indicating success or failure, TM Rescan() returns the num-
ber of entries that were discovered to have timed out.

Error Codes

--- Instead of error codes, the number of entries that were discovered to have timed
out is returned.

The LWP Lightweight Process Package 35 August 28, 1991 10:38

Rx Specification

2.3.4.5 TM GetExpired — Returns an expired timer

struct TM Elem *TM GetExpired(IN struct TM Elem *list)

Description

This routine searches the specified timer list and returns a pointer to an expired timer
element from that list. An expired timer is one whose TimeLeft field is less than or
equal to zero. If there are no expired timers, a null element pointer is returned.

Error Codes

--- Instead of error codes, an expired timer pointer is returned, or a null timer
pointer if there are no expired timer objects.

2.3.4.6 TM GetEarliest — Returns earliest unexpired timer

struct TM Elem *TM GetEarliest(IN struct TM Elem *list)

Description

This function returns a pointer to the timer element that will be next to expire on the
given list. This is defined to be the timer element with the smallest (positive) TimeLeft
field. If there are no timers on the list, or if they are all expired, this function will return
a null pointer.

The LWP Lightweight Process Package 36 August 28, 1991 10:38

Rx Specification

Error Codes

--- Instead of error codes, a pointer to the next timer element to expireis returned,
or a null timer object pointer if they are all expired.

2.3.4.7 TM eql — Test for equality of two timestamps

bool TM eql(IN struct timemval *t1;

IN struct timemval *t2)

Description

This function compares the given timestamps, t1 and t2, for equality. Note that the
function return value, bool, has been set via typedef to be equivalent to unsigned char.

Error Codes

0 If the two timestamps differ.

1 If the two timestamps are identical.

2.3.5 Fast Time

This section covers the calling interface to the fast time package associated with the
LWP facility.

2.3.5.1 FT Init — Initialize the fast time package

int FT Init(IN int printErrors;

IN int notReally)

The LWP Lightweight Process Package 37 August 28, 1991 10:38

Rx Specification

Description

This routine initializes the fast time package, mapping in the kernel page containing
the time-of-day variable. The printErrors argument, if non-zero, will cause any errors
in initalization to be printed to stderr. The notReally parameter specifies whether
initialization is really to be done. Other calls in this package will do auto-initialization,
and hence the option is offered here.

Error Codes

-1 Indicates that future calls to FT GetTimeOfDay() will still work, but will not
be able to access the information directly, having to make a kernel call every
time.

2.3.5.2 FT GetTimeOfDay — Initialize the fast time package

int FT GetTimeOfDay(IN struct timeval *tv;

IN struct timezone *tz)

Description

This routine is meant to mimic the parameters and behavior of the unix gettimeofday()
function. However, as implemented, it simply calls gettimeofday() and then does some
bound-checking to make sure the value is reasonable.

Error Codes

<misc> Whatever value was returned by gettimeofday() internally.

The LWP Lightweight Process Package 38 August 28, 1991 10:38

Rx Specification

2.3.6 Preemption

This section covers the calling interface to the preemption package associated with the
LWP facility.

2.3.6.1 PRE InitPreempt — Initialize the preemption package

int PRE InitPreempt(IN struct timeval *slice)

Description

This function must be called to initialize the preemption package. It must appear some-
time after the call to LWP InitializeProcessSupport() and sometime before the first call
to any other preemption routine. The slice argument specifies the time slice size to use.
If the slice pointer is set to null in the call, then the default time slice, DEFAULTSLICE
(10 milliseconds), will be used. This routine uses the unix interval timer and handling
of the unix alarm signal, SIGALRM, to implement this timeslicing.

Error Codes

LWP EINIT The LWP package hasn’t been initialized.

LWP ESYSTEM Operations on the signal vector or the interval timer have failed.

2.3.6.2 PRE EndPreempt — Finalize the preemption package

int PRE EndPreempt()

The LWP Lightweight Process Package 39 August 28, 1991 10:38

Rx Specification

Description

This routine finalizes use of the preemption package. No further preemptions will be
made. Note that it is not necessary to make this call before exit. PRE EndPreempt() is
provided only for those applications that wish to continue after turning off preemption.

Error Codes

LWP EINIT The LWP package hasn’t been initialized.

LWP ESYSTEM Operations on the signal vector or the interval timer have failed.

2.3.6.3 PRE PreemptMe — Mark thread as preemptible

int PRE PreemptMe()

Description

This macro is used to signify the current thread as a candidate for preemption. The
LWP InitializeProcessSupport() routine must have been called before PRE PreemptMe().

Error Codes

--- No return code is generated.

2.3.6.4 PRE BeginCritical — Enter thread critical section

int PRE BeginCritical()

The LWP Lightweight Process Package 40 August 28, 1991 10:38

Rx Specification

Description

This macro places the current thread in a critical section. Upon return, and for as long as
the thread is in the critical section, involuntary preemptions of this LWP will no longer
occur.

Error Codes

--- No return code is generated.

2.3.6.5 PRE EndCritical — Exit thread critical section

int PRE EndCritical()

Description

This macro causes the executing thread to leave a critical section previously entered
via PRE BeginCritical(). If involuntary preemptions were possible before the matching
PRE BeginCritical(), they are once again possible.

Error Codes

--- No return code is generated.

The LWP Lightweight Process Package 41 August 28, 1991 10:38

Rx Specification

Chapter 3

Rxkad

3.1 Introduction

The rxkad security module is offered as one of the built-in Rx authentication models.
It is based on the Kerberos system developed by MIT’s Project Athena. Readers wish-
ing detailed information regarding Kerberos design and implementation are directed to
[2]. This chapter is devoted to defining how Kerberos authentication services are made
available as Rx components, and assumes the reader has some familiarity with Kerberos.
Included are descriptions of how client-side and server-side Rx security objects (struct
rx securityClass; see Section 5.3.1.1) implementing this protocol may be generated
by an Rx application. Also, a description appears of the set of routines available in
the associated struct rx securityOps structures, as covered in Section 5.3.1.2. It is
strongly recommended that the reader become familiar with this section on struct

rx securityOps before reading on.

3.2 Definitions

An important set of definitions related to the rxkad security package is provided by the
rxkad.h include file. Determined here are various values for ticket lifetimes, along with
structures for encryption keys and Kerberos principals. Declarations for the two routines
required to generate the different rxkad security objects also appear here. The two func-
tions are named rxkad NewServerSecurityObject() and rxkad NewClientSecurityObject().
In addition, type field values, encryption levels, security index operations, and statistics
structures may be found in this file.

Rxkad 42 August 28, 1991 10:38

Rx Specification

3.3 Exported Objects

To be usable as an Rx security module, the rxkad facility exports routines to create
server-side and client-side security objects. The server authentication object is incor-
porated into the server code when calling rx NewService(). The client authentication
object is incorporated into the client code every time a connection is established via
rx NewConnection(). Also, in order to implement these security objects, the rxkad mod-
ule must provide definitions for some subset of the generic security operations as defined
in the appropriate struct rx securityOps variable.

3.3.1 Server-Side Mechanisms

3.3.1.1 Security Operations

The server side of the rxkad module fills in all but two of the possible routines associated
with an Rx security object, as described in Section 5.3.1.2.

static struct rx_securityOps rxkad_server_ops = {
rxkad_Close,
rxkad_NewConnection,
rxkad_PreparePacket, /*Once per packet creation*/
0, /*Send packet (once per retrans)*/
rxkad_CheckAuthentication,
rxkad_CreateChallenge,
rxkad_GetChallenge,
0,
rxkad_CheckResponse,
rxkad_CheckPacket, /*Check data packet*/
rxkad_DestroyConnection,
rxkad_GetStats,

};

The rxkad service does not need to take any special action each time a packet belonging
to a call in an rxkad Rx connection is physically transmitted. Thus, a routine is not
supplied for the op SendPacket() function slot. Similarly, no preparatory work needs to
be done previous to the reception of a response packet from a security challenge, so the
op GetResponse() function slot is also empty.

Rxkad 43 August 28, 1991 10:38

Rx Specification

3.3.1.2 Security Object

The exported routine used to generate an rxkad-specific server-side security class object is
named rxdad NewServerSecurityObject(). It is declared with four parameters, as follows:

struct rx_securityClass *
rxkad_NewServerSecurityObject(a_level, a_getKeyRockP, a_getKeyP, a_userOKP)
rxkad_level a_level; /*Minimum level*/
char *a_getKeyRockP; /*Rock for get_key implementor*/
int (*a_getKeyP)(); /*Passed kvno & addr(key) to fill*/
int (*a_userOKP)(); /*Passed name, inst, cell => bool*/

The first argument specifies the desired level of encryption, and may take on the following
values (as defined in rxkad.h):

• rxkad clear: Specifies that packets are to be sent entirely in the clear, without
any encryption whatsoever.

• rxkad auth: Specifies that packet sequence numbers are to be encrypted.

• rxkad crypt: Specifies that the entire data packet is to be encrypted.

The second and third parameters represent, respectively, a pointer to a private data
area, sometimes called a “rock”, and a procedure reference that is called with the key
version number accompanying the Kerberos ticket and returns a pointer to the server’s
decryption key. The fourth argument, if not null, is a pointer to a function that will be
called for every new connection with the client’s name, instance, and cell. This routine
should return zero if the user is not acceptable to the server.

3.3.2 Client-Side Mechanisms

3.3.2.1 Security Operations

The client side of the rxkad module fills in relatively few of the routines associated with
an Rx security object, as demonstrated below. The general Rx security object, of which
this is an instance, is described in detail in Section 5.3.1.2.

static struct rx_securityOps rxkad_client_ops = {
rxkad_Close,

Rxkad 44 August 28, 1991 10:38

Rx Specification

rxkad_NewConnection, /*Every new connection*/
rxkad_PreparePacket, /*Once per packet creation*/
0, /*Send packet (once per retrans)*/
0,
0,
0,
rxkad_GetResponse, /*Respond to challenge packet*/
0,
rxkad_CheckPacket, /*Check data packet*/
rxkad_DestroyConnection,
rxkad_GetStats,
0,
0,
0,

};

As expected, routines are defined for use when someone destroys a security object
(rxkad Close()) and when an Rx connection using the rxkad model creates a new connec-
tion (rxkad NewConnection()) or deletes an existing one (rxkad DestroyConnection()).
Security-specific operations must also be performed in behalf of rxkad when packets are
created (rxkad PreparePacket()) and received (rxkad CheckPacket()). Finally, the client
side of an rxkad security object must also be capable of constructing responses to security
challenges from the server (rxkad GetResponse()) and be willing to reveal statistics on
its own operation (rxkad GetStats()).

3.3.2.2 Security Object

The exported routine used to generate an rxkad-specific client-side security class object
is named rxkad NewClientSecurityObject(). It is declared with five parameters, specified
below:

struct rx_securityClass *
rxkad_NewClientSecurityObject(a_level, a_sessionKeyP, a_kvno,

a_ticketLen, a_ticketP)
rxkad_level a_level;
struct ktc_encryptionKey *a_sessionKeyP;
long a_kvno;
int a_ticketLen;
char *a_ticketP;

The first parameter, a level, specifies the level of encryption desired for this security
object, with legal choices being identical to those defined for the server-side security
object described in Section 3.3.1.2. The second parameter, a sessionKeyP, provides the
session key to use. The ktc encryptionKey structure is defined in the rxkad.h include

Rxkad 45 August 28, 1991 10:38

Rx Specification

file, and consists of an array of 8 characters. The third parameter, a kvno, provides the
key version number associated with a sessionKeyP. The fourth argument, a ticketLen,
communicates the length in bytes of the data stored in the fifth parameter, a ticketP,
which points to the Kerberos ticket to use for the principal for which the security object
will operate.

Rxkad 46 August 28, 1991 10:38

Rx Specification

Chapter 4

Rx Support Packages

4.1 Introduction

This chapter documents three packages defined directly in support of the Rx facility.

1. rx queue: Doubly-linked queue package.

2. rx clock: Clock package, using the 4.3BSD interval timer.

3. rx event: Future events package.

References to constants, structures, and functions defined by these support packages will
appear in the following API chapter.

4.2 The rx queue Package

This package provides a doubly-linked queue structure, along with a full suite of related
operations. The main concern behind the coding of this facility was efficiency. All
functions are implemented as macros, and it is suggested that only simple expressions
be used for all parameters.

The rx queue facility is defined by the rx queue.h include file. Some macros visible in
this file are intended for rx queue internal use only. An understanding of these “hidden”
macros is important, so they will also be described by this document.

Rx Support Packages 47 August 28, 1991 10:38

Rx Specification

4.2.1 struct queue

The queue structure provides the linkage information required to maintain a queue of
objects. The queue structure is prepended to any user-defined data type which is to be
organized in this fashion.

Fields

struct queue *prev - Pointer to the previous queue header.

struct queue *next - Pointer to the next queue header.

Note that a null Rx queue consists of a single struct queue object whose next and
previous pointers refer to itself.

4.2.2 Internal Operations

This section describes the internal operations defined for Rx queues. They will be refer-
enced by the external operations documented in Section 4.2.3.

4.2.2.1 Q(): Coerce type to a queue element

#define _Q(x) ((struct queue *)(x))

This operation coerces the user structure named by x to a queue element. Any user
structure using the rx queue package must have a struct queue as its first field.

4.2.2.2 QA(): Add a queue element before/after another element

#define _QA(q,i,a,b) (((i->a=q->a)->b=i)->b=q, q->a=i)

This operation adds the queue element referenced by i either before or after a queue
element represented by q. If the (a, b) argument pair corresponds to an element’s
(next, prev) fields, the new element at i will be linked after q. If the (a, b) argument
pair corresponds to an element’s (prev, next) fields, the new element at i will be linked
before q.

Rx Support Packages 48 August 28, 1991 10:38

Rx Specification

4.2.2.3 QR(): Remove a queue element

#define _QR(i) ((_Q(i)->prev->next=_Q(i)->next)->prev=_Q(i)->prev)

This operation removes the queue element referenced by i from its queue. The prev and
next fields within queue element i itself is not updated to reflect the fact that it is no
longer part of the queue.

4.2.2.4 QS(): Splice two queues together

#define _QS(q1,q2,a,b) if (queue_IsEmpty(q2)); else
((((q2->a->b=q1)->a->b=q2->b)->a=q1->a, q1->a=q2->a),
queue_Init(q2))

This operation takes the queues identified by q1 and q2 and splices them together into
a single queue. The order in which the two queues are appended is determined by the a
and b arguments. If the (a, b) argument pair corresponds to q1’s (next, prev) fields,
then q2 is appended to q1. If the (a, b) argument pair corresponds to q1’s (prev,
next) fields, then q is prepended to q2.

This internal QS() routine uses two exported queue operations, namely queue Init() and
queue IsEmpty(), defined in Sections 4.2.3.1 and 4.2.3.16 respectively below.

4.2.3 External Operations

4.2.3.1 queue Init(): Initialize a queue header

#define queue_Init(q) (_Q(q))->prev = (_Q(q))->next = (_Q(q))

The queue header referred to by the q argument is initialized so that it describes a null
(empty) queue. A queue head is simply a queue element.

4.2.3.2 queue Prepend(): Put element at the head of a queue

#define queue_Prepend(q,i) _QA(_Q(q),_Q(i),next,prev)

Place queue element i at the head of the queue denoted by q. The new queue element,
i, should not currently be on any queue.

Rx Support Packages 49 August 28, 1991 10:38

Rx Specification

4.2.3.3 queue Append(): Put an element a the tail of a queue

#define queue_Append(q,i) _QA(_Q(q),_Q(i),prev,next)

Place queue element i at the tail of the queue denoted by q. The new queue element, i,
should not currently be on any queue.

4.2.3.4 queue InsertBefore(): Insert a queue element before another element

#define queue_InsertBefore(i1,i2) _QA(_Q(i1),_Q(i2),prev,next)

Insert queue element i2 before element i1 in i1’s queue. The new queue element, i2,
should not currently be on any queue.

4.2.3.5 queue InsertAfter(): Insert a queue element after another element

#define queue_InsertAfter(i1,i2) _QA(_Q(i1),_Q(i2),next,prev)

Insert queue element i2 after element i1 in i1’s queue. The new queue element, i2,
should not currently be on any queue.

4.2.3.6 queue SplicePrepend(): Splice one queue before another

#define queue_SplicePrepend(q1,q2) _QS(_Q(q1),_Q(q2),next,prev)

Splice the members of the queue located at q2 to the beginning of the queue located at
q1, reinitializing queue q2.

4.2.3.7 queue SpliceAppend(): Splice one queue after another

#define queue_SpliceAppend(q1,q2) _QS(_Q(q1),_Q(q2),prev,next)

Splice the members of the queue located at q2 to the end of the queue located at q1,
reinitializing queue q2. Note that the implementation of queue SpliceAppend() is identi-
cal to that of queue SplicePrepend() except for the order of the next and prev arguments
to the internal queue splicer, QS().

Rx Support Packages 50 August 28, 1991 10:38

Rx Specification

4.2.3.8 queue Replace(): Replace the contents of a queue with that of another

#define queue_Replace(q1,q2) (*_Q(q1) = *_Q(q2),
_Q(q1)->next->prev = _Q(q1)->prev->next = _Q(q1),
queue_Init(q2))

Replace the contents of the queue located at q1 with the contents of the queue located
at q2. The prev and next fields from q2 are copied into the queue object referenced
by q1, and the appropriate element pointers are reassigned. After the replacement has
occurred, the queue header at q2 is reinitialized.

4.2.3.9 queue Remove(): Remove an element from its queue

#define queue_Remove(i) (_QR(i), _Q(i)->next = 0)

This function removes the queue element located at i from its queue. The next field for
the removed entry is zeroed. Note that multiple removals of the same queue item are
not supported.

4.2.3.10 queue MoveAppend(): Move an element from its queue to the end of
another queue

#define queue_MoveAppend(q,i) (_QR(i), queue_Append(q,i))

This macro removes the queue element located at i from its current queue. Once re-
moved, the element at i is appended to the end of the queue located at q.

4.2.3.11 queue MovePrepend(): Move an element from its queue to the head
of another queue

#define queue_MovePrepend(q,i) (_QR(i), queue_Prepend(q,i))

This macro removes the queue element located at i from its current queue. Once re-
moved, the element at i is inserted at the head fo the queue located at q.

Rx Support Packages 51 August 28, 1991 10:38

Rx Specification

4.2.3.12 queue First(): Return the first element of a queue, coerced to a
particular type

#define queue_First(q,s) ((struct s *)_Q(q)->next)

Return a pointer to the first element of the queue located at q. The returned pointer
value is coerced to conform to the given s structure. Note that a properly coerced pointer
to the queue head is returned if q is empty.

4.2.3.13 queue Last(): Return the last element of a queue, coerced to a par-
ticular type

#define queue_Last(q,s) ((struct s *)_Q(q)->prev)

Return a pointer to the last element of the queue located at q. The returned pointer
value is coerced to conform to the given s structure. Note that a properly coerced pointer
to the queue head is returned if q is empty.

4.2.3.14 queue Next(): Return the next element of a queue, coerced to a
particular type

#define queue_Next(i,s) ((struct s *)_Q(i)->next)

Return a pointer to the queue element occuring after the element located at i. The
returned pointer value is coerced to conform to the given s structure. Note that a
properly coerced pointer to the queue head is returned if item i is the last in its queue.

4.2.3.15 queue Prev(): Return the next element of a queue, coerced to a
particular type

#define queue_Prev(i,s) ((struct s *)_Q(i)->prev)

Return a pointer to the queue element occuring before the element located at i. The
returned pointer value is coerced to conform to the given s structure. Note that a
properly coerced pointer to the queue head is returned if item i is the first in its queue.

Rx Support Packages 52 August 28, 1991 10:38

Rx Specification

4.2.3.16 queue IsEmpty(): Is the given queue empty?

#define queue_IsEmpty(q) (_Q(q)->next == _Q(q))

Return a non-zero value if the queue located at q does not have any elements in it. In
this case, the queue consists solely of the queue header at q whose next and prev fields
reference itself.

4.2.3.17 queue IsNotEmpty(): Is the given queue not empty?

#define queue_IsNotEmpty(q) (_Q(q)->next != _Q(q))

Return a non-zero value if the queue located at q has at least one element in it other
than the queue header itself.

4.2.3.18 queue IsOnQueue(): Is an element currently queued?

#define queue_IsOnQueue(i) (_Q(i)->next != 0)

This macro returns a non-zero value if the queue item located at i is currently a member
of a queue. This is determined by examining its next field. If it is non-null, the element
is considered to be queued. Note that any element operated on by queue Remove()
(Section 4.2.3.9) will have had its next field zeroed. Hence, it would cause a non-zero
return from this call.

4.2.3.19 queue IsFirst(): Is an element the first on a queue?

#define queue_IsFirst(q,i) (_Q(q)->first == _Q(i))

This macro returns a non-zero value if the queue item located at i is the first element
in the queue denoted by q.

4.2.3.20 queue IsLast(): Is an element the last on a queue?

#define queue_IsLast(q,i) (_Q(q)->prev == _Q(i))

Rx Support Packages 53 August 28, 1991 10:38

Rx Specification

This macro returns a non-zero value if the queue item located at i is the last element in
the queue denoted by q.

4.2.3.21 queue IsEnd(): Is an element the end of a queue?

#define queue_IsEnd(q,i) (_Q(q) == _Q(i))

This macro returns a non-zero value if the queue item located at i is the end of the
queue located at q. Basically, it determines whether a queue element in question is also
the queue header structure itself, and thus does not represent an actual queue element.
This function is useful for terminating an iterative sweep through a queue, identifying
when the search has wrapped to the queue header.

4.2.3.22 queue Scan(): for loop test for scanning a queue in a forward direc-
tion

#define queue_Scan(q, qe, next, s)
(qe) = queue_First(q, s), next = queue_Next(qe, s);
!queue_IsEnd(q, qe);
(qe) = (next), next = queue_Next(qe, s)

This macro may be used as the body of a for loop test intended to scan through each
element in the queue located at q. The qe argument is used as the for loop variable.
The next argument is used to store the next value for qe in the upcoming loop iteration.
The s argument provides the name of the structure to which each queue element is to
be coerced. Thus, the values provided for the qe and next arguments must be of type
(struct s *).

An example of how queue Scan() may be used appears in the code fragment below. It
declares a structure named mystruct, which is suitable for queueing. This queueable
structure is composed of the queue pointers themselves followed by an integer value. The
actual queue header is kept in demoQueue, and the currItemP and nextItemP variables
are used to step through the demoQueue. The queue Scan() macro is used in the for loop
to generate references in currItemP to each queue element in turn for each iteration.
The loop is used to increment every queued structure’s myval field by one.

struct mystruct {
struct queue q;
int myval;

};

Rx Support Packages 54 August 28, 1991 10:38

Rx Specification

struct queue demoQueue;
struct mystruct *currItemP, *nextItemP;

...

for (queue_Scan(&demoQueue, currItemP, nextItemP, mystruct)) {
currItemP->myval++;

}

Note that extra initializers can be added before the body of the queue Scan() invocation
above, and extra expressions can be added afterwards.

4.2.3.23 queue ScanBackwards(): for loop test for scanning a queue in a reverse
direction

#define queue_ScanBackwards(q, qe, prev, s)
(qe) = queue_Last(q, s), prev = queue_Prev(qe, s);
!queue_IsEnd(q, qe);
(qe) = prev, prev = queue_Prev(qe, s)

This macro is identical to the queue Scan() macro described above in Section 4.2.3.22
except for the fact that the given queue is scanned backwards, starting at the last item
in the queue.

4.3 The rx clock Package

This package maintains a clock which is independent of the time of day. It uses the unix

4.3BSD interval timer (e.g., getitimer(), setitimer()) in TIMER REAL mode. Its definition
and interface may be found in the rx clock.h include file.

4.3.1 struct clock

This structure is used to represent a clock value as understood by this package. It consists
of two fields, storing the number of seconds and microseconds that have elapsed since
the associated clock Init() routine has been called.

Rx Support Packages 55 August 28, 1991 10:38

Rx Specification

Fields

long sec - Seconds since call to clock Init().

long usec - Microseconds since call to clock Init().

4.3.2 clock nUpdates

The integer-valued clock nUpdates is a variable exported by the rx clock facility. It
records the number of times the clock value is actually updated. It is bumped each time
the clock UpdateTime() routine is called, as described in Section 4.3.3.2.

4.3.3 Operations

4.3.3.1 clock Init(): Initialize the clock package

This routine uses the unix setitimer() call to initialize the unix interval timer. If the
setitimer() call fails, an error message will appear on stderr, and an exit(1) will be
executed.

4.3.3.2 clock UpdateTime(): Compute the current time

The clock UpdateTime() function calls the unix getitimer() routine in order to update
the current time. The exported clock nUpdates variable is incremented each time the
clock UpdateTime() routine is called.

4.3.3.3 clock GetTime(): Return the current clock time

This macro updates the current time if necessary, and returns the current time into the
cv argument, which is declared to be of type (struct clock *).

4.3.3.4 clock Sec(): Get the current clock time, truncated to seconds

This macro returns the long value of the sec field of the current time. The recorded
time is updated if necessary before the above value is returned.

Rx Support Packages 56 August 28, 1991 10:38

Rx Specification

4.3.3.5 clock ElapsedTime(): Measure milliseconds between two given clock
values

This macro returns the elapsed time in milliseconds between the two clock structure
pointers provided as arguments, cv1 and cv2.

4.3.3.6 clock Advance(): Advance the recorded clock time by a specified clock
value

This macro takes a single (struct clock *) pointer argument, cv, and adds this clock
value to the internal clock value maintined by the package.

4.3.3.7 clock Gt(): Is a clock value greater than another?

This macro takes two parameters of type (struct clock *), a and b. It returns a non-
zero value if the a parameter points to a clock value which is later than the one pointed
to by b.

4.3.3.8 clock Ge(): Is a clock value greater than or equal to another?

This macro takes two parameters of type (struct clock *), a and b. It returns a non-
zero value if the a parameter points to a clock value which is greater than or equal to
the one pointed to by b.

4.3.3.9 clock Gt(): Are two clock values equal?

This macro takes two parameters of type (struct clock *), a and b. It returns a
non-zero value if the clock values pointed to by a and b are equal.

4.3.3.10 clock Le(): Is a clock value less than or equal to another?

This macro takes two parameters of type (struct clock *), a and b. It returns a non-
zero value if the a parameter points to a clock value which is less than or equal to the
one pointed to by b.

Rx Support Packages 57 August 28, 1991 10:38

Rx Specification

4.3.3.11 clock Lt(): Is a clock value less than another?

This macro takes two parameters of type (struct clock *), a and b. It returns a non-
zero value if the a parameter points to a clock value which is less than the one pointed
to by b.

4.3.3.12 clock IsZero(): Is a clock value zero?

This macro takes a single parameter of type (struct clock *), c. It returns a non-zero
value if the c parameter points to a clock value which is equal to zero.

4.3.3.13 clock Zero(): Set a clock value to zero

This macro takes a single parameter of type (struct clock *), c. It sets the given
clock value to zero.

4.3.3.14 clock Add(): Add two clock values together

This macro takes two parameters of type (struct clock *), c1 and c2. It adds the
value of the time in c2 to c1. Both clock values must be positive.

4.3.3.15 clock Sub(): Subtract two clock values

This macro takes two parameters of type (struct clock *), c1 and c2. It subtracts
the value of the time in c2 from c1. The time pointed to by c2 should be less than the
time pointed to by c1.

4.3.3.16 clock Float(): Convert a clock time into floating point

This macro takes a single parameter of type (struct clock *), c. It expresses the
given clock value as a floating point number.

Rx Support Packages 58 August 28, 1991 10:38

Rx Specification

4.4 The rx event Package

This package maintains an event facility. An event is defined to be something that
happens at or after a specified clock time, unless cancelled prematurely. The clock times
used are those provided by the rx clock facility described in Section 4.3 above. A user
routine associated with an event is called with the appropriate arguments when that event
occurs. There are some restrictions on user routines associated with such events. First,
this user-supplied routine should not cause process preemption. Also, the event passed
to the user routine is still resident on the event queue at the time of invocation. The
user must not remove this event explicitly (via an event Cancel(), see below). Rather,
the user routine may remove or schedule any other event at this time.

The events recorded by this package are kept queued in order of expiration time, so that
the first entry in the queue corresponds to the event which is the first to expire. This
interface is defined by the rx event.h include file.

4.4.1 struct rxevent

This structure defines the format of an Rx event record.

Fields

struct queue junk - The queue to which this event belongs.

struct clock eventTime - The clock time recording when this event comes due.

int (*func)() - The user-supplied function to call upon expiration.

char *arg - The first argument to the (*func)() function above.

char *arg1 - The second argument to the (*func)() function above.

4.4.2 Operations

This section covers the interface routines provided for the Rx event package.

4.4.2.1 rxevent Init(): Initialize the event package

The rxevent Init() routine takes two arguments. The first, nEvents, is an integer-valued
parameter which specifies the number of event structures to allocate at one time. This

Rx Support Packages 59 August 28, 1991 10:38

Rx Specification

specifies the appropriate granularity of memory allocation by the event package. The
second parameter, scheduler, is a pointer to an integer-valued function. This function is
to be called when an event is posted (added to the set of events managed by the package)
that is scheduled to expire before any other existing event.

This routine sets up future event allocation block sizes, initializes the queues used to
manage active and free event structures, and recalls that an initialization has occurred.
Thus, this function may be safely called multiple times.

4.4.2.2 rxevent Post(): Schedule an event

This function constructs a new event based on the information included in its parameters
and then schedules it. The rxevent Post() routine takes four parameters. The first is
named when, and is of type (struct clock *). It specifies the clock time at which the
event is to occur. The second parameter is named func and is a pointer to the integer-
valued function to associate with the event that will be created. When the event comes
due, this function will be executed by the event package. The next two arguments to
rxevent Post() are named arg and arg1, and are both of type (char *). They serve as
the two arguments thath will be supplied to the func routine when the event comes due.

If the given event is set to take place before any other event currently posted, the
scheduler routine established when the rxevent Init() routine was called will be exe-
cuted. This gives the application a chance to react to this new event in a reasonable
way. One might expect that this scheduler routine will alter sleep times used by the
application to make sure that it executes in time to handle the new event.

4.4.2.3 rxevent Cancel 1(): Cancel an event (internal use)

This routine removes an event from the set managed by this package. It takes a single
parameter named ev of type (struct rxevent *). The ev argument identifies the
pending event to be cancelled.

The rxevent Cancel 1() routine should never be called directly. Rather, it should be
accessed through the rxevent Cancel() macro, described in Section 4.4.2.4 below.

4.4.2.4 rxevent Cancel(): Cancel an event (external use)

This macro is the proper way to call the rxevent Cancel 1() routine described in Section
4.4.2.3 above. Like rxevent Cancel 1(), it takes a single argument. This event ptr argu-

Rx Support Packages 60 August 28, 1991 10:38

Rx Specification

ment is of type (struct rxevent *), and identifies the pending event to be cancelled.
This macro first checks to see if event ptr is null. If not, it calls rxevent Cancel 1()
to perform the real work. The event ptr argument is zeroed after the cancellation
operation completes.

4.4.2.5 rxevent RaiseEvents(): Initialize the event package

This function processes all events that have expired relative to the current clock time
maintained by the event package. Each qualifying event is removed from the queue in
order, and its user-supplied routine (func()) is executed with the associated arguments.

The rxevent RaiseEvents() routine takes a single output parameter named next, defined
to be of type (struct clock *). Upon completion of rxevent RaiseEvents(), the relative
time to the next event due to expire is placed in next. This knowledge may be used to
calculate the amount of sleep time before more event processing is needed. If there is
no recorded event which is still pending at this point, rxevent RaiseEvents() returns a
zeroed clock value into next.

4.4.2.6 rxevent TimeToNextEvent(): Get amount of time until the next event
expires

This function returns the time between the current clock value as maintained by the
event package and the the next event’s expiration time. This information is placed in
the single output argument,interval, defined to be of type (struct clock *). The
rxevent TimeToNextEvent() function returns integer-valued quantities. If there are no
scheduled events, a zero is returned. If there are one or more scheduled events, a 1 is
returned. If zero is returned, the interval argument is not updated.

Rx Support Packages 61 August 28, 1991 10:38

Rx Specification

Chapter 5

Programming Interface

5.1 Introduction

This chapter documents the API for the Rx facility. Included are descriptions of all the
constants, structures, exported variables, macros, and interface functions available to the
application programmer. This interface is identical regardless of whether the application
lives within the unix kernel or above it.

This chapter actually provides more information than what may be strictly considered
the Rx API. Many objects that were intended to be opaque and for Rx internal use only
are also described here. The reason driving the inclusion of this “extra” information is
that such exported Rx interface files as rx.h make these objects visible to application
programmers. It is prefereable to describe these objects here than to ignore them and
leave application programmers wondering as to their meaning.

An example application illustrating the use of this interface, showcasing code from both
server and client sides, appears in the following chapter.

5.2 Constants

This section covers the basic constant definitions of interest to the Rx application pro-
grammer. Each subsection is devoted to describing the constants falling into the following
categories:

• Configuration quantities

Programming Interface 62 August 28, 1991 10:38

Rx Specification

• Waiting options

• Connection ID operations

• Connection flags

• Connection types

• Call states

• Call flags

• Call modes

• Packet header flags

• Packet sizes

• Packet types

• Packet classes

• Conditions prompting ack packets

• Ack types

• Error codes

• Debugging values

An attempt has been made to relate these constant definitions to the objects or routines
that utilize them.

5.2.1 Configuration Quantities

These definitions provide some basic Rx configuration parameters, including the number
of simultaneous calls that may be handled on a single connection, lightweight thread
parameters, and timeouts for various operations.

Programming Interface 63 August 28, 1991 10:38

Rx Specification

Name Value Description

RX IDLE DEAD TIME 60 Default idle dead time for con-
nections, in seconds.

RX MAX SERVICES 20 The maximum number of Rx
services that may be installed
within one application.

RX PROCESS MAXCALLS 4 The maximum number of asyn-
chronous calls active simultane-
ously on any given Rx connec-
tion. This value must be set to
a power of two.

RX DEFAULT STACK SIZE 16,000 Default lightweight thread stack
size, measured in bytes. This
value may be overridden by call-
ing the rx SetStackSize()macro.

RX PROCESS PRIORITY LWP NORMAL PRIORITY This is the priority under which
an Rx thread should run. There
should not generally be any rea-
son to change this setting.

RX CHALLENGE TIMEOUT 2 The number of seconds before
another authentication request
packet is generated

RX MAXACKS 255 Maximum number of individual
acknowledgements that may be
carried in an Rx acknowledge-
ment packet

5.2.2 Waiting Options

These definitions provide readable values indicating whether an operation should block
when packet buffer resources are not available.

Name Value Description

RX DONTWAIT 0 Wait until the associated operation completes
RX WAIT 1 Don’t wait if the associated operation would block

Programming Interface 64 August 28, 1991 10:38

Rx Specification

5.2.3 Connection ID Operations

These values assist in extracting the call channel number from a connection identifier.
A call channel is the index of a particular asynchronous call structure within a single Rx
connection.

Name Value Description

RX CIDSHIFT 2 Number of bits to right-shift to isolate
a connection ID. Must be set to the log
(base two) of RX MAXCALLS.

RX CHANNELMASK (RX MAXCALLS-1) Mask used to isolate a call channel from
a connection ID field

RX CIDMASK (~RX CHANNELMASK) Mask used to isolate the connection ID
from its field, masking out the call chan-
nel information

5.2.4 Connection Flags

The values defined here appear in the flags field of Rx connections, as defined by the
rx connection structure described in Section 5.3.2.2.

Name Value Description

RX CONN MAKECALL WAITING 1 rx MakeCall() is waiting for a channel
RX CONN DESTROY ME 2 Destroy this (client) connection after its

last call completes
RX CONN USING PACKET CKSUM 4 This packet is using security-related check-

summing (a non-zero header.spare field has
been seen)

5.2.5 Connection Types

Rx stores different information in its connection structures, depending on whether the
given connection represents the server side (the one providing the service) or the client
side (the one requesting the service) of the protocol. The type field within the connection
structure (described in Section 5.3.2.2) takes on the following values to differentiate the
two types of connections, and identifies the fields that are active within the connection
structure.

Programming Interface 65 August 28, 1991 10:38

Rx Specification

Name Value Description

RX CLIENT CONNECTION 0 This is a client-side connection.
RX SERVER CONNECTION 1 This is a server-side connection.

5.2.6 Call States

An Rx call on a particular connection may be in one of several states at any instant in
time. The following definitions identify the range of states that a call may assume.

Name Value Description

RX STATE NOTINIT 0 The call structure has never been used, and is thus still
completely uninitialized

RX STATE PRECALL 1 A call is not yet in progress, but packets have arrived
for it anyway. This only applies to calls within server-
side connections

RX STATE ACTIVE 2 This call is fully active, having an attached lightweight
thread operating on its behalf

RX STATE DALLY 3 The call structure is “dallying” after its lightweight
thread has completed its most recent call. This is a
“hot-standby” condition, where the call structure pre-
serves state from the previous call and thus optimizes
the arrival of further, related calls.

5.2.7 Call Flags

These values are used within the flags field of a variable declared to be of type struct
rx call, as described in Section 5.3.2.4. They provide additional information as to the
state of the given Rx call, such as the type of event for which it is waiting (if any) and
whether or not all incoming packets have been received in support of the call.

Programming Interface 66 August 28, 1991 10:38

Rx Specification

Name Value Description

RX CALL READER WAIT 1 Reader is waiting for next packet
RX CALL WAIT WINDOW ALLOC 2 Sender is waiting for a window so that it can

allocate buffers
RX CALL WAIT WINDOW SEND 4 Sender is waiting for a window so that it can

send buffers
RX CALL WAIT PACKETS 8 Sender is waiting for packet buffers
RX CALL WAIT PROC 16 The call is waiting for a lightweight thread

to be assigned to the operation it has just
received

RX CALL RECEIVE DONE 32 All packets have been received on this call
RX CALL CLEARED 64 The receive queue has been cleared when in

precall state

5.2.8 Call Modes

These values define the modes of an Rx call when it is in the RX STATE ACTIVE state,
having a lightweight thread assigned to it.

Name Value Description

RX MODE SENDING 1 We are sending or ready to send
RX MODE RECEIVING 2 We are receiving or ready to receive
RX MODE ERROR 3 Something went wrong in the current conversation
RX MODE EOF 4 The server side has flushed (or the client side has

read) the last reply packet

5.2.9 Packet Header Flags

Rx packets carry a flag field in their headers, providing additional information regarding
the packet’s contents. The Rx packet header’s flag field’s bits may take the following
values:

Programming Interface 67 August 28, 1991 10:38

Rx Specification

Name Value Description

RX CLIENT INITIATED 1 Signifies that a packet has
been sent/received from the
client side of the call

RX REQUEST ACK 2 The Rx call’s peer entity re-
quests an acknowledgement

RX LAST PACKET 4 This is the final packet from
this side of the call

RX MORE PACKETS 8 There are more packets fol-
lowing this, i.e. the next se-
quence number seen by the
receiver should be greater
than this one, rather than a
retransmission of an earlier
sequence number

RX PRESET FLAGS (RX CLIENT INITIATED |
RX LAST PACKET)

This flag is preset once
per Rx packet. It doesn’t
change on retransmission of
the packet

5.2.10 Packet Sizes

These values provide sizing information on the various regions within Rx packets. These
packet sections include the IP/UDP headers and bodies as well Rx header and bodies.
Also covered are such values as different maximum packet sizes depending on whether
they are targeted to peers on the same local network or a more far-flung network. Note
that the MTU term appearing below is an abbreviation for Maximum Transmission Unit.

Programming Interface 68 August 28, 1991 10:38

Rx Specification

Name Value Description

RX IPUDP SIZE 28 The number of bytes
taken up by IP/UDP
headers

RX MAX PACKET SIZE (1500 - RX IPUDP SIZE) This is the Ethernet
MTU minus IP and
UDP header sizes

RX HEADER SIZE sizeof (struct rx header) The number of bytes in
an Rx packet header

RX MAX PACKET DATA SIZE (RX MAX PACKET SIZE -
RX HEADER SIZE)

Maximum size in bytes
of the user data in a
packet

RX LOCAL PACKET SIZE RX MAX PACKET SIZE Packet size in bytes to
use when being sent to
a host on the same net.

RX REMOTE PACKET SIZE (576 - RX IPUDP SIZE) Packet size in bytes to
use when being sent to
a host on a different
net.

5.2.11 Packet Types

The following values are used in the packetType field within a struct rx packet, and
define the different roles assumed by Rx packets. These roles include user data pack-
ets, different flavors of acknowledgements, busies, aborts, authentication challenges and
responses, and debugging vehicles.

Programming Interface 69 August 28, 1991 10:38

Rx Specification

Name Value Description

RX PACKET TYPE DATA 1 A user data packet
RX PACKET TYPE ACK 2 Acknowledgement packet
RX PACKET TYPE BUSY 3 Busy packet. The server-side entity cannot

accept the call at the moment, but the re-
questor is encouraged to try again later

RX PACKET TYPE ABORT 4 Abort packet. No response is needed for this
packet type

RX PACKET TYPE ACKALL 5 Acknowledges receipt of all packets on a call
RX PACKET TYPE CHALLENGE 6 Challenge the client’s identity, requesting

credentials
RX PACKET TYPE RESPONSE 7 Response to a RX PACKET TYPE CHALLENGE

authentication challenge packet.
RX PACKET TYPE DEBUG 8 Request for debugging information
RX N PACKET TYPES 9 The number of Rx packet types defined

above. Note that it also includes packet type
0 (which is unused) in the count

The RX PACKET TYPES definition provides a mapping of the above values to human-
readable string names, and is exported by the rx packetTypes variable catalogued in
Section 5.4.9.

{"data",
"ack",
"busy",
"abort",
"ackall",
"challenge",
"response",
"debug"
}

5.2.12 Packet Classes

These definitions are used internally to manage alloction of Rx packet buffers according
to quota classifications. Each packet belongs to one of the following classes, and its buffer
is derived from the corresponding pool.

Programming Interface 70 August 28, 1991 10:38

Rx Specification

Name Value Description

RX PACKET CLASS RECEIVE 0 Receive packet for user data
RX PACKET CLASS SEND 1 Send packet for user data
RX PACKET CLASS SPECIAL 2 A special packet that does not holding user

data, such as an acknowledgement or authen-
tication challenge

RX N PACKET CLASSES 3 The number of Rx packet classes defined above

5.2.13 Conditions Prompting Ack Packets

Rx acknowledgement packets are constructed and sent by the protocol according to the
following reasons. These values appear in the Rx packet header of the ack packet itself.

Name Value Description

RX ACK REQUESTED 1 The peer has explicitly requested an ack on this
packet

RX ACK DUPLICATE 2 A duplicate packet has been received
RX ACK OUT OF SEQUENCE 3 A packet has arrived out of sequence
RX ACK EXCEEDS WINDOW 4 A packet sequence number higher than max-

imum value allowed by the call’s window has
been received

RX ACK NOSPACE 5 No packet buffer space is available
RX ACK PING 6 Acknowledgement for keep-alive purposes
RX ACK PING RESPONSE 7 Response to a RX ACK PING packet
RX ACK DELAY 8 An ack generated due to a period of inactivity

after normal packet receptions

5.2.14 Acknowledgement Types

These are the set of values placed into the acks array in an Rx acknowledgement packet,
whose data format is defined by struct rx ackPacket. These definitions are used to
convey positive or negative acknowledgements for a given range of packets.

Name Value Description

RX ACK TYPE NACK 0 Receiver doesn’t currently have the associated packet;
it may never have been received, or received and then
later dropped before processing

RX ACK TYPE ACK 1 Receiver has the associated packet queued, although it
may later decide to discard it

Programming Interface 71 August 28, 1991 10:38

Rx Specification

5.2.15 Error Codes

Rx employs error codes ranging from -1 to -64. The Rxgen stub generator may use other
error codes less than -64. User programs calling on Rx, on the other hand, are expected
to return positive error codes. A return value of zero is interpreted as an indication that
the given operation completed successfully.

Name Value Description

RX CALL DEAD -1 A connection has been inactive past Rx’s tolerance
levels and has been shut down.

RX INVALID OPERATION -2 An invalid operation has been attempted, includ-
ing such protocol errors as having a client-side call
send data after having received the beginning of
a reply from its server-side peer

RX CALL TIMEOUT -3 The (optional) timeout value placed on this call
has been exceeded (see Sections 5.5.3.4 and 5.6.5).

RX EOF -4 Unexpected end of data on a read operation
RX PROTOCOL ERROR -5 An unspecified low-level Rx protocol error has

occurred
RX USER ABORT -6 A generic user abort code, used when no more

specific error code needs to be communicated. For
example, Rx clients employing the multicast fea-
ture (see Section 1.2.8) take advantage of this er-
ror code

RX ADDRINUSE -7 The given UDP port already in use (See the de-
scription of the rx Init() function.)

RX DEBUGI BADTYPE -8 Invalid debugging packet type was received

5.2.16 Debugging Values

Rx provides a set of data collections that convey information about its internal status
and performance. The following values have been defined in support of this debugging
and statistics-collection feature.

5.2.16.1 Version Information

Various versions of the Rx debugging/statistics interface are in existance, each defining
different data collections and handling certain bugs. Each Rx facility is stamped with
a version number of its debugging/statistics interface, allowing its clients to tailor their

Programming Interface 72 August 28, 1991 10:38

Rx Specification

requests to the precise data collections that are supported by a particular Rx entity, and
to properly interpret the data formats received through this interface. All existing Rx
implementations should be at revision M.

Name Value Description

RX DEBUGI VERSION MINIMUM ’L’ The earliest version of Rx statis-
tics available

RX DEBUGI VERSION ’M’ The latest version of Rx statis-
tics available

RX DEBUGI VERSION W SECSTATS ’L’ Identifies the earliest version in
which statistics concerning Rx
security objects is available

RX DEBUGI VERSION W GETALLCONN ’M’ The first version that supports
getting
information about all current
Rx connections, as specified by
the RX DEBUGI GETALLCONN de-
bugging request packet opcode
described below.

RX DEBUGI VERSION W RXSTATS ’M’ The first version that supports
getting all the Rx statistics in
one operation, as specified by
the RX DEBUGI RXSTATS debug-
ging request packet opcode de-
scribed below.

RX DEBUGI VERSION W UNALIGNED CONN ’L’ There was an alignment prob-
lem discovered when returning
Rx connection
information in older versions of
this debugging/statistics inter-
face. This identifies the last ver-
sion that exhibited this align-
ment problem.

5.2.16.2 Opcodes

When requesting debugging/statistics information, the caller specifies one of the follow-
ing supported data collections:

Programming Interface 73 August 28, 1991 10:38

Rx Specification

Name Value Description

RX DEBUGI GETSTATS 1 Get basic Rx statistics
RX DEBUGI GETCONN 2 Get information on all Rx connections consid-

ered “interesting” (as defined below), and no
others

RX DEBUGI GETALLCONN 3 Get information on all existing Rx connection
structures, even “uninteresting” ones

RX DEBUGI RXSTATS 4 Get all available Rx stats

An Rx connection is considered “interesting” if it is waiting for a call channel to free up
or if it has been marked for destruction. If neither is true, a connection is still considered
interesting if any of its call channels is actively handling a call or in its preparatory
pre-call state. Failing all the above conditions, a connection is still tagged as interesting
if any of its call channels is in either of the RX MODE SENDING or RX MODE RECEIVING

modes, which are not allowed when the call is not active.

5.2.16.3 Queuing

These two queueing-related values indicate whether packets are present on the incoming
and outgoing packet queues for a given Rx call. These values are only used in support
of debugging and statistics-gathering operations.

Name Value Description

RX OTHER IN 1 Packets available in in queue
RX OTHER OUT 2 Packets available in out queue

5.3 Structures

This section describes the major exported Rx data structures of interest to application
programmers. The following categories are utilized for the purpose of organizing the
structure descriptions:

• Security objects

• Protocol objects

• Packet formats

• Debugging and statistics

Programming Interface 74 August 28, 1991 10:38

Rx Specification

• Miscellaneous

Please note that many fields described in this section are declared to be VOID. This is
defined to be char, and is used to get around some compiler limitations.

5.3.1 Security Objects

As explained in Section 1.2.1, Rx provides a modular, extensible security model. This
allows Rx applications to either use one of the built-in security/authentication protocol
packages or write and plug in one of their own. This section examines the various struc-
tural components used by Rx to support generic security and authentication modules.

5.3.1.1 struct rx securityOps

As previously described, each Rx security object must export a fixed set of interface func-
tions, providing the full set of operations defined on the object. The rx securityOps

structure defines the array of functions comprising this interface. The Rx facility calls
these routines at the appropriate times, without knowing the specifics of how any par-
ticular security object implements the operation.

A complete description of these interface functions, including information regarding their
exact purpose, parameters, and calling conventions, may be found in Section 5.5.7.

Fields

int (*op Close)() - React to the disposal of a security object.

int (*op NewConnection)() - Invoked each time a new Rx connection utilizing the
associated security object is created.

int (*op PreparePacket)() - Invoked each time an outgoing Rx packet is created and
sent on a connection using the given security object.

int (*op SendPacket)() - Called each time a packet belonging to a call in a connec-
tion using the security object is physically transmitted.

int (*op CheckAuthentication)() - This function is executed each time it is necessary
to check whether authenticated calls are being perfomed on a connection using
the associated security object.

int (*op CreateChallenge)() - Invoked each time a server-side challenge event is
created by Rx, namely when the identity of the principal associated with the
peer process must be determined.

Programming Interface 75 August 28, 1991 10:38

Rx Specification

int (*op GetChallenge)() - Called each time a client-side packet is constructed in
response to an authentication challenge.

int (*op GetResponse)() - Executed each time a response to a challenge event must
be received on the server side of a connection.

int (*op CheckResponse)() - Invoked each time a response to an authentication has
been received, validating the response and pulling out the required authenti-
cation information.

int (*op CheckPacket) () - Invoked each time an Rx packet has been received, mak-
ing sure that the packet is properly formatted and that it hasn’t been altered.

int (*op DestroyConnection)() - Called each time an Rx connection employing the
given security object is destroyed.

int (*op GetStats)() - Executed each time a request for statistics on the given se-
curity object has been received.

int (*op Spare1)() - int (*op Spare3)() - Three spare function slots, reserved for
future use.

5.3.1.2 struct rx securityClass

Variables of type struct rx securityClass are used to represent instantiations of a
particular security model employed by Rx. It consists of a pointer to the set of interface
operations implementing the given security object, along with a pointer to private storage
as necessary to support its operations. These security objects are also reference-counted,
tracking the number of Rx connections in existance that use the given security object.
If the reference count drops to zero, the security module may garbage-collect the space
taken by the unused security object.

Fields

struct rx securityOps *ops - Pointer to the array of interface functions for the
security object.

VOID *privateData - Pointer to a region of storage used by the security object
to support its operations.

int refCount - A reference count on the security object, tracking the number of
Rx connections employing this model.

Programming Interface 76 August 28, 1991 10:38

Rx Specification

5.3.1.3 struct rx securityObjectStats

This structure is used to report characteristics for an instantiation of a security object
on a particular Rx connection, as well as performance figures for that object. It is used
by the debugging portions of the Rx package. Every security object defines and manages
fields such as level and flags differently.

Fields

char type - The type of security object being implemented. Existing values are:

• 0: The null security package.

• 1: An obsolete Kerberos-like security object.

• 2: The rxkad discipline (see Chapter 3).

char level - The level at which encryption is utilized.

char sparec[10] - Used solely for alignment purposes.

long flags - Status flags regarding aspects of the connection relating to the security
object.

u long expires - Absolute time when the authentication information cached by
the given connection expires. A value of zero indicates that the associated
authentication information is valid for all time.

u long packetsReceived - Number of packets received on this particular con-
nection, and thus the number of incoming packets handled by the associated
security object.

u long packetsSent - Number of packets sent on this particular connection, and
thus the number of outgoing packets handled by the associated security object.

u long bytesReceived - Overall number of “payload” bytes received (i.e., packet
bytes not associated with IP headers, UDP headers, and the security module’s
own header and trailer regions) on this connection.

u long bytesSent - Overall number of “payload” bytes sent (i.e., packet bytes
not associated with IP headers, UDP headers, and the security module’s own
header and trailer regions) on this connection.

short spares[4] - Several shortword spares, reserved for future use.

long sparel[8] - Several longword spares, reserved for future use.

Programming Interface 77 August 28, 1991 10:38

Rx Specification

5.3.2 Protocol Objects

The structures describing the main abstractions and entities provided by Rx, namely
services, peers, connections and calls are covered in this section.

5.3.2.1 struct rx service

An Rx-based server exports services, or specific RPC interfaces that accomplish certain
tasks. Services are identified by (host-address, UDP-port, serviceID) triples. An Rx
service is installed and initialized on a given host through the use of the rx NewService()
routine (See Section 5.6.3). Incoming calls are stamped with the Rx service type, and
must match an installed service to be accepted. Internally, Rx services also carry string
names for purposes of identification. These strings are useful to remote debugging and
statistics-gathering programs. The use of a service ID allows a single server process to
export multiple, independently-specified Rx RPC services.

Each Rx service contains one or more security classes, as implemented by individual
security objects. These security objects implement end-to-end security protocols. Indi-
vidual peer-to-peer connections established on behalf of an Rx service will select exactly
one of the supported security objects to define the authentication procedures followed
by all calls associated with the connection. Applications are not limited to using only
the core set of built-in security objects offered by Rx. They are free to define their own
security objects in order to execute the specific protocols they require.

It is possible to specify both the minimum and maximum number of lightweight processes
available to handle simultaneous calls directed to an Rx service. In addition, certain
procedures may be registered with the service and called at set times in the course of
handling an RPC request.

Fields

u short serviceId - The associated service number.

u short servicePort - The chosen UDP port for this service.

char *serviceName - The human-readable service name, expressed as a character
string.

osi socket socket - The socket structure or file descriptor used by this service.

u short nSecurityObjects - The number of entries in the array of supported
security objects.

struct rx securityClass **securityObjects - The array of pointers to the ser-
vice’s security class objects.

Programming Interface 78 August 28, 1991 10:38

Rx Specification

long (*executeRequestProc)() - A pointer to the routine to call when an RPC
request is received for this service.

VOID (*destroyConnProc)() - A pointer to the routine to call when one of the
server-side connections associated with this service is destroyed.

VOID (*newConnProc)() - A pointer to the routine to call when a server-side
connection associated with this service is created.

VOID (*beforeProc)() - A pointer to the routine to call before an individual
RPC call on one of this service’s connections is executed.

VOID (*afterProc)() - A pointer to the routine to call after an individual RPC
call on one of this service’s connections is executed.

short nRequestsRunning - The number of simultaneous RPC calls currently in
progress for this service.

short maxProcs - This field has two meanings. First, maxProcs limits the total
number of requests that may execute in parallel for any one service. It also
guarantees that this many requests may be handled in parallel if there are no
active calls for any other service.

short minProcs - The minimum number of lightweight threads (hence requests)
guaranteed to be simultaneously executable.

short connDeadTime - The number of seconds until a client of this service will
be declared to be dead, if it is not responding to the RPC protocol.

short idleDeadTime - The number of seconds a server-side connection for this
service will wait for packet I/O to resume after a quiescent period before the
connection is marked as dead.

5.3.2.2 struct rx connection

An Rx connection represents an authenticated communication path, allowing multiple
asynchronous conversations (calls). Each connection is identified by a connection ID.
The low-order bits of the connection ID are reserved so they may be stamped with the
index of a particular call channel. With up to RX MAXCALLS concurrent calls (set to 4 in
this implementation), the bottom two bits are set aside for this purpose. The connection
ID is not sufficient by itself to uniquely identify an Rx connection. Should a client crash
and restart, it may reuse a connection ID, causing inconsistent results. In addition to
the connection ID, the epoch, or start time for the client side of the connection, is used
to identify a connection. Should the above scenario occur, a different epoch value will
be chosen by the client, differentiating this incarnation from the orphaned connection
record on the server side.

Programming Interface 79 August 28, 1991 10:38

Rx Specification

Each connection is associated with a parent service, which defines a set of supported se-
curity models. At creation time, an Rx connection selects the particular security protocol
it will implement, referencing the associated service. The connection structure maintains
state about the individual calls being simultaneously handled.

Fields

struct rx connection *next - Used for internal queueing.

struct rx peer *peer - Pointer to the connection’s peer information (see below).

u long epoch - Process start time of the client side of the connection.

u long cid - Connection identifier. The call channel (i.e., the index into the con-
nection’s array of call structures) may appear in the bottom bits.

VOID *rock - Pointer to an arbitrary region of memory in support of the con-
nection’s operation. The contents of this area are opaque to the Rx facility in
general, but are understood by any special routines used by this connection.

struct rx call *call[RX MAXCALLS] - Pointer to the call channel structures,
describing up to RX MAXCALLS concurrent calls on this connection.

u long callNumber[RX MAXCALLS] - The set of current call numbers on each
of the call channels.

int timeout - Obsolete; no longer used.

u char flags - Various states of the connection; see Section 5.2.4 for individual bit
definitions.

u char type - Whether the connection is a server-side or client-side one. See Sec-
tion 5.2.5 for individual bit definitions.

u short serviceId - The service ID that should be stamped on requests. This field
is only used by client-side instances of connection structures.

struct rx service *service - A pointer to the service structure associated with
this connection. This field is only used by server-side instances of connection
structures.

u long serial - Serial number of the next outgoing packet associated with this
connection.

u long lastSerial - Serial number of the last packet received in association with
this connection. This field is used in computing packet skew.

u short secondsUntilDead - Maximum numer of seconds of silence that should
be tolerated from the connection’s peer before calls will be terminated with an
RX CALL DEAD error.

Programming Interface 80 August 28, 1991 10:38

Rx Specification

u char secondsUntilPing - The number of seconds between “pings” (keep-alive
probes) when at least one call is active on this connection.

u char securityIndex - The index of the security object being used by this con-
nection. This number selects a slot in the security class array maintained by
the service associated with the connection.

long error - Records the latest error code for calls occurring on this connection.

struct rx securityClass *securityObject - A pointer to the security object used
by this connection. This should coincide with the slot value chosen by the
securityIndex field described above.

VOID *securityData - A pointer to a region dedicated to hosting any storage
required by the security object being used by this connection.

u short securityHeaderSize - The length in bytes of the portion of the packet
header before the user’s data that contains the security module’s information.

u short securityMaxTrailerSize - The length in bytes of the packet trailer, ap-
pearing after the user’s data, as mandated by the connection’s security module.

struct rxevent *challengeEvent - Pointer to an event that is scheduled when
the server side of the connection is challenging the client to authenticate itself.

int lastSendTime - The last time a packet was sent on this connection.

long maxSerial - The largest serial number seen on incoming packets.

u short hardDeadTime - The maximum number of seconds that any call on this
connection may execute. This serves to throttle runaway calls.

5.3.2.3 struct rx peer

For each connection, Rx maintains information describing the entity, or peer, on the
other side of the wire. A peer is identified by a (host, UDP-port) pair. Included in the
information kept on this remote communication endpoint are such network parameters
as the maximum packet size supported by the host, current readings on round trip time
to retransmission delays, and packet skew (see Section 1.2.7). There are also congestion
control fields, ranging from descriptions of the maximum number of packets that may be
sent to the peer without pausing and retransmission statistics. Peer structures are shared
between connections whenever possible, and hence are reference-counted. A peer object
may be garbage-collected if it is not actively referenced by any connection structure and
a sufficient period of time has lapsed since the reference count dropped to zero.

Programming Interface 81 August 28, 1991 10:38

Rx Specification

Fields

struct rx peer *next - Use to access internal lists.

u long host - Remote IP address, in network byte order

u short port - Remote UDP port, in network byte order

short packetSize - Maximum packet size for this host, if known.

u long idleWhen - When the refCount reference count field (see below) went to
zero.

short refCount - Reference count for this structure

u char burstSize - Reinitialization size for the burst field (below).

u char burst - Number of packets that can be transmitted immediately without
pausing.

struct clock burstWait - Time delay until new burst aimed at this peer is allowed.

struct queue congestionQueue - Queue of RPC call descriptors that are waiting
for a non-zero burst value.

int rtt - Round trip time to the peer, measured in milliseconds.

struct clock timeout - Current retransmission delay to the peer.

int nSent - Total number of distinct data packets sent, not including retransmis-
sions.

int reSends - Total number of retransmissions for this peer since the peer structure
instance was created.

u long inPacketSkew - Maximum skew on incoming packets (see Section 1.2.7)

u long outPacketSkew - Peer-reported maximum skew on outgoing packets (see
Section 1.2.7).

5.3.2.4 struct rx call

This structure records the state of an active call proceeding on a given Rx connection.
As described above, each connection may have up to RX MAXCALLS calls active at any one
instant, and thus each connection maintains an array of RX MAXCALLS rx call structures.
The information contained here is specific to the given call; “permanent” call state, such
as the call number, is maintained in the connection structure itself.

Programming Interface 82 August 28, 1991 10:38

Rx Specification

Fields

struct queue queue item header - Queueing information for this structure.

struct queue tq - Queue of outgoing (“transmit”) packets.

struct queue rq - Queue of incoming (“receive”) packets.

char *bufPtr - Pointer to the next byte to fill or read in the call’s current packet,
depending on whether it is being transmitted or received.

u short nLeft - Number of bytes left to read in the first packet in the reception
queue (see field rq).

u short nFree - Number of bytes still free in the last packet in the transmission
queue (see field tq).

struct rx packet *currentPacket - Pointer to the current packet being assem-
bled or read.

struct rx connection *conn - Pointer to the parent connection for this call.

u long *callNumber - Pointer to call number field within the call’s current packet.

u char channel - Index within the parent connection’s call array that describes
this call.

u char dummy1, dummy2 - These are spare fields, reserved for future use.

u char state - Current call state. The associated bit definitions appear in Section
5.2.7.

u char mode - Current mode of a call that is in RX STATE ACTIVE state. The
associated bit definitions appear in Section 5.2.8.

u char flags - Flags pertaining to the state of the given call. The associated bit
definitions appear in Section 5.2.7.

u char localStatus - Local user status information, sent out of band. This field is
currently not in use, set to zero.

u char remoteStatus - Remote user status information, received out of band.
This field is currently not in use, set to zero.

long error - Error condition for this call.

u long timeout - High level timeout for this call

u long rnext - Next packet sequence number expected to be received.

u long rprev - Sequence number of the previous packet received. This number is
used to decide the proper sequence number for the next packet to arrive, and
may be used to generate a negative acknowledgement.

Programming Interface 83 August 28, 1991 10:38

Rx Specification

u long rwind - Width of the packet receive window for this call. The peer must not
send packets with sequence numbers greater than or equal to rnext + rwind.

u long tfirst - Sequence number of the first unacknowledged transmit packet for
this call.

u long tnext - Next sequence number to use for an outgoing packet.

u long twind - Width of the packet transmit window for this call. Rx cannot assign
a sequence number to an outgoing packet greater than or equal to tfirst +

twind.

struct rxevent *resendEvent - Pointer to a pending retransmission event, if any.

struct rxevent *timeoutEvent - Pointer to a pending timeout event, if any.

struct rxevent *keepAliveEvent - Pointer to a pending keep-alive event, if this
is an active call.

struct rxevent *delayedAckEvent - Pointer to a pending delayed acknowledge-
ment packet event, if any. Transmission of a delayed acknowledgement packet
is scheduled after all outgoing packets for a call have been sent. If neither a
reply nor a new call are received by the time the delayedAckEvent activates,
the ack packet will be sent.

int lastSendTime - Last time a packet was sent for this call.

int lastReceiveTime - Last time a packet was received for this call.

VOID (*arrivalProc)() - Pointer to the procedure to call when reply is received.

VOID *arrivalProcHandle - Pointer to the handle to pass to the arrivalProc
as its first argument.

VOID *arrivalProcArg - Pointer to an additional argument to pass to the given
arrivalProc.

u long lastAcked - Sequence number of the last packet “hard-acked” by the re-
ceiver. A packet is considered to be hard-acked if an acknowledgement is
generated after the reader has processed it. The Rx facility may sometimes
“soft-ack” a windowfull of packets before they have been picked up by the
receiver.

u long startTime - The time this call started running.

u long startWait - The time that a server began waiting for input data or send
quota.

Programming Interface 84 August 28, 1991 10:38

Rx Specification

5.3.3 Packet Formats

The following sections cover the different data formats employed by the suite of Rx
packet types, as enumerated in Section 5.2.11. A description of the most commonly-
employed Rx packet header appears first, immediately followed by a description of the
generic packet container and descriptor. The formats for Rx acknowledgement packets
and debugging/statistics packets are also examined.

5.3.3.1 struct rx header

Every Rx packet has its own header region, physically located after the leading IP/UDP
headers. This header contains connection, call, security, and sequencing information.
Along with a type identifier, these fields allow the receiver to properly interpret the
packet. In addition, every client relates its “epoch”, or Rx incarnation date, in each
packet. This assists in identifying protocol problems arising from reuse of connection
identifiers due to a client restart. Also included in the header is a byte of user-defined
status information, allowing out-of-band channel of communication for the higher-level
application using Rx as a transport mechanism.

Fields

u long epoch - Birth time of the client Rx facility.

u long cid - Connection identifier, as defined by the client. The last RX CIDSHIFT

bits in the cid field identify which of the server-side RX MAXCALLS call channels
is to receive the packet.

u long callNumber - The current call number on the chosen call channel.

u long seq - Sequence number of this packet. Sequence numbers start with 0 for
each new Rx call.

u long serial - This packet’s serial number. A new serial number is stamped on
each packet transmitted (or retransmitted).

u char type - What type of Rx packet this is; see Section 5.2.11 for the list of legal
definitions.

u char flags - Flags describing this packet; see Section 5.2.9 for the list of legal
settings.

u char userStatus - User-defined status information, uninterpreted by the Rx fa-
cility itself. This field may be easily set or retrieved from Rx packets via
calls to the rx GetLocalStatus(), rx SetLocalStatus(), rx GetRemoteStatus(),
and rx SetRemoteStatus() macros.

Programming Interface 85 August 28, 1991 10:38

Rx Specification

u char securityIndex - Index in the associated server-side service class of the
security object used by this call.

u short serviceId - The server-provided service ID to which this packet is directed.

u short spare - This field was originally a true spare, but is now used by the
built-in rxkad security module for packet header checksums. See the de-
scriptions of the related rx IsUsingPktChecksum(), rx GetPacketCksum(), and
rx SetPacketCksum() macros.

5.3.3.2 struct rx packet

This structure is used to describe an Rx packet, and includes the wire version of the packet
contents, where all fields exist in network byte order. It also includes acknowledgement,
length, type, and queueing information.

Fields

struct queue queueItemHeader - Field used for internal queueing.

u char acked - If non-zero, this field indicates that this packet has been tentatively
(soft-) acknowledged. Thus, the packet has been accepted by the rx peer entity
on the other side of the connection, but has not yet necessarily been passed to
the true reader. The sender is not free to throw the packet away, as it might
still get dropped by the peer before it is delivered to its destination process.

short length - Length in bytes of the user data section.

u char packetType - The type of Rx packet described by this record. The set of
legal choices is available in Section 5.2.11.

struct clock retryTime - The time when this packet should be retransmitted
next.

struct clock timeSent - The last time this packet was transmitted.

struct rx header header - A copy of the internal Rx packet header.

wire - The text of the packet as it appears on the wire. This structure has the
following sub-fields:

• u long head[RX HEADER SIZE/sizeof(long)] The wire-level con-
tents of IP, UDP, and Rx headers.

• u long data[RX MAX PACKET DATA SIZE/sizeof(long)] The
wire form of the packet’s “payload”, namely the user data it carries.

Programming Interface 86 August 28, 1991 10:38

Rx Specification

5.3.3.3 struct rx ackPacket

This is the format for the data portion of an Rx acknowledgement packet, used to inform
a peer entity performing packet transmissions that a subset of its packets has been
properly received.

Fields

u short bufferSpace - Number of packet buffers available. Specifically, the num-
ber of packet buffers that the ack packet’s sender is willing to provide for data
on this or subsequent calls. This number does not have to fully accurate; it is
acceptable for the sender to provide an estimate.

u short maxSkew - The maximum difference seen between the serial number of
the packet being acknowledged and highest packet yet received. This is an in-
dication of the degree to which packets are arriving out of order at the receiver.

u long firstPacket - The serial number of the first packet in the list of acknowl-
edged packets, as represented by the acks field below.

u long previousPacket - The previous packet serial number received.

u long serial - The serial number of the packet prompted the acknowledgement.

u char reason - The reason given for the acknowledgement; legal values for this
field are described in Section 5.2.13.

u char nAcks - Number of acknowledgements active in the acks array immediately
following.

u char acks[RX MAXACKS] - Up to RX MAXACKS packet acknowledgements.
The legal values for each slot in the acks array are described in Section 5.2.14.
Basically, these fields indicate either positive or negative acknowledgements.

All packets with serial numbers prior to FirstPacket are implicitly acknowledged by
this packet, indicating that they have been fully processed by the receiver. Thus, the
sender need no longer be concerned about them, and may release all of the resources that
they occupy. Packets with serial numbers firstPacket + nAcks and higher are not ac-
knowledged by this ack packet. Packets with serial numbers in the range [firstPacket,
firstPacket + nAcks) are explicitly acknowledged, yet their sender-side resources must
not yet be released, as there is yet no guarantee that the receiver will not throw them
away before they can be processed there.

There are some details of importance to be noted. For one, receiving a positive acknowl-
egement via the acks array does not imply that the associated packet is immune from
being dropped before it is read and processed by the receiving entity. It does, however,

Programming Interface 87 August 28, 1991 10:38

Rx Specification

imply that the sender should stop retransmitting the packet until further notice. Also,
arrival of an ack packet should prompt the transmitter to immediately retransmit all
packets it holds that have not been explicitly acknowledged and that were last transmit-
ted with a serial number less than the highest serial number acknowledged by the acks
array.

Note: The fields in this structure are always kept in wire format, namely in network
byte order.

5.3.4 Debugging and Statistics

The following structures are defined in support of the debugging and statistics-gathering
interfaces provided by Rx.

5.3.4.1 struct rx stats

This structure maintains Rx statistics, and is gathered by such tools as the rxdebug

program. It must be possible for all of the fields placed in this structure to be successfully
converted from their on-wire network byte orderings to the host-specific ordering.

Fields

int packetRequests - Number of packet allocation requests processed.

int noPackets[RX N PACKET CLASSES] - Number of failed packet requests,
organized per allocation class.

int socketGreedy - Whether the SO GREEDY setting succeeded for the Rx socket.

int bogusPacketOnRead - Number of inappropriately short packets received.

int bogusHost - Contains the host address from the last bogus packet received.

int noPacketOnRead - Number of attempts to read a packet off the wire when
there was actually no packet there.

int noPacketBuffersOnRead - Number of dropped data packets due to lack of
packet buffers.

int selects - Number of selects waiting for a packet arrival or a timeout.

int sendSelects - Number of selects forced when sending packets.

int packetsRead[RX N PACKET TYPES] - Total number of packets read,
classified by type.

Programming Interface 88 August 28, 1991 10:38

Rx Specification

int dataPacketsRead - Number of unique data packets read off the wire.

int ackPacketsRead - Number of ack packets read.

int dupPacketsRead - Number of duplicate data packets read.

int spuriousPacketsRead - Number of inappropriate data packets.

int packetsSent[RX N PACKET TYPES] - Number of packet transmissions,
broken down by packet type.

int ackPacketsSent - Number of ack packets sent.

int pingPacketsSent - Number of ping packets sent.

int abortPacketsSent - Number of abort packets sent.

int busyPacketsSent - Number of busy packets sent.

int dataPacketsSent - Number of unique data packets sent.

int dataPacketsReSent - Number of retransmissions.

int dataPacketsPushed - Number of retransmissions pushed early by a negative
acknowledgement.

int ignoreAckedPacket - Number of packets not retransmitted because they have
already been acked.

int struct clock totalRtt - Total round trip time measured for packets, used to
compute average time figure.

struct clock minRtt - Minimum round trip time measured for packets.

struct clock maxRtt - Maximum round trip time measured for packets.

int nRttSamples - Number of round trip samples.

int nServerConns - Number of server connections.

int nClientConns - Number of client connections.

int nPeerStructs - Number of peer structures.

int nCallStructs - Number of call structures physically allocated (using the inter-
nal storage allocator routine).

int nFreeCallStructs - Number of call structures which were pulled from the free
queue, thus avoiding a call to the internal storage allocator routine.

int spares[10] - Ten integer spare fields, reserved for future use.

5.3.4.2 struct rx debugIn

This structure defines the data format for a packet requesting one of the statistics col-
lections maintained by Rx.

Programming Interface 89 August 28, 1991 10:38

Rx Specification

Fields

long type - The specific data collection that the caller desires. Legal settings for
this field are described in Section 5.2.16.2.

long index - This field is only used when gathering information on Rx connections.
Choose the index of the server-side connection record of which we are inquiring.
This field may be used as an iterator, stepping through all the connection
records, one per debugging request, until they have all been examined.

5.3.4.3 struct rx debugStats

This structure describes the data format for a reply to an RX DEBUGI GETSTATS debugging
request packet. These fields are given values indicating the current state of the Rx facility.

Fields

long nFreePackets - Number of packet buffers currently assigned to the free pool.

long packetReclaims - Currently unused.

long callsExecuted - Number of calls executed since the Rx facility was initialized.

char waitingForPackets - Is Rx currently blocked waiting for a packet buffer to
come free?

char usedFDs - If the Rx facility is executing in the kernel, return the number
of unix file descriptors in use. This number is not directly related to the Rx
package, but rather describes the state of the machine on which Rx is running.

char version - Version number of the debugging package.

char spare1[1] - Byte spare, reserved for future use.

long spare2[10] - Set of 10 longword spares, reserved for future use.

5.3.4.4 struct rx debugConn

This structure defines the data format returned when a caller requests information con-
cerning an Rx connection. Thus, rx debugConn defines the external packaging of interest
to external parties. Most of these fields are set from the rx connection structure, as
defined in Section 5.3.2.2, and others are obtained by indirecting through such objects
as the connection’s peer and call structures.

Programming Interface 90 August 28, 1991 10:38

Rx Specification

Fields

long host - Address of the host identified by the connection’s peer structure.

long cid - The connection ID.

long serial - The serial number of the next outgoing packet associated with this
connection.

long callNumber[RX MAXCALLS] - The current call numbers for the individ-
ual call channels on this connection.

long error - Records the latest error code for calls occurring on this connection.

short port - UDP port associated with the connection’s peer.

char flags - State of the connection; see Section 5.2.4 for individual bit definitions.

char type - Whether the connection is a server-side or client-side one. See Section
5.2.5 for individual bit definitions.

char securityIndex - Index in the associated server-side service class of the secu-
rity object being used by this call.

char sparec[3] - Used to force alignment for later fields.

char callState[RX MAXCALLS] - Current call state on each call channel. The
associated bit definitions appear in Section 5.2.7.

char callMode[RX MAXCALLS] - Current mode of all call channels that are in
RX STATE ACTIVE state. The associated bit definitions appear in Section 5.2.8.

char callFlags[RX MAXCALLS] - Flags pertaining to the state of each of the
connection’s call channels. The associated bit definitions appear in Section
5.2.7.

char callOther[RX MAXCALLS] - Flag field for each call channel, where the
presence of the RX OTHER IN flag indicates that there are packets present on the
given call’s reception queue, and the RX OTHER OUT flag indicates the presence
of packets on the transmission queue.

struct rx securityObjectStats secStats - The contents of the statistics related
to the security object selected by the securityIndex field, if any.

long epoch - The connection’s client-side incarnation time.

long sparel[10] - A set of 10 longword fields, reserved for future use.

Programming Interface 91 August 28, 1991 10:38

Rx Specification

5.3.4.5 struct rx debugConn vL

This structure is identical to rx debugConn defined above, except for the fact that it is
missing the sparec field. This sparec field is used in rx debugConn to fix an alignment
problem that was discovered in version L of the debugging/statistics interface (hence
the trailing “tt vL tag in the structure name). This alignment problem is fixed in
version M, which utilizes and exports the rx debugConn structure exclusively. Information
regarding the range of version-numbering values for the Rx debugging/statistics interface
may be found in Section 5.2.16.1.

5.4 Exported Variables

This section describes the set of variables that the Rx facility exports to its applications.
Some of these variables have macros defined for the sole purpose of providing the caller
with a convenient way to manipulate them. Note that some of these exported variables
are never meant to be altered by application code (e.g., rx nPackets).

5.4.1 rx connDeadTime

This integer-valued variable determines the maximum number of seconds that a connec-
tion may remain completely inactive, without receiving packets of any kind, before it is
eligible for garbage collection. Its initial value is 12 seconds. The rx SetRxDeadTime
macro sets the value of this variable.

5.4.2 rx idleConnectionTime

This integer-valued variable determines the maximum number of seconds that a server
connection may “idle” (i.e., not have any active calls and otherwise not have sent a
packet) before becoming eligible for garbage collection. Its initial value is 60 seconds.

5.4.3 rx idlePeerTime

This integer-valued variable determines the maximum number of seconds that an Rx
peer structure is allowed to exist without any connection structures referencing it before
becoming eligible for garbage collection. Its initial value is 60 seconds.

Programming Interface 92 August 28, 1991 10:38

Rx Specification

5.4.4 rx extraQuota

This integer-valued variable is part of the Rx packet quota system (see Section 1.2.6),
which is used to avoid system deadlock. This ensures that each server-side thread has
a minimum number of packets at its disposal, allowing it to continue making progress
on active calls. This particular variable records how many extra data packets a user has
requested be allocated. Its initial value is 0.

5.4.5 rx extraPackets

This integer-valued variable records how many additional packet buffers are to be cre-
ated for each Rx server thread. The caller, upon setting this variable, is applying
some application-specific knowledge of the level of network activity expected. The
rx extraPackets variable is used to compute the overall number of packet buffers to
reserve per server thread, namely rx nPackets, described below. The initial value is 32
packets.

5.4.6 rx nPackets

This integer-valued variable records the total number of packet buffers to be allocated
per Rx server thread. It takes into account the quota packet buffers and the extra buffers
requested by the caller, if any.

Note: This variable should never be set directly; the Rx facility itself computes its value.
Setting it incorrectly may result in the service becoming deadlocked due to insufficient
resources. Callers wishing to allocate more packet buffers to their server threads should
indicate that desire by setting the rx extraPackets variable described above.

5.4.7 rx nFreePackets

This integer-valued variable records the number of Rx packet buffers not currently used
by any call. These unused buffers are collected into a free pool.

Programming Interface 93 August 28, 1991 10:38

Rx Specification

5.4.8 rx stackSize

This integer-valued variable records the size in bytes for the lightweight process stack.
The variable is initially set to RX DEFAULT STACK SIZE, and is typically manipulated via
the rx SetStackSize() macro.

5.4.9 rx packetTypes

This variable holds an array of string names used to describe the different roles for Rx
packets. Its value is derived from the RX PACKET TYPES definition found in Section 5.2.11.

5.4.10 rx stats

This variable contains the statistics structure that keeps track of Rx statistics. The
struct rx stats structure it provides is defined in Section 5.3.4.1.

5.5 Macros

Rx uses many macro definitions in preference to calling C functions directly. There are
two main reasons for doing this:

• Field selection: Many Rx operations are easily realized by returning the value of
a particular structure’s field. It is wasteful to invoke a C routine to simply fetch a
structure’s field, incurring unnecessary function call overhead. Yet, a convenient,
procedure-oriented operation is still provided to Rx clients for such operations by
the use of macros. For example, the rx ConnectionOf() macro, described in Section
5.5.1.1, simply indirects through the Rx call structure pointer parameter to deliver
the conn field.

• Performance optimization: In some cases, a simple test or operation can be
performed to accomplish a particular task. When this simple, straightforward
operation fails, then a true C routine may be called to handle to more complex
(and rarer) situation. The Rx macro rx Write(), described in Section 5.5.6.2, is a
perfect example of this type of optimization. Invoking rx Write() first checks to
determine whether or not the outgoing call’s internal buffer has enough room to
accept the specified data bytes. If so, it copies them into the call’s buffer, updating

Programming Interface 94 August 28, 1991 10:38

Rx Specification

counts and pointers as appropriate. Otherwise, rx Write() calls the rx WriteProc()
to do the work, which in this more complicated case involves packet manipulations,
dispatches, and allocations. The result is that the common, simple cases are often
handled in-line, with more complex (and rarer) cases handled through true function
invocations.

The set of Rx macros is described according to the following categories.

• Field selections/assignments

• Boolean operations

• Service attributes

• Security-related operations

• Sizing operations

• Complex operation

• Security operation invocations

5.5.1 Field Selections/Assignments

These macros facilitate the fetching and setting of fields from the structures described
Chapter 5.3.

5.5.1.1 rx ConnectionOf()

#define rx_ConnectionOf(call) ((call)->conn)

Generate a reference to the connection field within the given Rx call structure. The value
supplied as the call argument must resolve into an object of type (struct rx call *).
An application of the rx ConnectionOf() macro itself yields an object of type rx peer.

Programming Interface 95 August 28, 1991 10:38

Rx Specification

5.5.1.2 rx PeerOf()

#define rx_PeerOf(conn) ((conn)->peer)

Generate a reference to the peer field within the given Rx call structure. The value sup-
plied as the conn argument must resolve into an object of type (struct rx connection

*). An instance of the rx PeerOf() macro itself resolves into an object of type rx peer.

5.5.1.3 rx HostOf()

#define rx_HostOf(peer) ((peer)->host)

Generate a reference to the host field within the given Rx peer structure. The value
supplied as the peer argument must resolve into an object of type (struct rx peer

*). An instance of the rx HostOf() macro itself resolves into an object of type u long.

5.5.1.4 rx PortOf()

#define rx_PortOf(peer) ((peer)->port)

Generate a reference to the port field within the given Rx peer structure. The value
supplied as the peer argument must resolve into an object of type (struct rx peer

*). An instance of the rx PortOf() macro itself resolves into an object of type u short.

5.5.1.5 rx GetLocalStatus()

#define rx_GetLocalStatus(call, status) ((call)->localStatus)

Generate a reference to the localStatus field, which specifies the local user status sent
out of band, within the given Rx call structure. The value supplied as the call argument
must resolve into an object of type (struct rx call *). The second argument, status,
is not used. An instance of the rx GetLocalStatus() macro itself resolves into an object
of type u char.

Programming Interface 96 August 28, 1991 10:38

Rx Specification

5.5.1.6 rx SetLocalStatus()

#define rx_SetLocalStatus(call, status)
((call)->localStatus = (status))

Assign the contents of the localStatus field, which specifies the local user status sent
out of band, within the given Rx call structure. The value supplied as the call argument
must resolve into an object of type (struct rx call *). The second argument, status,
provides the new value of the localStatus field, and must resolve into an object of type
u char. An instance of the rx GetLocalStatus() macro itself resolves into an object
resulting from the assignment, namely the u char status parameter.

5.5.1.7 rx GetRemoteStatus()

#define rx_GetRemoteStatus(call) ((call)->remoteStatus)

Generate a reference to the remoteStatus field, which specifies the remote user status
received out of band, within the given Rx call structure. The value supplied as the call
argument must resolve into an object of type (struct rx call *). An instance of the
rx GetRemoteStatus() macro itself resolves into an object of type u char.

5.5.1.8 rx Error()

#define rx_Error(call) ((call)->error)

Generate a reference to the error field, which specifies the current error condition, within
the given Rx call structure. The value supplied as the call argument must resolve into an
object of type (struct rx call *). An instance of the rx Error() macro itself resolves
into an object of type long.

5.5.1.9 rx DataOf()

#define rx_DataOf(packet) ((char *) (packet)->wire.data)

Generate a reference to the beginning of the data portion within the given Rx packet as
it appears on the wire. Any encryption headers will be resident at this address. For Rx

Programming Interface 97 August 28, 1991 10:38

Rx Specification

packets of type RX PACKET TYPE DATA, the actual user data will appear at the address
returned by the rx DataOf macro plus the connection’s security header size. The value
supplied as the packet argument must resolve into an object of type (struct rx packet

*). An instance of the rx DataOf() macro itself resolves into an object of type (u long

*).

5.5.1.10 rx GetDataSize()

#define rx_GetDataSize(packet) ((packet)->length)

Generate a reference to the length field, which specifies the number of bytes of user data
contained within the wire form of the packet, within the given Rx packet description
structure. The value supplied as the packet argument must resolve into an object of
type (struct rx packet *). An instance of the rx GetDataSize() macro itself resolves
into an object of type short.

5.5.1.11 rx SetDataSize()

#define rx_SetDataSize(packet, size) ((packet)->length = (size))

Assign the contents of the length field, which specifies the number of bytes of user data
contained within the wire form of the packet, within the given Rx packet description
structure. The value supplied as the packet argument must resolve into an object
of type (struct rx packet *). The second argument, size, provides the new value
of the length field, and must resolve into an object of type short. An instance of
the rx SetDataSize() macro itself resolves into an object resulting from the assignment,
namely the short length parameter.

5.5.1.12 rx GetPacketCksum()

#define rx_GetPacketCksum(packet) ((packet)->header.spare)

Generate a reference to the header checksum field, as used by the built-in rxkad security
module (See Chapter 3), within the given Rx packet description structure. The value
supplied as the packet argument must resolve into an object of type (struct rx packet

*). An instance of the rx GetPacketCksum() macro itself resolves into an object of type
u short.

Programming Interface 98 August 28, 1991 10:38

Rx Specification

5.5.1.13 rx SetPacketCksum()

#define rx_SetPacketCksum(packet, cksum)
((packet)->header.spare = (cksum))

Assign the contents of the header checksum field, as used by the built-in rxkad security
module (See Chapter 3), within the given Rx packet description structure. The value
supplied as the packet argument must resolve into an object of type (struct rx packet

*). The second argument, cksum, provides the new value of the checksum, and must
resolve into an object of type u short. An instance of the rx SetPacketCksum() macro
itself resolves into an object resulting from the assignment, namely the u short checksum
parameter.

5.5.1.14 rx GetRock()

#define rx_GetRock(obj, type) ((type)(obj)->rock)

Generate a reference to the field named rock within the object identified by the obj

pointer. One common Rx structure to which this macro may be applied is struct

rx connection. The specified rock field is casted to the value of the type parameter,
which is the overall value of the rx GetRock() macro.

5.5.1.15 rx SetRock()

#define rx_SetRock(obj, newrock) ((obj)->rock = (VOID *)(newrock))

Assign the contents of the newrock parameter into the rock field of the object pointed
to by obj. The given object’s rock field must be of type (VOID *). An instance of the
rx SetRock() macro itself resolves into an object resulting from the assignment and is of
type (VOID *).

5.5.1.16 rx SecurityClassOf()

#define rx_SecurityClassOf(conn) ((conn)->securityIndex)

Generate a reference to the security index field of the given Rx connection description
structure. This identifies the security class used by the connection. The value supplied as

Programming Interface 99 August 28, 1991 10:38

Rx Specification

the conn argument must resolve into an object of type (struct rx connection *). An
instance of the rx SecurityClassOf() macro itself resolves into an object of type u char.

5.5.1.17 rx SecurityObjectOf()

#define rx_SecurityObjectOf(conn) ((conn)->securityObject)

Generate a reference to the security object in use by the given Rx connection description
structure. The choice of security object determines the authentication protocol enforced
by the connection. The value supplied as the conn argument must resolve into an object
of type (struct rx connection *). An instance of the rx SecurityObjectOf() macro
itself resolves into an object of type (struct rx securityClass *).

5.5.2 Boolean Operations

The macros described in this section all return Boolean values. They are used to query
such things as the whether a connection is a server-side or client-side one and if extra
levels of checksumming are being used in Rx packet headers.

5.5.2.1 rx IsServerConn()

#define rx_IsServerConn(conn) ((conn)->type == RX_SERVER_CONNECTION)

Determine whether or not the Rx connection specified by the conn argument is a server-
side connection. The value supplied for conn must resolve to an object of type struct
rx connection. The result is determined by testing whether or not the connection’s
type field is set to RX SERVER CONNECTION.

Note: Another macro, rx ServerConn(), performs the identical operation.

5.5.2.2 rx IsClientConn()

#define rx_IsClientConn(conn) ((conn)->type == RX_CLIENT_CONNECTION)

Determine whether or not the Rx connection specified by the conn argument is a client-
side connection. The value supplied for conn must resolve to an object of type struct

Programming Interface 100 August 28, 1991 10:38

Rx Specification

rx connection. The result is determined by testing whether or not the connection’s
type field is set to RX CLIENT CONNECTION.

Note: Another macro, rx ClientConn(), performs the identical operation.

5.5.2.3 rx IsUsingPktCksum()

#define rx_IsUsingPktCksum(conn)
((conn)->flags & RX_CONN_USING_PACKET_CKSUM)

Determine whether or not the Rx connection specified by the conn argument is checksum-
ming the headers of all packets on its calls. The value supplied for conn must resolve to
an object of type struct rx connection. The result is determined by testing whether
or not the connection’s flags field has the RX CONN USING PACKET CKSUM bit enabled.

5.5.3 Service Attributes

This section describes user-callable macros that manipulate the attributes of an Rx ser-
vice. Note that these macros must be called (and hence their operations performed)
before the given service is installed via the appropriate invocation of the associated
rx StartServer() function.

5.5.3.1 rx SetStackSize()

#define rx_SetStackSize(service, stackSize)
rx_stackSize = (((stackSize) > rx_stackSize) ?

stackSize : rx_stackSize)

Inform the Rx facility of the stack size in bytes for a class of threads to be created in sup-
port of Rx services. The exported rx stackSize variable tracks the high-water mark for
all stack size requests before the call to rx StartServer(). If no calls to rx SetStackSize()
are made, then rx stackSize will retain its default setting of RX DEFAULT STACK SIZE.

In this macro, the first argument is not used. It was originally intended that thread stack
sizes would be settable on a per-service basis. However, calls to rx SetStackSize() will
ignore the service parameter and set the high-water mark for all Rx threads created after
the use of rx SetStackSize(). The second argument, stackSize, specifies determines the
new stack size, and should resolve to an object of type int. The value placed in the

Programming Interface 101 August 28, 1991 10:38

Rx Specification

stackSize parameter will not be recorded in the global rx stackSize variable unless it
is greater than the variable’s current setting.

An instance of the rx SetStackSize() macro itself resolves into the result of the assign-
ment, which is an object of type int.

5.5.3.2 rx SetMinProcs()

#define rx_SetMinProcs(service, min) ((service)->minProcs = (min))

Choose min as the minimum number of threads guaranteed to be available for parallel
execution of the given Rx service. The service parameter should resolve to an object
of type struct rx service. The min parameter should resolve to an object of type
short. An instance of the rx SetMinProcs() macro itself resolves into the result of the
assignment, which is an object of type short.

5.5.3.3 rx SetMaxProcs()

#define rx_SetMaxProcs(service, max) ((service)->maxProcs = (max))

Limit the maximum number of threads that may be made available to the given Rx
service for parallel execution to be max. The service parameter should resolve to an
object of type struct rx service. The max parameter should resolve to an object of
type short. An instance of the rx SetMaxProcs() macro itself resolves into the result of
the assignment, which is an object of type short.

5.5.3.4 rx SetIdleDeadTime()

#define rx_SetIdleDeadTime(service, time)
((service)->idleDeadTime = (time))

Every Rx service has a maximum amount of time it is willing to have its active calls
sit idle (i.e., no new data is read or written for a call marked as RX STATE ACTIVE)
before unilaterally shutting down the call. The expired call will have its error field set to
RX CALL TIMEOUT. The operative assumption in this situation is that the client code is
exhibiting a protocol error that prevents progress from being made on this call, and thus
the call’s resources on the server side should be freed. The default value, as recorded in

Programming Interface 102 August 28, 1991 10:38

Rx Specification

the service’s idleDeadTime field, is set at service creation time to be 60 seconds. The
rx SetIdleTime() macro allows a caller to dynamically set this idle call timeout value.

The service parameter should resolve to an object of type struct rx service. Also,
the time parameter should resolve to an object of type short. Finally, an instance of
the rx SetIdleDeadTime() macro itself resolves into the result of the assignment, which
is an object of type short.

5.5.3.5 rx SetServiceDeadTime()

#define rx_SetServiceDeadTime(service, seconds)
((service)->secondsUntilDead = (seconds))

Note: This macro definition is obsolete and should NOT be used. Including
it in application code will generate a compile-time error, since the service
structure no longer has such a field defined.

See the description of the rx SetConnDeadTime() macro below to see how hard timeouts
may be set for situations of complete call inactivity.

5.5.3.6 rx SetRxDeadTime()

#define rx_SetRxDeadTime(seconds) (rx_connDeadTime = (seconds))

Inform the Rx facility of the maximum number of seconds of complete inactivity that
will be tolerated on an active call. The exported rx connDeadTime variable tracks this
value, and is initialized to a value of 12 seconds. The current value of rx connDeadTime
will be copied into new Rx service and connection records upon their creation.

The seconds argument determines the value of rx connDeadTime, and should resolve to
an object of type int. An instance of the rx SetRxDeadTime() macro itself resolves into
the result of the assignment, which is an object of type int.

5.5.3.7 rx SetConnDeadTime()

#define rx_SetConnDeadTime(conn, seconds)
(rxi_SetConnDeadTime(conn, seconds))

Programming Interface 103 August 28, 1991 10:38

Rx Specification

Every Rx connection has a maximum amount of time it is willing to have its active
calls on a server connection sit without receiving packets of any kind from its peer.
After such a quiescent time, during which neither data packets (regardless of whether
they are properly sequenced or duplicates) nor keep-alive packets are received, the call’s
error field is set to RX CALL DEAD and the call is terminated. The operative assumption
in this situation is that the client making the call has perished, and thus the call’s
resources on the server side should be freed. The default value, as recorded in the
connection’s secondsUntilDead field, is set at connection creation time to be the same
as its parent service. The rx SetConnDeadTime() macro allows a caller to dynamically
set this timeout value.

The conn parameter should resolve to an object of type struct rx connection. Also,
the seconds parameter should resolve to an object of type int. Finally, an instance of the
rx SetConnDeadTime() macro itself resolves into the a call to rxi SetConnDeadTime(),
whose return value is void.

5.5.3.8 rx SetConnHardDeadTime()

#define rx_SetConnHardDeadTime(conn, seconds)
((conn)->hardDeadTime = (seconds))

It is convenient to be able to specify that calls on certain Rx connections have a hard
absolute timeout. This guards against protocol errors not caught by other checks in which
one or both of the client and server are looping. The rx SetConnHardDeadTime() macro
is available for this purpose. It will limit calls on the connection identified by the conn
parameter to execution times of no more than the given number of seconds. By default,
active calls on an Rx connection may proceed for an unbounded time, as long as they are
not totally quiescent (see Section 5.5.3.7 for a description of the rx SetConnDeadTime())
or idle (see Section 5.5.3.4 for a description of the rx SetIdleDeadTime()).

The conn parameter should resolve to an object of type (struct rx connection *).
The seconds parameter should resolve to an object of type u short. An instance of
the rx SetConnHardDeadTime() macro itself resolves into the result of the assignment,
which is an object of type u short.

5.5.3.9 rx GetBeforeProc()

#define rx_GetBeforeProc(service) ((service)->beforeProc)

Programming Interface 104 August 28, 1991 10:38

Rx Specification

Return a pointer of type (VOID *)() to the procedure associated with the given Rx
service that will be called immediately upon activation of a server thread to handle
an incoming call. The service parameter should resolve to an object of type struct
rx service.

When an Rx service is first created (via a call to the rx NewService() function), its
beforeProc field is set to a null pointer. See the description of the rx SetBeforeProc()
below.

5.5.3.10 rx SetBeforeProc()

#define rx_SetBeforeProc(service, proc)
((service)->beforeProc = (proc))

Instruct the Rx facility to call the procedure identified by the proc parameter imme-
diately upon activation of a server thread to handle an incoming call. The specified
procedure will be called with a single parameter, a pointer of type struct rx call,
identifying the call this thread will now be responsible for handling. The value returned
by the procedure, if any, is discarded.

The service parameter should resolve to an object of type struct rx service. The
proc parameter should resolve to an object of type (VOID *)(). An instance of the
rx SetBeforeProc() macro itself resolves into the result of the assignment, which is an
object of type (VOID *)().

5.5.3.11 rx GetAfterProc()

#define rx_GetAfterProc(service) ((service)->afterProc)

Return a pointer of type (VOID *)() to the procedure associated with the given Rx
service that will be called immediately upon completion of the particular Rx call for
which a server thread was activated. The service parameter should resolve to an object
of type struct rx service.

When an Rx service is first created (via a call to the rx NewService() function), its
afterProc field is set to a null pointer. See the description of the rx SetAfterProc()
below.

Programming Interface 105 August 28, 1991 10:38

Rx Specification

5.5.3.12 rx SetAfterProc()

#define rx_SetAfterProc(service, proc)
((service)->afterProc = (proc))

Instruct the Rx facility to call the procedure identified by the proc parameter immedi-
ately upon completion of the particular Rx call for which a server thread was activated.
The specified procedure will be called with a single parameter, a pointer of type struct
rx call, identifying the call this thread just handled. The value returned by the proce-
dure, if any, is discarded.

The service parameter should resolve to an object of type struct rx service. The
proc parameter should resolve to an object of type (VOID *)(). An instance of the
rx SetAfterProc() macro itself resolves into the result of the assignment, which is an
object of type (VOID *)().

5.5.3.13 rx SetNewConnProc()

#define rx_SetNewConnProc(service, proc)
((service)->newConnProc = (proc))

Instruct the Rx facility to call the procedure identified by the proc parameter as the
last step in the creation of a new Rx server-side connection for the given service. The
specified procedure will be called with a single parameter, a pointer of type (struct

rx connection *), identifying the connection structure that was just built. The value
returned by the procedure, if any, is discarded.

The service parameter should resolve to an object of type struct rx service. The
proc parameter should resolve to an object of type (VOID *)(). An instance of the
rx SetNewConnProc() macro itself resolves into the result of the assignment, which is an
object of type (VOID *)().

Note: There is no access counterpart defined for this macro, namely one that returns
the current setting of a service’s newConnProc.

5.5.3.14 rx SetDestroyConnProc()

#define rx_SetDestroyConnProc(service, proc)
((service)->destroyConnProc = (proc))

Programming Interface 106 August 28, 1991 10:38

Rx Specification

Instruct the Rx facility to call the procedure identified by the proc parameter just before
a server connection associated with the given Rx service is destroyed. The specified pro-
cedure will be called with a single parameter, a pointer of type (struct rx connection

*), identifying the connection about to be destroyed. The value returned by the proce-
dure, if any, is discarded.

The service parameter should resolve to an object of type struct rx service. The
proc parameter should resolve to an object of type (VOID *)(). An instance of the
rx SetDestroyConnProc() macro itself resolves into the result of the assignment, which
is an object of type (VOID *)().

Note: There is no access counterpart defined for this macro, namely one that returns
the current setting of a service’s destroyConnProc.

5.5.4 Security-Related Operations

The following macros are callable by Rx security modules, and assist in getting and
setting header and trailer lengths, setting actual packet size, and finding the beginning
of the security header (or data).

5.5.4.1 rx GetSecurityHeaderSize()

#define rx_GetSecurityHeaderSize(conn) ((conn)->securityHeaderSize)

Generate a reference to the field in an Rx connection structure that records the length
in bytes of the associated security module’s packet header data.

The conn parameter should resolve to an object of type struct rx connection. An
instance of the rx GetSecurityHeaderSize() macro itself resolves into an object of type
u short.

5.5.4.2 rx SetSecurityHeaderSize()

#define rx_SetSecurityHeaderSize(conn, length)
((conn)->securityHeaderSize = (length))

Set the field in a connection structure that records the length in bytes of the associated
security module’s packet header data.

Programming Interface 107 August 28, 1991 10:38

Rx Specification

The conn parameter should resolve to an object of type struct rx connection. The
length parameter should resolve to an object of type u short. An instance of the
rx SetSecurityHeaderSize() macro itself resolves into the result of the assignment, which
is an object of type u short.

5.5.4.3 rx GetSecurityMaxTrailerSize()

#define rx_GetSecurityMaxTrailerSize(conn)
((conn)->securityMaxTrailerSize)

Generate a reference to the field in an Rx connection structure that records the maximum
length in bytes of the associated security module’s packet trailer data.

The conn parameter should resolve to an object of type struct rx connection. An
instance of the rx GetSecurityMaxTrailerSize() macro itself resolves into an object of
type u short.

5.5.4.4 rx SetSecurityMaxTrailerSize()

#define rx_SetSecurityMaxTrailerSize(conn, length)
((conn)->securityMaxTrailerSize = (length))

Set the field in a connection structure that records the maximum length in bytes of the
associated security module’s packet trailer data.

The conn parameter should resolve to an object of type struct rx connection. The
length parameter should resolve to an object of type u short. An instance of the
rx SetSecurityHeaderSize() macro itself resolves into the result of the assignment, which
is an object of type u short.

5.5.5 Sizing Operations

The macros described in this section assist the application programmer in determining
the sizes of the various Rx packet regions, as well as their placement within a packet
buffer.

Programming Interface 108 August 28, 1991 10:38

Rx Specification

5.5.5.1 rx UserDataOf()

#define rx_UserDataOf(conn, packet)
(((char *) (packet)->wire.data) +

(conn)->securityHeaderSize)

Generate a pointer to the beginning of the actual user data in the given Rx packet,
that is associated with the connection described by the conn pointer. User data appears
immediately after the packet’s security header region, whose length is determined by the
security module used by the connection. The conn parameter should resolve to an object
of type struct rx connection. The packet parameter should resolve to an object of
type struct rx packet. An instance of the rx UserDataOf() macro itself resolves into
an object of type (char *).

5.5.5.2 rx MaxUserDataSize()

#define rx_MaxUserDataSize(conn)
((conn)->peer->packetSize
- RX_HEADER_SIZE
- (conn)->securityHeaderSize
- (conn)->securityMaxTrailerSize)

Return the maximum number of user data bytes that may be carried by a packet on
the Rx connection described by the conn pointer. The overall packet size is reduced by
the IP, UDP, and Rx headers, as well as the header and trailer areas required by the
connection’s security module.

The conn parameter should resolve to an object of type struct rx connection. An
instance of the rx MaxUserDataSize() macro itself resolves into the an object of type
(u short).

5.5.6 Complex Operations

Two Rx macros are designed to handle potentially complex operations, namely reading
data from an active incoming call and writing data to an active outgoing call. Each
call structure has an internal buffer that is used to collect and cache data traveling
through the call. This buffer is used in conjunction with reading or writing to the actual
Rx packets traveling on the wire in support of the call. The rx Read() and rx Write()
macros allow their caller to simply manipulate the internal data buffer associated with

Programming Interface 109 August 28, 1991 10:38

Rx Specification

the Rx call structures whenever possible, thus avoiding the overhead associated with a
function call. When buffers are either filled or drained (depending on the direction of
the data flow), these macros will then call functions to handle the more complex cases
of generating or receiving packets in support of the operation.

5.5.6.1 rx Read()

#define rx_Read(call, buf, nbytes)
((call)->nLeft > (nbytes) ?

bcopy((call)->bufPtr, (buf), (nbytes)),
(call)->nLeft -= (nbytes), (call)->bufPtr += (nbytes), (nbytes)
: rx_ReadProc((call), (buf), (nbytes)))

Read nbytes of data from the given Rx call into the buffer to which buf points. If the
call’s internal buffer has at least nbytes bytes already filled, then this is done in-line with
a copy and some pointer and counter updates within the call structure. If the call’s
internal buffer doesn’t have enough data to satisfy the request, then the rx ReadProc()
function will handle this more complex situation.

In either case, the rx Read() macro returns the number of bytes actually read from the
call, resolving to an object of type int. If rx Read() returns fewer than nbytes bytes,
the call status should be checked via the rx Error() macro.

5.5.6.2 rx Write()

#define rx_Write(call, buf, nbytes)
((call)->nFree > (nbytes) ?

bcopy((buf), (call)->bufPtr, (nbytes)),
(call)->nFree -= (nbytes),
(call)->bufPtr += (nbytes), (nbytes)
: rx_WriteProc((call), (buf), (nbytes)))

Write nbytes of data from the buffer pointed to by buf into the given Rx call. If
the call’s internal buffer has at least nbytes bytes free, then this is done in-line with
a copy and some pointer and counter updates within the call structure. If the call’s
internal buffer doesn’t have room, then the rx WriteProc() function will handle this more
complex situation.

In either case, the rx Write() macro returns the number of bytes actually written to the
call, resolving to an object of type int. If zero is returned, the call status should be
checked via the rx Error() macro.

Programming Interface 110 August 28, 1991 10:38

Rx Specification

5.5.7 Security Operation Invocations

Every Rx security module is required to implement an identically-named set of opera-
tions, through which the security mechanism it defines is invoked. This characteristic
interface is reminiscent of the vnode interface defined and popularized for file systems by
Sun Microsystems [4]. The structure defining this function array is described in Section
5.3.1.1.

These security operations are part of the struct rx securityClass, which keeps not
only the ops array itself but also any private data they require and a reference count.
Every Rx service contains an array of these security class objects, specifying the range
of security mechanisms it is capable of enforcing. Every Rx connection within a service
is associated with exactly one of that service’s security objects, and every call issued on
the connection will execute the given security protocol.

The macros described below facilitate the execution of the security module interface func-
tions. They are covered in the same order they appear in the struct rx securityOps

declaration.

5.5.7.1 RXS OP()

#if defined(__STDC__) && !defined(__HIGHC__)
#define RXS_OP(obj, op, args)

((obj->ops->op_ ## op) ? (*(obj)->ops->op_ ## op)args : 0)
#else

#define RXS_OP(obj, op, args)
((obj->ops->op_/**/op) ? (*(obj)->ops->op_/**/op)args : 0)

#endif

The RXS OP macro represents the workhorse macro in this group, used by all the others.
It takes three arguments, the first of which is a pointer to the security object to be refer-
enced. This obj parameter must resolve to an object of type (struct rx securityOps

*). The second parameter identifies the specific op to be performed on this security
object. The actual text of this op argument is used to name the desired opcode function.
The third and final argument, args, specifies the text of the argument list to be fed
to the chosen security function. Note that this argument must contain the bracketing
parentheses for the function call’s arguments. In fact, note that each of the security
function access macros defined below provides the enclosing parentheses to this third
RXS OP() macro.

Programming Interface 111 August 28, 1991 10:38

Rx Specification

5.5.7.2 RXS Close()

#define RXS_Close(obj) RXS_OP(obj, Close, (obj))

This macro causes the execution of the interface routine occupying the op Close() slot in
the Rx security object identified by the obj pointer. This interface function is invoked by
Rx immediately before a security object is discarded. Among the responsibilities of such
a function might be decrementing the object’s refCount field, and thus perhaps freeing
up any space contained within the security object’s private storage region, referenced by
the object’s privateData field.

The obj parameter must resolve into an object of type (struct rx securityOps *).
In generating a call to the security object’s op Close() routine, the obj pointer is used as
its single parameter. An invocation of the RXS Close() macro results in a return value
identical to that of the op Close() routine, namely a value of type int.

5.5.7.3 RXS NewConnection()

#define RXS_NewConnection(obj, conn)
RXS_OP(obj, NewConnection, (obj, conn))

This macro causes the execution of the interface routine in the op NewConnection() slot
in the Rx security object identified by the obj pointer. This interface function is invoked
by Rx immediately after a connection using the given security object is created. Among
the responsibilities of such a function might be incrementing the object’s refCount field,
and setting any per-connection information based on the associated security object’s
private storage region, as referenced by the object’s privateData field.

The obj parameter must resolve into an object of type (struct rx securityOps *).
The conn argument contains a pointer to the newly-created connection structure, and
must resolve into an object of type (struct rx connection *).

In generating a call to the routine located at the security object’s op NewConnection()
slot, the obj and conn pointers are used as its two parameters. An invocation of
the RXS NewConnection() macro results in a return value identical to that of the
op NewConnection() routine, namely a value of type int.

5.5.7.4 RXS PreparePacket()

#define RXS_PreparePacket(obj, call, packet)

Programming Interface 112 August 28, 1991 10:38

Rx Specification

RXS_OP(obj, PreparePacket, (obj, call, packet))

This macro causes the execution of the interface routine in the op PreparePacket() slot
in the Rx security object identified by the obj pointer. This interface function is invoked
by Rx each time it prepares an outward-bound packet. Among the responsibilities of
such a function might be computing information to put into the packet’s security header
and/or trailer.

The obj parameter must resolve into an object of type (struct rx securityOps *).
The call argument contains a pointer to the Rx call to which the given packet belongs,
and must resolve to an object of type (struct rx call *). The final argument, packet,
contains a pointer to the packet itself. It should resolve to an object of type (struct
rx packet *).

In generating a call to the routine located at the security object’s op PreparePacket()
slot, the obj, call, and packet pointers are used as its three parameters. An invocation
of the RXS PreparePacket() macro results in a return value identical to that of the
op PreparePacket() routine, namely a value of type int.

5.5.7.5 RXS SendPacket()

#define RXS_SendPacket(obj, call, packet)
RXS_OP(obj, SendPacket, (obj, call, packet))

This macro causes the execution of the interface routine occupying the op SendPacket()
slot in the Rx security object identified by the obj pointer. This interface function
is invoked by Rx each time it physically transmits an outward-bound packet. Among
the responsibilities of such a function might be recomputing information in the packet’s
security header and/or trailer.

The obj parameter must resolve into an object of type (struct rx securityOps *).
The call argument contains a pointer to the Rx call to which the given packet belongs,
and must resolve to an object of type (struct rx call *). The final argument, packet,
contains a pointer to the packet itself. It should resolve to an object of type (struct
rx packet *).

In generating a call to the routine located at the security object’s op SendPacket()
slot, the obj, call, and packet pointers are used as its three parameters. An invo-
cation of the RXS SendPacket() macro results in a return value identical to that of the
op SendPacket() routine, namely a value of type int.

Programming Interface 113 August 28, 1991 10:38

Rx Specification

5.5.7.6 RXS CheckAuthentication()

#define RXS_CheckAuthentication(obj, conn)
RXS_OP(obj, CheckAuthentication, (obj, conn))

This macro causes the execution of the interface routine in the op CheckAuthentication()
slot in the Rx security object identified by the obj pointer. This interface function
is invoked by Rx each time it needs to check whether the given connection is one on
which authenticated calls are being performed. Specifically, a value of 0 is returned if
authenticated calls are not being executed on this connection, and a value of 1 is returned
if they are.

The obj parameter must resolve into an object of type (struct rx securityOps *).
The conn argument contains a pointer to the Rx connection checked as to whether
authentication is being performed, and must resolve to an object of type (struct

rx connection *).

In generating a call to the routine in the security object’s op CheckAuthentication()
slot, the obj and conn pointers are used as its two parameters. An invocation of
the RXS CheckAuthentication() macro results in a return value identical to that of the
op CheckAuthentication() routine, namely a value of type int.

5.5.7.7 RXS CreateChallenge()

#define RXS_CreateChallenge(obj, conn)
RXS_OP(obj, CreateChallenge, (obj, conn))

This macro causes the execution of the interface routine in the op CreateChallenge()
slot in the Rx security object identified by the obj pointer. This interface function is
invoked by Rx each time a challenge event is constructed for a given connection. Among
the responsibilities of such a function might be marking the connection as temporarily
unauthenticated until the given challenge is successfully met.

The obj parameter must resolve into an object of type (struct rx securityOps *).
The conn argument contains a pointer to the Rx connection for which the authenti-
cation challenge is being constructed, and must resolve to an object of type (struct

rx connection *).

In generating a call to the routine located at the security object’s op CreateChallenge()
slot, the obj and conn pointers are used as its two parameters. An invocation of
the RXS CreateChallenge() macro results in a return value identical to that of the
op CreateChallenge() routine, namely a value of type int.

Programming Interface 114 August 28, 1991 10:38

Rx Specification

5.5.7.8 RXS GetChallenge()

#define RXS_GetChallenge(obj, conn, packet)
RXS_OP(obj, GetChallenge, (obj, conn, packet))

This macro causes the execution of the interface routine occupying the op GetChallenge()
slot in the Rx security object identified by the obj pointer. This interface function is
invoked by Rx each time a challenge packet is constructed for a given connection. Among
the responsibilities of such a function might be constructing the appropriate challenge
structures in the area of packet dedicated to security matters.

The obj parameter must resolve into an object of type (struct rx securityOps *).
The conn argument contains a pointer to the Rx connection to which the given challenge
packet belongs, and must resolve to an object of type (struct rx connection *). The
final argument, packet, contains a pointer to the challenge packet itself. It should resolve
to an object of type (struct rx packet *).

In generating a call to the routine located at the security object’s op GetChallenge()
slot, the obj, conn, and packet pointers are used as its three parameters. An invoca-
tion of the RXS GetChallenge() macro results in a return value identical to that of the
op GetChallenge() routine, namely a value of type int.

5.5.7.9 RXS GetResponse()

#define RXS_GetResponse(obj, conn, packet)
RXS_OP(obj, GetResponse, (obj, conn, packet))

This macro causes the execution of the interface routine occupying the op GetResponse()
slot in the Rx security object identified by the obj pointer. This interface function is
invoked by Rx on the server side each time a response to a challenge packet must be
received.

The obj parameter must resolve into an object of type (struct rx securityOps *).
The conn argument contains a pointer to the Rx client connection that must respond to
the authentication challenge, and must resolve to a (struct rx connection *) object.
The final argument, packet, contains a pointer to the packet to be built in response to
the challenge. It should resolve to an object of type (struct rx packet *).

In generating a call to the routine located at the security object’s op GetResponse()
slot, the obj, conn, and packet pointers are used as its three parameters. An invoca-
tion of the RXS GetResponse() macro results in a return value identical to that of the
op GetResponse() routine, namely a value of type int.

Programming Interface 115 August 28, 1991 10:38

Rx Specification

5.5.7.10 RXS CheckResponse()

#define RXS_CheckResponse(obj, conn, packet)
RXS_OP(obj, CheckResponse, (obj, conn, packet))

This macro causes the execution of the interface routine in the op CheckResponse() slot
in the Rx security object identified by the obj pointer. This interface function is invoked
by Rx on the server side each time a response to a challenge packet is received for a given
connection. The responsibilities of such a function might include verifying the integrity of
the response, pulling out the necessary security information and storing that information
within the affected connection, and otherwise updating the state of the connection.

The obj parameter must resolve into an object of type (struct rx securityOps *).
The conn argument contains a pointer to the Rx server connection to which the given
challenge response is directed. This argument must resolve to an object of type (struct
rx connection *). The final argument, packet, contains a pointer to the packet re-
ceived in response to the challenge itself. It should resolve to an object of type (struct
rx packet *).

In generating a call to the routine located at the security object’s op CheckResponse()
slot, the obj, conn, and packet pointers are ued as its three parameters. An invocation
of the RXS CheckResponse() macro results in a return value identical to that of the
op CheckResponse() routine, namely a value of type int.

5.5.7.11 RXS CheckPacket()

#define RXS_CheckPacket(obj, call, packet)
RXS_OP(obj, CheckPacket, (obj, call, packet))

This macro causes the execution of the interface routine occupying the op CheckPacket()
slot in the Rx security object identified by the obj pointer. This interface function is
invoked by Rx each time a packet is received. The responsibilities of such a function might
include verifying the integrity of given packet, detecting any unauthorized modifications
or tampering.

The obj parameter must resolve into an object of type (struct rx securityOps *).
The conn argument contains a pointer to the Rx connection to which the given challenge
response is directed, and must resolve to an object of type (struct rx connection *).
The final argument, packet, contains a pointer to the packet received in response to the
challenge itself. It should resolve to an object of type (struct rx packet *).

Programming Interface 116 August 28, 1991 10:38

Rx Specification

In generating a call to the routine located at the security object’s op CheckPacket()
slot, the obj, conn, and packet pointers are used as its three parameters. An invoca-
tion of the RXS CheckPacket() macro results in a return value identical to that of the
op CheckPacket() routine, namely a value of type int.

Please note that any non-zero return will cause Rx to abort all calls on the connection.
Furthermore, the connection itself will be marked as being in error in such a case, causing
it to reject any further incoming packets.

5.5.7.12 RXS DestroyConnection()

#define RXS_DestroyConnection(obj, conn)
RXS_OP(obj, DestroyConnection, (obj, conn))

This macro causes the execution of the interface routine in the op DestroyConnection()
slot in the Rx security object identified by the obj pointer. This interface function
is invoked by Rx each time a connection employing the given security object is being
destroyed. The responsibilities of such a function might include deleting any private data
maintained by the security module for this connection.

The obj parameter must resolve into an object of type (struct rx securityOps *).
The conn argument contains a pointer to the Rx connection being reaped, and must
resolve to a (struct rx connection *) object.

In generating a call to the routine located at the security object’s op DestroyConnection()
slot, the obj and conn pointers are used as its two parameters. An invocation of
the RXS DestroyConnection() macro results in a return value identical to that of the
op DestroyConnection() routine, namely a value of type int.

5.5.7.13 RXS GetStats()

#define RXS_GetStats(obj, conn, stats)
RXS_OP(obj, GetStats, (obj, conn, stats))

This macro causes the execution of the interface routine in the op GetStats() slot in the
Rx security object identified by the obj pointer. This interface function is invoked by
Rx each time current statistics concerning the given security object are desired.

The obj parameter must resolve into an object of type (struct rx securityOps *).
The conn argument contains a pointer to the Rx connection using the security object

Programming Interface 117 August 28, 1991 10:38

Rx Specification

to be examined, and must resolve to an object of type (struct rx connection *).
The final argument, stats, contains a pointer to a region to be filled with the desired
statistics. It should resolve to an object of type (struct rx securityObjectStats *).

In generating a call to the routine located at the security object’s op GetStats() slot, the
obj, conn, and stats pointers are used as its three parameters. An invocation of the
RXS GetStats() macro results in a return value identical to that of the op GetStats()
routine, namely a value of type int.

5.6 Functions

Rx exports a collection of functions that, in conjuction with the macros explored in Sec-
tion 5.5, allows its clients to set up and export services, create and tear down connections
to these services, and execute remote procedure calls along these connections.

This paper employs two basic categorizations of these Rx routines. One set of functions
is meant to be called directly by clients of the facility, and are referred to as the exported
operations. The individual members of the second set of functions are not meant to be
called directly by Rx clients, but rather are called by the collection of defined macros,
so they must still be lexically visible. These indirectly-executed routines are referred to
here as the semi-exported operations.

All Rx routines return zero upon success. The range of error codes employed by Rx is
defined in Section 5.2.15.

5.6.1 Exported Operations

5.6.2 rx Init — Initialize Rx

int rx Init(IN int port)

Programming Interface 118 August 28, 1991 10:38

Rx Specification

Description

Initialize the Rx facility. If a non-zero port number is provided, it becomes the default
port number for any service installed later. If 0 is provided for the port, a random port
will be chosen by the system. The rx Init() function sets up internal tables and timers,
along with starting up the listener thread.

Error Codes

RX ADDRINUSE The port provided has already been taken.

5.6.3 rx NewService — Create and install a new service

struct rx service *rx NewService(IN u short port;

IN u short serviceId;

IN char *serviceName;

IN struct rx securityClass **securityObjects;

IN int nSecurityObjects;

IN long (*serviceProc)())

Description

Create and advertise a new Rx service. A service is uniquely named by a UDP port

number plus a non-zero 16-bit serviceId on the given host. The port argument may be
set to zero if rx Init() was called with a non-zero port number, in which case that original
port will be used. A serviceName must also be provided, to be used for identification
purposes (e.g., the service name might be used for probing for statistics). A pointer to
an array of nSecurityObjects security objects to be associated with the new service
is given in . securityObjects. The service’s executeRequestProc() pointer is set to
serviceProc.

The function returns a pointer to a descriptor for the requested Rx service. A null return
value indicates that the new service could not be created. Possible reasons include:

• The serviceId parameter was found to be zero.

Programming Interface 119 August 28, 1991 10:38

Rx Specification

• A port value of zero was specified at Rx initialization time (i.e., when rx init() was
called), requiring a non-zero value for the port parameter here.

• Another Rx service is already using serviceId.

• Rx has already created the maximum RX MAX SERVICES Rx services (see Section
5.2.1).

Error Codes

(struct rx service *) NULL The new Rx service could not be created, due to
one of the errors listed above.

5.6.4 rx NewConnection — Create a new connection to a given service

struct rx connection *rx NewConnection(IN u long shost,

IN u short sport,

IN u short sservice,

IN struct rx securityClass *securityObject,

IN int service SecurityIndex)

Description

Create a new Rx client connection to service sservice on the host whose IP address
is contained in shost and to that host’s sport UDP port. The corresponding Rx ser-
vice identifier is expected in sservice. The caller also provides a pointer to the se-
curity object to use for the connection in securityObject, along with that object’s
serviceSecurityIndex among the security objects associated with service sservice

via a previous rx NewService() call (see Section 5.6.3).

Note: It is permissible to provide a null value for the securityObject parameter if the
chosen serviceSecurityIndex is zero. This corresponds to the pre-defined null security
object, which does not engage in authorization checking of any kind.

Programming Interface 120 August 28, 1991 10:38

Rx Specification

Error Codes

--- A pointer to an initialized Rx connection is always returned, unless osi Panic()
is called due to memory allocation failure.

5.6.5 rx NewCall — Start a new call on the given connection

struct rx call *rx NewCall(IN struct rx connection *conn)

Description

Start a new Rx remote procedure call on the connection specified by the conn param-
eter. The existing call structures (up to RX MAXCALLS of them) are examined in or-
der. The first non-active call encountered (i.e., either unused or whose call->state is
RX STATE DALLY) will be appropriated and reset if necessary. If all call structures are
in active use, the RX CONN MAKECALL WAITING flag is set in the conn->flags field, and
the thread handling this request will sleep until a call structure comes free. Once a call
structure has been reserved, the keep-alive protocol is enabled for it.

The state of the given connection determines the detailed behavior of the function. The
conn->timeout field specifies the absolute upper limit of the number of seconds this
particular call may be in operation. After this time interval, calls to such routines as
rx SendData() or rx ReadData() will fail with an RX CALL TIMEOUT indication.

Error Codes

--- A pointer to an initialized Rx call is always returned, unless osi Panic() is
called due to memory allocation failure.

5.6.6 rx EndCall — Terminate the given call

Programming Interface 121 August 28, 1991 10:38

Rx Specification

int rx EndCall(IN struct rx call *call,

IN long rc)

Description

Indicate that the Rx call described by the structure located at call is finished, possibly
prematurely. The value passed in the rc parameter is returned to the peer, if appropriate.
The final error code from processing the call will be returned as rx EndCall()’s value.
The given call’s state will be set to RX STATE DALLY, and threads waiting to establish
a new call on this connection are signalled (see the description of the rx NewCall() in
Section 5.6.5).

Error Codes

-1 Unspecified error has occurred.

5.6.7 rx StartServer — Activate installed rx service(s)

void rx StartServer(IN int donateMe)

Description

This function starts server threads in support of the Rx services installed via calls to
rx NewService() (see Section 5.6.3). This routine first computes the number of server
threads it must create, governed by the minProcs and maxProcs fields in the installed
service descriptors. The minProcs field specifies the minimum number of threads that
are guaranteed to be concurrently available to the given service. The maxProcs field
specifies the maximum number of threads that may ever be concurrently assigned to the
particular service, if idle threads are available. Using this information, rx StartServer()
computes the correct overall number of threads as follows: For each installed service,
minProcs threads will be created, enforcing the minimality guarantee. Calculate the

Programming Interface 122 August 28, 1991 10:38

Rx Specification

maximum difference between the maxProcs and minProcs fields for each service, and
create this many additional server threads, enforcing the maximality guarantee.

If the value placed in the donateMe argument is zero, then rx StartServer() will sim-
ply return after performing as described above. Otherwise, the thread making the
rx StartServer() call will itself begin executing the server thread loop. In this case,
the rx StartServer() call will never return.

Error Codes

--- None.

5.6.8 rx PrintStats — Print basic statistics to a file

void rx PrintStats(IN FILE *file)

Description

Prints Rx statistics (basically the contents of the struct rx stats holding the statistics
for the Rx facility) to the open file descriptor identified by file. The output is ASCII
text, and is intended for human consumption.

Note: This function is available only if the Rx package has been compiled
with the RXDEBUG flag.

Error Codes

--- None.

Programming Interface 123 August 28, 1991 10:38

Rx Specification

5.6.9 rx PrintPeerStats — Print peer statistics to a file

void rx PrintPeerStats(IN FILE *file,

IN struct rx peer *peer)

Description

Prints the Rx peer statistics found in peer to the open file descriptor identified by file.
The output is in normal ASCII text, and is intended for human consumption.

Note: This function is available only if the Rx package has been compiled
with the RXDEBUG flag.

Error Codes

--- None.

5.6.10 rx Finalize — Shut down Rx gracefully

void rx Finalize()

Description

This routine may be used to shut down the Rx facility for either server or client ap-
plications. All of the client connections will be gracefully garbage-collected after their
active calls are cleaned up. The result of calling rx Finalize() from a client program
is that the server-side entity will be explicitly advised that the client has terminated.
This notification frees the server-side application from having to probe the client until
its records eventually time out, and also allows it to free resources currently assigned to
that client’s support.

Programming Interface 124 August 28, 1991 10:38

Rx Specification

Error Codes

--- None.

5.6.11 Semi-Exported Operations

As described in the introductory text in Section 5.6, entries in this lexically-visible set
of Rx functions are not meant to be called directly by client applications, but rather are
invoked by Rx macros called by users.

5.6.12 rx WriteProc — Write data to an outgoing call

int rx WriteProc(IN struct rx call *call,

IN char *buf,

IN int nbytes)

Description

Write nbytes of data from buffer buf into the Rx call identified by the call parameter.
The value returned by rx WriteProc() reports the number of bytes actually written into
the call. If zero is returned, then the rx Error() macro may be used to obtain the call
status.

This routine is called by the rx Write() macro, which is why it must be exported by the
Rx facility.

Error Codes

0 Indicates error in the given Rx call; use the rx Error() macro to determine the
call status.

Programming Interface 125 August 28, 1991 10:38

Rx Specification

5.6.13 rx ReadProc — Read data from an incoming call

int rx ReadProc(IN struct rx call *call,

IN char *buf,

IN int nbytes)

Description

Read up to nbytes of data from the Rx call identified by the call parameter into the
buf buffer. The value returned by rx ReadProc() reports the number of bytes actually
read from the call. If zero is returned, then the rx Error() macro may be used to obtain
the call status.

This routine is called by the rx Read() macro, which is why it must be exported by the
Rx facility.

Error Codes

0 Indicates error in the given Rx call; use the rx Error() macro to determine the
call status.

5.6.14 rx FlushWrite — Flush buffered data on outgoing call

void rx FlushWrite(IN struct rx call *call)

Description

Flush any buffered data on the given Rx call to the stream. If the call is taking place on
a server connection, the call->mode is set to RX MODE EOF. If the call is taking place on
a client connection, the call->mode is set to RX MODE RECEIVING.

Programming Interface 126 August 28, 1991 10:38

Rx Specification

Error Codes

--- None.

5.6.15 rx SetArrivalProc — Set function to invoke upon call packet arrival

void rx SetArrivalProc(IN struct rx call *call,

IN VOID (*proc)(),

IN VOID *handle,

IN VOID *arg)

Description

Establish a procedure to be called when a packet arrives for a call. This routine will be
called at most once after each call, and will also be called if there is an error condition on
the call or the call is complete. The rx SetArrivalProc() function is used by multicast Rx
routines to build a selection function that determines which of several calls is likely to be
a good one to read from. The implementor’s comments in the Rx code state that, due
to the current implementation, it is probably only reasonable to use rx SetArrivalProc()
immediately after an rx NewCall(), and to only use it once.

Error Codes

--- None.

Programming Interface 127 August 28, 1991 10:38

Rx Specification

Chapter 6

Example Server and Client

6.1 Introduction

This chapter provides a sample program showing the use of Rx. Specifically, the rxdemo
application, with all its support files, is documented and examined. The goal is to provide
the reader with a fully-developed and operational program illustrating the use of both
regular Rx remote procedure calls and streamed RPCs. The full text of the rxdemo
application is reproduced in the sections below, along with additional commentary.

Readers wishing to directly experiment with this example Rx application are encouraged
to examine the on-line version of rxdemo. Since it is a program of general interest, it has
been installed in the usr/contrib tree in the grand.central.org cell. This area con-
tains user-contributed software for the entire AFS community. At the top of this tree is
the /afs/grand.central.org/darpa/usr/contrib directory. Both the server-side and client-
side rxdemo binaries (rxdemo server and rxdemo client, respectively) may be found in
the bin subdirectory. The actual sources reside in the .site/grand.central.org/rxdemo/src
subdirectory.

The rxdemo code is composed of two classes of files, namely those written by a hu-
man programmer and those generated from the human-written code by the Rxgen tool.
Included in the first group of files are:

• rxdemo.xg This is the RPC interface definition file, providing high-level definitions
of the supported calls.

• rxdemo client.c: This is the rxdemo client program, calling upon the associated
server to perform operations defined by rxdemo.xg.

Example Server and Client 128 August 28, 1991 10:38

Rx Specification

• rxdemo server.c: This is the rxdemo server program, implementing the operations
promised in rxdemo.xg.

• Makefile: This is the file that directs the compilation and installation of the rxdemo
code.

The class of automatically-generated files includes the following items:

• rxdemo.h: This header file contains the set of constant definitions present in
rxdemo.xg, along with information on the RPC opcodes defined for this Rx ser-
vice.

• rxdemo.cs.c: This client-side stub file performs all the marshalling and unmar-
shalling of the arguments for the RPC routines defined in rxdemo.xg.

• rxdemo.ss.c: This stub file similarly defines all the marshalling and unmarshalling
of arguments for the server side of the RPCs, invokes the routines defined within
rxdemo server.c to implement the calls, and also provides the dispatcher function.

• rxdemo.xdr.c: This module defines the routines required to convert complex user-
defined data structures appearing as arguments to the Rx RPC calls exported by
rxdemo.xg into network byte order, so that correct communication is guaranteed
between clients and server with different memory organizations.

The chapter concludes with a section containing sample output from running the rxdemo
server and client programs.

6.2 Human-Generated Files

The rxdemo application is based on the four human-authored files described in this
section. They provide the basis for the construction of the full set of modules needed to
implement the specified Rx service.

6.2.1 Interface File: rxdemo.xg

This file serves as the RPC interface definition file for this application. It defines various
constants, including the Rx service port to use and the index of the null security object
(no encryption is used by rxdemo). It defines the RXDEMO MAX and RXDEMO MIN constants,

Example Server and Client 129 August 28, 1991 10:38

Rx Specification

which will be used by the server as the upper and lower bounds on the number of Rx
listener threads to run. It also defines the set of error codes exported by this facility.
Finally, it provides the RPC function declarations, namely Add() and GetFile(). Note
that when building the actual function definitions, Rxgen will prepend the value of the
package line in this file, namely “RXDEMO ”, to the function declarations. Thus, the gen-
erated functions become RXDEMO Add() and RXDEMO GetFile(), respectively. Note
the use of the split keyword in the RXDEMO GetFile() declaration, which specifies
that this is a streamed call, and actually generates two client-side stub routines (see
Section 6.3.1).

/*===
* Interface for an example Rx server/client application, using both *
* standard and streamed calls. *
* *
* Edward R. Zayas *
* Transarc Corporation *
* *
* *
* The United States Government has rights in this work pursuant *
* to contract no. MDA972-90-C-0036 between the United States Defense *
* Advanced Research Projects Agency and Transarc Corporation. *
* *
* (C) Copyright 1991 Transarc Corporation *
* *
* Redistribution and use in source and binary forms are permitted *
* provided that: (1) source distributions retain this entire copy- *
* right notice and comment, and (2) distributions including binaries *
* display the following acknowledgement: *
* *
* ‘‘This product includes software developed by Transarc *
* Corporation and its contributors’’ *
* *
* in the documentation or other materials mentioning features or *
* use of this software. Neither the name of Transarc nor the names *
* of its contributors may be used to endorse or promote products *
* derived from this software without specific prior written *
* permission. *
* *
* THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED *
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
===/

package RXDEMO_

%#include <rx/rx.h>
%#include <rx/rx_null.h>

%#define RXDEMO_SERVER_PORT 8000 /*Service port to advertise*/
%#define RXDEMO_SERVICE_PORT 0 /*User server’s port*/
%#define RXDEMO_SERVICE_ID 4 /*Service ID*/

Example Server and Client 130 August 28, 1991 10:38

Rx Specification

%#define RXDEMO_NULL_SECOBJ_IDX 0 /*Index of null security object*/

/*
* Maximum number of requests that will be handled by this service
* simultaneously. This number will be guaranteed to execute in
* parallel if other service’s results are being processed.
*/
%#define RXDEMO_MAX 3

/*
* Minimum number of requests that are guaranteed to be handled
* simultaneously.
*/
%#define RXDEMO_MIN 2

/*
* Index of the "null" security class in the sample service.
*/
%#define RXDEMO_NULL 0

/*
* Maximum number of characters in a file name (for demo purposes).
*/
%#define RXDEMO_NAME_MAX_CHARS 64

/*
* Define the max number of bytes to transfer at one shot.
*/
%#define RXDEMO_BUFF_BYTES 512

/*
* Values returned by the RXDEMO_GetFile() call.
* RXDEMO_CODE_SUCCESS : Everything went fine.
* RXDEMO_CODE_CANT_OPEN : Can’t open named file.
* RXDEMO_CODE_CANT_STAT : Can’t stat open file.
* RXDEMO_CODE_CANT_READ : Error reading the open file.
* RXDEMO_CODE_WRITE_ERROR : Error writing the open file.
*/
%#define RXDEMO_CODE_SUCCESS 0
%#define RXDEMO_CODE_CANT_OPEN 1
%#define RXDEMO_CODE_CANT_STAT 2
%#define RXDEMO_CODE_CANT_READ 3
%#define RXDEMO_CODE_WRITE_ERROR 4

/*
* ------------ Interface calls defined for this service ------------
*/

/*--
* RXDEMO_Add
*
* Summary:

Example Server and Client 131 August 28, 1991 10:38

Rx Specification

* Add the two numbers provided and return the result.
*
* Parameters:
* int a_first : First operand.
* int a_second : Second operand.
* int *a_result : Sum of the above.
*
* Side effects:
* None.
--/

Add(IN int a,
int b,

OUT int *result) = 1;

/*--
* RXDEMO_GetFile
*
* Summary:
* Return the contents of the named file in the server’s
* environment.
*
* Parameters:
* STRING a_nameToRead : Name of the file whose contents are to be
* fetched.
* int *a_result : Set to the result of opening and reading the
* file on the server side.
*
* Side effects:
* None.
--/

GetFile(IN string a_nameToRead<RXDEMO_NAME_MAX_CHARS>,
OUT int *a_result) split = 2;

6.2.2 Client Program: rxdemo client.c

The rxdemo client program, rxdemo client, calls upon the associated server to perform
operations defined by rxdemo.xg. After its header, it defines a private GetIPAddress()
utility routine, which given a character string host name will return its IP address.

/*===
% Client side of an example Rx application, using both standard and %
% streamed calls. %
% %
% Edward R. Zayas %
% Transarc Corporation %
% %

Example Server and Client 132 August 28, 1991 10:38

Rx Specification

% %
% The United States Government has rights in this work pursuant %
% to contract no. MDA972-90-C-0036 between the United States Defense %
% Advanced Research Projects Agency and Transarc Corporation. %
% %
% (C) Copyright 1991 Transarc Corporation %
% %
% Redistribution and use in source and binary forms are permitted %
% provided that: (1) source distributions retain this entire copy- %
% right notice and comment, and (2) distributions including binaries %
% display the following acknowledgement: %
% %
% ‘‘This product includes software developed by Transarc %
% Corporation and its contributors’’ %
% %
% in the documentation or other materials mentioning features or %
% use of this software. Neither the name of Transarc nor the names %
% of its contributors may be used to endorse or promote products %
% derived from this software without specific prior written %
% permission. %
% %
% THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED %
% WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF %
% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. %
%===*/

#include <sys/types.h>
#include <netdb.h>
#include <stdio.h>
#include "rxdemo.h"

static char pn[] = "rxdemo"; /*Program name*/

static u_long GetIpAddress(a_hostName)
char *a_hostName;

{ /*GetIPAddress*/

static char rn[] = "GetIPAddress"; /*Routine name*/
struct hostent *hostEntP; /*Ptr to host descriptor*/
u_long hostIPAddr; /*Host IP address*/

hostEntP = gethostbyname(a_hostName);
if (hostEntP == (struct hostent *)0) {

printf("[%s:%s] Host ’%s’ not found\n",
pn, rn, a_hostName);

exit(1);
}
if (hostEntP->h_length != sizeof(u_long)) {

printf("[%s:%s] Wrong host address length (%d bytes instead of %d)",
pn, rn, hostEntP->h_length, sizeof(u_long));

exit(1);
}
bcopy(hostEntP->h_addr, (char *)&hostIPAddr, sizeof(hostIPAddr));

Example Server and Client 133 August 28, 1991 10:38

Rx Specification

return(hostIPAddr);

} /*GetIpAddress*/

The main program section of the client code, after handling its command line arguments,
starts off by initializing the Rx facility.

main(argc, argv)
int argc;
char **argv;

{ /*Main*/

struct rx_connection *rxConnP; /*Ptr to server connection*/
struct rx_call *rxCallP; /*Ptr to Rx call descriptor*/
u_long hostIPAddr; /*IP address of chosen host*/
int demoUDPPort; /*UDP port of Rx service*/
struct rx_securityClass *nullSecObjP; /*Ptr to null security object*/
int operand1, operand2; /*Numbers to add*/
int sum; /*Their sum*/
int code; /*Return code*/
char fileName[64]; /*Buffer for desired file’s name*/
long fileDataBytes; /*Num bytes in file to get*/
char buff[RXDEMO_BUFF_BYTES+1]; /*Read buffer*/
int currBytesToRead; /*Num bytes to read in one iteration*/
int maxBytesToRead; /*Max bytes to read in one iteration*/
int bytesReallyRead; /*Num bytes read off Rx stream*/
int getResults; /*Results of the file fetch*/

printf("\n%s: Example Rx client process\n\n", pn);
if ((argc < 2) || (argc > 3)) {

printf("Usage: rxdemo <HostName> [PortToUse]");
exit(1);

}

hostIPAddr = GetIpAddress(argv[1]);
if (argc > 2)

demoUDPPort = atoi(argv[2]);
else

demoUDPPort = RXDEMO_SERVER_PORT;

/*
* Initialize the Rx facility.
*/
code = rx_Init(htons(demoUDPPort));
if (code) {

printf("** Error calling rx_Init(); code is %d\n",
code);

exit(1);
}

/*

Example Server and Client 134 August 28, 1991 10:38

Rx Specification

* Create a client-side null security object.
*/
nullSecObjP = rxnull_NewClientSecurityObject();
if (nullSecObjP == (struct rx_securityClass *)0) {

printf("%s: Can’t create a null client-side security object!\n",
pn);

exit(1);
}

/*
* Set up a connection to the desired Rx service, telling it to use
* the null security object we just created.
*/
printf("Connecting to Rx server on ‘%s’, IP address 0x%x, UDP port %d\n",

argv[1], hostIPAddr, demoUDPPort);
rxConnP = rx_NewConnection(hostIPAddr,

RXDEMO_SERVER_PORT,
RXDEMO_SERVICE_ID,
nullSecObjP,
RXDEMO_NULL_SECOBJ_IDX);

if (rxConnP == (struct rx_connection *)0) {
printf("rxdemo: Can’t create connection to server!\n");
exit(1);

}
else

printf(" ---> Connected.\n");

The rx Init() invocation initializes the Rx library and defines the desired service UDP
port (in network byte order). The rxnull NewClientSecurityObject() call creates a client-
side Rx security object that does not perform any authentication on Rx calls. Once a
client authentication object is in hand, the program calls rx NewConnection(), specifying
the host, UDP port, Rx service ID, and security information needed to establish contact
with the rxdemo server entity that will be providing the service.

With the Rx connection in place, the program may perform RPCs. The first one to be
invoked is RXDEMO Add():

/*
* Perform our first, simple remote procedure call.
*/
operand1 = 1; operand2 = 2;
printf("Asking server to add %d and %d: ",

operand1, operand2);
code = RXDEMO_Add(rxConnP, operand1, operand2, &sum);
if (code) {

printf("\n** Error in the RXDEMO_Add RPC: code is %d\n",
code);

exit(1);
}
printf("Reported sum is %d\n", sum);

Example Server and Client 135 August 28, 1991 10:38

Rx Specification

The first argument to RXDEMO Add() is a pointer to the Rx connection established
above. The client-side body of the RXDEMO Add() function was generated from the
rxdemo.xg interface file, and resides in the rxdemo.cs.c file (see Section 6.3.1). It gives
the appearance of being a normal C procedure call.

The second RPC invocation involves the more complex, streamed RXDEMO GetFile()
function. More of the internal Rx workings are exposed in this type of call. The first
additional detail to consider is that we must manually create a new Rx call on the
connection.

/*
* Set up for our second, streamed procedure call.
*/
printf("Name of file to read from server: ");
scanf("%s", fileName);
maxBytesToRead = RXDEMO_BUFF_BYTES;
printf("Setting up an Rx call for RXDEMO_GetFile...");
rxCallP = rx_NewCall(rxConnP);
if (rxCallP == (struct rx_call *)0) {

printf("** Can’t create call\n");
exit(1);

}
printf("done\n");

Once the Rx call structure has been created, we may begin executing the call itself. Hav-
ing been declared to be split in the interface file, Rxgen creates two function bodies for
rxdemo GetFile() and places them in rxdemo.cs.c. The first, StartRXDEMO GetFile(),
is responsible for marshalling the outgoing arguments and issuing the RPC. The second,
EndRXDEMO GetFile(), takes care of unmarshalling the non-streamed OUT function
parameters. The following code fragment illustrates how the RPC is started, using the
StartRXDEMO GetFile() routine to pass the call parameters to the server.

/*
* Sending IN parameters for the streamed call.
*/
code = StartRXDEMO_GetFile(rxCallP, fileName);
if (code) {

printf("** Error calling StartRXDEMO_GetFile(); code is %d\n",
code);

exit(1);
}

Once the call parameters have been shipped, the server will commence delivering the
“stream” data bytes back to the client on the given Rx call structure. The first longword
to come back on the stream specifies the number of bytes to follow.

Example Server and Client 136 August 28, 1991 10:38

Rx Specification

/*
* Begin reading the data being shipped from the server in response to
* our setup call. The first longword coming back on the Rx call is
* the number of bytes to follow. It appears in network byte order,
* so we have to fix it up before referring to it.
*/
bytesReallyRead = rx_Read(rxCallP, &fileDataBytes, sizeof(long));
if (bytesReallyRead != sizeof(long)) {

printf("** Only %d bytes read for file length; should have been %d\n",
bytesReallyRead, sizeof(long));

exit(1);
}
fileDataBytes = ntohl(fileDataBytes);

Once the client knows how many bytes will be sent, it runs a loop in which it reads a
buffer at a time from the Rx call stream, using rx Read() to accomplish this. In this
application, all that is done with each newly-acquired buffer of information is printing it
out.

/*
* Read the file bytes via the Rx call, a buffer at a time.
*/
printf("[File contents (%d bytes) fetched over the Rx call appear below]\n\n",

fileDataBytes);
while (fileDataBytes > 0) {

currBytesToRead = (fileDataBytes > maxBytesToRead ?
maxBytesToRead : fileDataBytes);

bytesReallyRead = rx_Read(rxCallP, buff, currBytesToRead);
if (bytesReallyRead != currBytesToRead) {

printf("\nExpecting %d bytes on this read, got %d instead\n",
currBytesToRead, bytesReallyRead);

exit(1);
}
/*
* Null-terminate the chunk before printing it.
*/
buff[currBytesToRead] = 0;
printf("%s", buff);

/*
* Adjust the number of bytes left to read.
*/
fileDataBytes -= currBytesToRead;

} /*Read one bufferful of the file*/

After this loop terminates, the Rx stream has been drained of all data. The Rx call
is concluded by invoking the second of the two automatically-generated functions, En-
dRXDEMO GetFile(), which retrieves the call’s OUT parameter from the server.

Example Server and Client 137 August 28, 1991 10:38

Rx Specification

/*
* Finish off the Rx call, getting the OUT parameters.
*/
printf("\n\n[End of file data]\n");
code = EndRXDEMO_GetFile(rxCallP, &getResults);
if (code) {

printf("** Error getting file transfer results; code is %d\n",
code);

exit(1);
}

With both normal and streamed Rx calls accomplished, the client demo code concludes
by terminating the Rx call it set up earlier. With that done, the client exits.

/*
* Finish off the Rx call.
*/
code = rx_EndCall(rxCallP, code);
if (code)

printf("Error in calling rx_EndCall(); code is %d\n",
code);

printf("\n\nrxdemo complete.\n");

6.2.3 Server Program: rxdemo server.c

The rxdemo server program, rxdemo server, implements the operations promised in the
rxdemo.xg interface file.

After the initial header, the external function RXDEMO ExecuteRequest() is declared.
The RXDEMO ExecuteRequest() function is generated automatically by rxgen from the
interface file and deposited in rxdemo.ss.c. The main program listed below will associate
this RXDEMO ExecuteRequest() routine with the Rx service to be instantiated.

/*==%
% Server portion of the example RXDEMO application, using both %
% standard and streamed calls. %
% %
% Edward R. Zayas %
% Transarc Corporation %
% %
% %
% The United States Government has rights in this work pursuant %
% to contract no. MDA972-90-C-0036 between the United States Defense %

Example Server and Client 138 August 28, 1991 10:38

Rx Specification

% Advanced Research Projects Agency and Transarc Corporation. %
% %
% (C) Copyright 1991 Transarc Corporation %
% %
% Redistribution and use in source and binary forms are permitted %
% provided that: (1) source distributions retain this entire copy- %
% right notice and comment, and (2) distributions including binaries %
% display the following acknowledgement: %
% %
% ‘‘This product includes software developed by Transarc %
% Corporation and its contributors’’ %
% %
% in the documentation or other materials mentioning features or %
% use of this software. Neither the name of Transarc nor the names %
% of its contributors may be used to endorse or promote products %
% derived from this software without specific prior written %
% permission. %
% %
% THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED %
% WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF %
% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. %
%==*/

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/file.h>
#include <netdb.h>
#include <stdio.h>
#include "rxdemo.h"

#define N_SECURITY_OBJECTS 1

extern RXDEMO_ExecuteRequest();

After choosing either the default or user-specified UDP port on which the Rx service will
be established, rx Init() is called to set up the library.

main(argc, argv)
int argc;
char **argv;

{ /*Main*/

static char pn[] = "rxdemo_server"; /*Program name*/
struct rx_securityClass

*(securityObjects[1]); /*Security objs*/
struct rx_service *rxServiceP; /*Ptr to Rx service descriptor*/
struct rx_call *rxCallP; /*Ptr to Rx call descriptor*/
int demoUDPPort; /*UDP port of Rx service*/
int fd; /*File descriptor*/
int code; /*Return code*/

Example Server and Client 139 August 28, 1991 10:38

Rx Specification

printf("\n%s: Example Rx server process\n\n", pn);
if (argc > 2) {

printf("Usage: rxdemo [PortToUse]");
exit(1);

}

if (argc > 1)
demoUDPPort = atoi(argv[1]);

else
demoUDPPort = RXDEMO_SERVER_PORT;

/*
* Initialize the Rx facility, telling it the UDP port number this
* server will use for its single service.
*/
printf("Listening on UDP port %d\n",

demoUDPPort);
code = rx_Init(demoUDPPort);
if (code) {

printf("** Error calling rx_Init(); code is %d\n",
code);

exit(1);
}

A security object specific to the server side of an Rx conversation is created in the next
code fragment. As with the client side of the code, a “null” server security object,
namely one that does not perform any authentication at all, is constructed with the
rxnull NewServerSecurityObject() function.

/*
* Create a single server-side security object. In this case, the
* null security object (for unauthenticated connections) will be used
* to control security on connections made to this server.
*/
securityObjects[RXDEMO_NULL_SECOBJ_IDX] = rxnull_NewServerSecurityObject();
if (securityObjects[RXDEMO_NULL_SECOBJ_IDX] == (struct rx_securityClass *) 0) {

printf("** Can’t create server-side security object\n");
exit(1);

}

The rxdemo server program is now in a position to create the desired Rx service, primed
to recognize exactly those interface calls defined in rxdemo.xg. This is accomplished by
calling the rx NewService() library routine, passing it the security object created above
and the generated Rx dispatcher routine.

/*
* Instantiate a single sample service. The rxgen-generated procedure

Example Server and Client 140 August 28, 1991 10:38

Rx Specification

* called to dispatch requests is passed in (RXDEMO_ExecuteRequest).
*/
rxServiceP = rx_NewService(0,

RXDEMO_SERVICE_ID,
"rxdemo",
securityObjects,
1,
RXDEMO_ExecuteRequest);

if (rxServiceP == (struct rx_service *) 0) {
printf("** Can’t create Rx service\n");
exit(1);

}

The final step in this main routine is to activate servicing of calls to the exported Rx
interface. Specifically, the proper number of threads are created to handle incoming
interface calls. Since we are passing a non-zero argument to the rx StartServer() call,
the main program will itself begin executing the server thread loop, never returning from
the rx StartServer() call. The print statement afterwards should never be executed, and
its presence represents some level of paranoia, useful for debugging malfunctioning thread
packages.

/*
* Start up Rx services, donating this thread to the server pool.
*/
rx_StartServer(1);

/*
* We should never return from the previous call.
*/
printf("** rx_StartServer() returned!!\n");
exit(1);

} /*Main*/

Following the main procedure are the functions called by the automatically-generated
routines in the rxdemo.ss.c module to implement the specific routines defined in the Rx
interface.

The first to be defined is the RXDEMO Add() function. The arguments for this routine
are exactly as they appear in the interface definition, with the exception of the very
first. The a rxCallP parameter is a pointer to the Rx structure describing the call on
which this function was activated. All user-supplied routines implementing an interface
function are required to have a pointer to this structure as their first parameter. Other
than printing out the fact that it has been called and which operands it received, all
that RXDEMO Add() does is compute the sum and place it in the output parameter.

Example Server and Client 141 August 28, 1991 10:38

Rx Specification

Since RXDEMO Add() is a non-streamed function, with all data travelling through the
set of parameters, this is all that needs to be done. To mark a successful completion,
RXDEMO Add() returns zero, which is passed all the way through to the RPC’s client.

int RXDEMO_Add(a_rxCallP, a_operand1, a_operand2, a_resultP)
struct rx_call *a_rxCallP;
int a_operand1, a_operand2;
int *a_resultP;

{ /*RXDEMO_Add*/

printf("\t[Handling call to RXDEMO_Add(%d, %d)]\n",
a_operand1, a_operand2);

*a_resultP = a_operand1 + a_operand2;
return(0);

} /*RXDEMO_Add*/

The next and final interface routine defined in this file is RXDEMO GetFile(). Declared
as a split function in the interface file, RXDEMO GetFile() is an example of a streamed
Rx call. As with RXDEMO Add(), the initial parameter is required to be a pointer to the
Rx call structure with which this routine is associated, Similarly, the other parameters
appear exactly as in the interface definition, and are handled identically.

The difference between RXDEMO Add() and RXDEMO GetFile() is in the use of the
rx Write() library routine by RXDEMO GetFile() to feed the desired file’s data directly
into the Rx call stream. This is an example of the use of the a rxCallP argument,
providing all the information necessary to support the rx Write() activity.

The RXDEMO GetFile() function begins by printing out the fact that it’s been called
and the name of the requested file. It will then attempt to open the requested file and
stat it to determine its size.

int RXDEMO_GetFile(a_rxCallP, a_nameToRead, a_resultP)
struct rx_call *a_rxCallP;
char *a_nameToRead;
int *a_resultP;

{ /*RXDEMO_GetFile*/

struct stat fileStat; /*Stat structure for file*/
long fileBytes; /*Size of file in bytes*/
long nboFileBytes; /*File bytes in network byte order*/
int code; /*Return code*/
int bytesReallyWritten; /*Bytes written on Rx channel*/
int bytesToSend; /*Num bytes to read & send this time*/
int maxBytesToSend; /*Max num bytes to read & send ever*/

Example Server and Client 142 August 28, 1991 10:38

Rx Specification

int bytesRead; /*Num bytes read from file*/
char buff[RXDEMO_BUFF_BYTES+1]; /*Read buffer*/
int fd; /*File descriptor*/

maxBytesToSend = RXDEMO_BUFF_BYTES;
printf("\t[Handling call to RXDEMO_GetFile(%s)]\n",

a_nameToRead);
fd = open(a_nameToRead, O_RDONLY, 0444);
if (fd < 0) {

printf("\t\t[**Can’t open file ’%s’]\n",
a_nameToRead);

*a_resultP = RXDEMO_CODE_CANT_OPEN;
return(1);

}
else

printf("\t\t[File opened]\n");

/*
* Stat the file to find out how big it is.
*/
code = fstat(fd, &fileStat);
if (code) {

*a_resultP = RXDEMO_CODE_CANT_STAT;
printf("\t\t[File closed]\n");
close(fd);
return(1);

}
fileBytes = fileStat.st_size;
printf("\t\t[File has %d bytes]\n", fileBytes);

Only standard unix operations have been used so far. Now that the file is open, we must
first feed the size of the file, in bytes, to the Rx call stream. With this information, the
client code can then determine how many bytes will follow on the stream. As with all data
that flows through an Rx stream, the longword containing the file size, in bytes, must be
converted to network byte order before being sent. This insures that the recipient may
properly interpret the streamed information, regardless of its memory architecture.

nboFileBytes = htonl(fileBytes);

/*
* Write out the size of the file to the Rx call.
*/
bytesReallyWritten = rx_Write(a_rxCallP, &nboFileBytes, sizeof(long));
if (bytesReallyWritten != sizeof(long)) {

printf("** %d bytes written instead of %d for file length\n",
bytesReallyWritten, sizeof(long));

*a_resultP = RXDEMO_CODE_WRITE_ERROR;
printf("\t\t[File closed]\n");
close(fd);
return(1);

}

Example Server and Client 143 August 28, 1991 10:38

Rx Specification

Once the number of file bytes has been placed in the stream, the RXDEMO GetFile()
routine runs a loop, reading a buffer’s worth of the file and then inserting that buffer
of file data into the Rx stream at each iteration. This loop executes until all of the
file’s bytes have been shipped. Notice there is no special end-of-file character or marker
inserted into the stream.

The body of the loop checks for both unix read() and rx Write errors. If there is a
problem reading from the unix file into the transfer buffer, it is reflected back to the
client by setting the error return parameter appropriately. Specifically, an individual
unix read() operation could fail to return the desired number of bytes. Problems with
rx Write() are handled similarly. All errors discovered in the loop result in the file being
closed, and RXDEMO GetFile() exiting with a non-zero return value.

/*
* Write out the contents of the file, one buffer at a time.
*/
while (fileBytes > 0) {

/*
* Figure out the number of bytes to read (and send) this time.
*/
bytesToSend = (fileBytes > maxBytesToSend ?

maxBytesToSend : fileBytes);
bytesRead = read(fd, buff, bytesToSend);
if (bytesRead != bytesToSend) {

printf("Read %d instead of %d bytes from the file\n",
bytesRead, bytesToSend);

*a_resultP = RXDEMO_CODE_WRITE_ERROR;
printf("\t\t[File closed]\n");
close(fd);
return(1);

}

/*
* Go ahead and send them.
*/
bytesReallyWritten = rx_Write(a_rxCallP, buff, bytesToSend);
if (bytesReallyWritten != bytesToSend) {

printf("%d file bytes written instead of %d\n",
bytesReallyWritten, bytesToSend);

*a_resultP = RXDEMO_CODE_WRITE_ERROR;
printf("\t\t[File closed]\n");
close(fd);
return(1);

}

/*
* Update the number of bytes left to go.
*/
fileBytes -= bytesToSend;

} /*Write out the file to our caller*/

Example Server and Client 144 August 28, 1991 10:38

Rx Specification

Once all of the file’s bytes have been shipped to the remote client, all that remains to be
done is to close the file and return successfully.

/*
* Close the file, then return happily.
*/
*a_resultP = RXDEMO_CODE_SUCCESS;
printf("\t\t[File closed]\n");
close(fd);
return(0);

} /*RXDEMO_GetFile*/

6.2.4 Makefile

This file directs the compilation and installation of the rxdemo code. It specifies the
locations of libraries, include files, sources, and such tools as Rxgen and install, which
strips symbol tables from executables and places them in their target directories. This
Makefile demostrates cross-cell software development, with the rxdemo sources residing
in the grand.central.org cell and the AFS include files and libraries accessed from
their locations in the transarc.com cell.

In order to produce and install the rxdemo server and rxdemo client binaries, the system
target should be specified on the command line when invoking make:

make system

A note of caution is in order concerning generation of the rxdemo binaries. While tools
exist that deposit the results of all compilations to other (architecture-specific) directo-
ries, and thus facilitate multiple simultaneous builds across a variety of machine archi-
tectures (e.g., Transarc’s washtool), the assumption is made here that compilations will
take place directly in the directory containing all the rxdemo sources. Thus, a user will
have to execute a make clean command to remove all machine-specific object, library,
and executable files before compiling for a different architecture. Note, though, that the
binaries are installed into a directory specifically reserved for the current machine type.
Specifically, the final pathname component of the ${PROJ DIR}bin installation target is
really a symbolic link to ${PROJ DIR}.bin/@sys.

Two libraries are needed to support the rxdemo code. The first is obvious, namely the
Rx librx.a library. The second is the lightweight thread package library, liblwp.a,

Example Server and Client 145 August 28, 1991 10:38

Rx Specification

which implements all the threading operations that must be performed. The include
files are taken from the unix /usr/include directory, along with various AFS-specific
directories. Note that for portability reasons, this Makefile only contains fully-qualified
AFS pathnames and “standard” unix pathnames (such as /usr/include).

#===#
The United States Government has rights in this work pursuant
to contract no. MDA972-90-C-0036 between the United States Defense
Advanced Research Projects Agency and Transarc Corporation.
#
(C) Copyright 1991 Transarc Corporation
#
Redistribution and use in source and binary forms are permitted
provided that: (1) source distributions retain this entire copy-
right notice and comment, and (2) distributions including binaries
display the following acknowledgement:
#
‘‘This product includes software developed by Transarc
Corporation and its contributors’’
#
in the documentation or other materials mentioning features or
use of this software. Neither the name of Transarc nor the names
of its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.
#
THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
#===#

SHELL = /bin/sh
TOOL_CELL = grand.central.org
AFS_INCLIB_CELL = transarc.com
USR_CONTRIB = /afs/${TOOL_CELL}/darpa/usr/contrib/
PROJ_DIR = ${USR_CONTRIB}.site/grand.central.org/rxdemo/
AFS_INCLIB_DIR = /afs/${AFS_INCLIB_CELL}/afs/dest/
RXGEN = ${AFS_INCLIB_DIR}bin/rxgen
INSTALL = ${AFS_INCLIB_DIR}bin/install

LIBS = ${AFS_INCLIB_DIR}lib/librx.a \
${AFS_INCLIB_DIR}lib/liblwp.a

CFLAGS = -g \
-I. \
-I${AFS_INCLIB_DIR}include \
-I${AFS_INCLIB_DIR}include/afs \
-I${AFS_INCLIB_DIR} \
-I/usr/include

system: install

install: all

Example Server and Client 146 August 28, 1991 10:38

Rx Specification

${INSTALL} rxdemo_client ${PROJ_DIR}bin
${INSTALL} rxdemo_server ${PROJ_DIR}bin

all: rxdemo_client rxdemo_server

rxdemo_client: rxdemo_client.o ${LIBS} rxdemo.cs.o
${CC} ${CFLAGS} -o rxdemo_client rxdemo_client.o rxdemo.cs.o ${LIBS}

rxdemo_server: rxdemo_server.o rxdemo.ss.o ${LIBS}
${CC} ${CFLAGS} -o rxdemo_server rxdemo_server.o rxdemo.ss.o ${LIBS}

rxdemo_client.o: rxdemo.h

rxdemo_server.o: rxdemo.h

rxdemo.cs.c rxdemo.ss.c rxdemo.er.c rxdemo.h: rxdemo.xg
rxgen rxdemo.xg

clean:
rm -f *.o rxdemo.cs.c rxdemo.ss.c rxdemo.xdr.c rxdemo.h \

rxdemo_client rxdemo_server core

6.3 Computer-Generated Files

The four human-generated files described above provide all the information necessary
to construct the full set of modules to support the rxdemo example application. This
section describes those routines that are generated from the base set by Rxgen, filling
out the code required to implement an Rx service.

6.3.1 Client-Side Routines: rxdemo.cs.c

The rxdemo client.c program, described in Section 6.2.2, calls the client-side stub rou-
tines contained in this module in order to make rxdemo RPCs. Basically, these client-side
stubs are responsible for creating new Rx calls on the given connection parameter and
then marshalling and unmarshalling the rest of the interface call parameters. The IN
and INOUT arguments, namely those that are to be delivered to the server-side code im-
plementing the call, must be packaged in network byte order and shipped along the given
Rx call. The return parameters, namely those objects declared as INOUT and OUT, must
be fetched from the server side of the associated Rx call, put back in host byte order,
and inserted into the appropriate parameter variables.

The first part of rxdemo.cs.c echoes the definitions appearing in the rxdemo.xg interface
file, and also #includes another Rxgen-generated file, rxdemo.h.

Example Server and Client 147 August 28, 1991 10:38

Rx Specification

/*==%
% Edward R. Zayas %
% Transarc Corporation %
% %
% %
% The United States Government has rights in this work pursuant %
% to contract no. MDA972-90-C-0036 between the United States Defense %
% Advanced Research Projects Agency and Transarc Corporation. %
% %
% (C) Copyright 1991 Transarc Corporation %
% %
% Redistribution and use in source and binary forms are permitted %
% provided that: (1) source distributions retain this entire copy- %
% right notice and comment, and (2) distributions including binaries %
% display the following acknowledgement: %
% %
% ‘‘This product includes software developed by Transarc %
% Corporation and its contributors’’ %
% %
% in the documentation or other materials mentioning features or %
% use of this software. Neither the name of Transarc nor the names %
% of its contributors may be used to endorse or promote products %
% derived from this software without specific prior written %
% permission. %
% %
% THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED %
% WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF %
% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. %
%==*/

/* Machine generated file -- Do NOT edit */

#include "rxdemo.h"

#include <rx/rx.h>
#include <rx/rx_null.h>
#define RXDEMO_SERVER_PORT 8000 /*Service port to advertise*/
#define RXDEMO_SERVICE_PORT 0 /*User server’s port*/
#define RXDEMO_SERVICE_ID 4 /*Service ID*/
#define RXDEMO_NULL_SECOBJ_IDX 0 /*Index of null security object*/
#define RXDEMO_MAX 3
#define RXDEMO_MIN 2
#define RXDEMO_NULL 0
#define RXDEMO_NAME_MAX_CHARS 64
#define RXDEMO_BUFF_BYTES 512
#define RXDEMO_CODE_SUCCESS 0
#define RXDEMO_CODE_CANT_OPEN 1
#define RXDEMO_CODE_CANT_STAT 2
#define RXDEMO_CODE_CANT_READ 3
#define RXDEMO_CODE_WRITE_ERROR 4

The next code fragment defines the client-side stub for the RXDEMO Add() routine,
called by the rxdemo client program to execute the associated RPC.

Example Server and Client 148 August 28, 1991 10:38

Rx Specification

int RXDEMO_Add(z_conn, a, b, result)
register struct rx_connection *z_conn;
int a, b;
int * result;

{
struct rx_call *z_call = rx_NewCall(z_conn);
static int z_op = 1;
int z_result;
XDR z_xdrs;

xdrrx_create(&z_xdrs, z_call, XDR_ENCODE);

/* Marshal the arguments */
if ((!xdr_int(&z_xdrs, &z_op))

|| (!xdr_int(&z_xdrs, &a))
|| (!xdr_int(&z_xdrs, &b))) {

z_result = RXGEN_CC_MARSHAL;
goto fail;

}

/* Un-marshal the reply arguments */
z_xdrs.x_op = XDR_DECODE;
if ((!xdr_int(&z_xdrs, result))) {

z_result = RXGEN_CC_UNMARSHAL;
goto fail;

}

z_result = RXGEN_SUCCESS;
fail:

return rx_EndCall(z_call, z_result);
}

The very first operation performed by RXDEMO Add() occurs in the local variable
declarations, where z call is set to point to the structure describing a newly-created Rx
call on the given connection. An XDR structure, z xdrs, is then created for the given
Rx call with xdrrx create(). This XDR object is used to deliver the proper arguments,
in network byte order, to the matching server stub code. Three calls to xdr int() follow,
which insert the appropriate Rx opcode and the two operands into the Rx call. With
the IN arguments thus transmitted, RXDEMO Add() prepares to pull the value of the
single OUT parameter. The z xdrs XDR structure, originally set to XDR ENCODE objects,
is now reset to XDR DECODE to convert further items received into host byte order. Once
the return parameter promised by the function is retrieved, RXDEMO Add() returns
successfully.

Should any failure occur in passing the parameters to and from the server side of the
call, the branch to fail will invoke Rx EndCall(), which advises the server that the call
has come to a premature end (see Section 5.6.6 for full details on rx EndCall() and the
meaning of its return value).

Example Server and Client 149 August 28, 1991 10:38

Rx Specification

The next client-side stub appearing in this generated file handles the delivery of the IN
parameters for StartRXDEMO GetFile(). It operates identically as the RXDEMO Add()
stub routine in this respect, except that it does not attempt to retrieve the OUT parameter.
Since this is a streamed call, the number of bytes that will be placed on the Rx stream
cannot be determined at compile time, and must be handled explicitly by rxdemo client.c.

int StartRXDEMO_GetFile(z_call, a_nameToRead)
register struct rx_call *z_call;
char * a_nameToRead;

{
static int z_op = 2;
int z_result;
XDR z_xdrs;

xdrrx_create(&z_xdrs, z_call, XDR_ENCODE);

/* Marshal the arguments */
if ((!xdr_int(&z_xdrs, &z_op))

|| (!xdr_string(&z_xdrs, &a_nameToRead, RXDEMO_NAME_MAX_CHARS))) {
z_result = RXGEN_CC_MARSHAL;
goto fail;

}

z_result = RXGEN_SUCCESS;
fail:

return z_result;
}

The final stub routine appearing in this generated file, EndRXDEMO GetFile(), han-
dles the case where rxdemo client.c has already successfully recovered the unbounded
streamed data appearing on the call, and then simply has to fetch the OUT parameter.
This routine behaves identially to the latter portion of RXDEMO GetFile().

int EndRXDEMO_GetFile(z_call, a_result)
register struct rx_call *z_call;
int * a_result;

{
int z_result;
XDR z_xdrs;

/* Un-marshal the reply arguments */
xdrrx_create(&z_xdrs, z_call, XDR_DECODE);
if ((!xdr_int(&z_xdrs, a_result))) {

z_result = RXGEN_CC_UNMARSHAL;
goto fail;

}

z_result = RXGEN_SUCCESS;
fail:

Example Server and Client 150 August 28, 1991 10:38

Rx Specification

return z_result;
}

6.3.2 Server-Side Routines: rxdemo.ss.c

This generated file provides the core components required to implement the server side
of the rxdemo RPC service. Included in this file is the generated dispatcher routine,
RXDEMO ExecuteRequest(), which the rx NewService() invocation in rxdemo server.c
uses to construct the body of each listener thread’s loop. Also included are the server-
side stubs to handle marshalling and unmarshalling of parameters for each defined
RPC call (i.e., RXDEMO Add() and RXDEMO GetFile()). These stubs are called by
RXDEMO ExecuteRequest(). The routine to be called by RXDEMO ExecuteRequest()
depends on the opcode received, which appears as the very first longword in the call
data.

As usual, the first fragment is copyright information followed by the body of the defini-
tions from the interface file.

/*==%
% Edward R. Zayas %
% Transarc Corporation %
% %
% %
% The United States Government has rights in this work pursuant %
% to contract no. MDA972-90-C-0036 between the United States Defense %
% Advanced Research Projects Agency and Transarc Corporation. %
% %
% (C) Copyright 1991 Transarc Corporation %
% %
% Redistribution and use in source and binary forms are permitted %
% provided that: (1) source distributions retain this entire copy- %
% right notice and comment, and (2) distributions including binaries %
% display the following acknowledgement: %
% %
% ‘‘This product includes software developed by Transarc %
% Corporation and its contributors’’ %
% %
% in the documentation or other materials mentioning features or %
% use of this software. Neither the name of Transarc nor the names %
% of its contributors may be used to endorse or promote products %
% derived from this software without specific prior written %
% permission. %
% %
% THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED %
% WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF %
% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. %

Example Server and Client 151 August 28, 1991 10:38

Rx Specification

%==*/

/* Machine generated file -- Do NOT edit */

#include "rxdemo.h"

#include <rx/rx.h>
#include <rx/rx_null.h>
#define RXDEMO_SERVER_PORT 8000 /*Service port to advertise*/
#define RXDEMO_SERVICE_PORT 0 /*User server’s port*/
#define RXDEMO_SERVICE_ID 4 /*Service ID*/
#define RXDEMO_NULL_SECOBJ_IDX 0 /*Index of null security object*/
#define RXDEMO_MAX 3
#define RXDEMO_MIN 2
#define RXDEMO_NULL 0
#define RXDEMO_NAME_MAX_CHARS 64
#define RXDEMO_BUFF_BYTES 512
#define RXDEMO_CODE_SUCCESS 0
#define RXDEMO_CODE_CANT_OPEN 1
#define RXDEMO_CODE_CANT_STAT 2
#define RXDEMO_CODE_CANT_READ 3
#define RXDEMO_CODE_WRITE_ERROR 4

After this preamble, the first server-side stub appears. This RXDEMO Add() routine
is basically the inverse of the RXDEMO Add() client-side stub defined in rxdemo.cs.c.
Its job is to unmarshall the IN parameters for the call, invoke the “true” server-side
RXDEMO Add() routine (defined in rxdemo server.c), and then package and ship the
OUT parameter. Being so similar to the client-side RXDEMO Add(), no further discussion
is offered here.

long _RXDEMO_Add(z_call, z_xdrs)
struct rx_call *z_call;
XDR *z_xdrs;

{
long z_result;
int a, b;
int result;

if ((!xdr_int(z_xdrs, &a))
|| (!xdr_int(z_xdrs, &b))) {

z_result = RXGEN_SS_UNMARSHAL;
goto fail;

}

z_result = RXDEMO_Add(z_call, a, b, &result);
z_xdrs->x_op = XDR_ENCODE;
if ((!xdr_int(z_xdrs, &result)))

z_result = RXGEN_SS_MARSHAL;
fail:

return z_result;
}

Example Server and Client 152 August 28, 1991 10:38

Rx Specification

The second server-side stub, RXDEMO GetFile(), appears next. It operates identically
to RXDEMO Add(), first unmarshalling the IN arguments, then invoking the routine
that actually performs the server-side work for the call, then finishing up by returning
the OUT parameters.

long _RXDEMO_GetFile(z_call, z_xdrs)
struct rx_call *z_call;
XDR *z_xdrs;

{
long z_result;
char * a_nameToRead=(char *)0;
int a_result;

if ((!xdr_string(z_xdrs, &a_nameToRead, RXDEMO_NAME_MAX_CHARS))) {
z_result = RXGEN_SS_UNMARSHAL;
goto fail;

}

z_result = RXDEMO_GetFile(z_call, a_nameToRead, &a_result);
z_xdrs->x_op = XDR_ENCODE;
if ((!xdr_int(z_xdrs, &a_result)))

z_result = RXGEN_SS_MARSHAL;
fail:

z_xdrs->x_op = XDR_FREE;
if (!xdr_string(z_xdrs, &a_nameToRead, RXDEMO_NAME_MAX_CHARS)) goto fail1;
return z_result;

fail1:
return RXGEN_SS_XDRFREE;

}

The next portion of the automatically generated server-side module sets up the dispatcher
routine for incoming Rx calls. The above stub routines are placed into an array in opcode
order.

long _RXDEMO_Add();
long _RXDEMO_GetFile();

static long (*StubProcsArray0[])() = {_RXDEMO_Add, _RXDEMO_GetFile};

The dispatcher routine itself, RXDEMO ExecuteRequest, appears next. This is the func-
tion provided to the rx NewService() call in rxdemo server.c, and it is used as the body
of each listener thread’s service loop. When activated, it decodes the first longword in
the given Rx call, which contains the opcode. It then dispatches the call based on this
opcode, invoking the appropriate server-side stub as organized in the StubProcsArray.

RXDEMO_ExecuteRequest(z_call)

Example Server and Client 153 August 28, 1991 10:38

Rx Specification

register struct rx_call *z_call;
{

int op;
XDR z_xdrs;
long z_result;

xdrrx_create(&z_xdrs, z_call, XDR_DECODE);
if (!xdr_int(&z_xdrs, &op))

z_result = RXGEN_DECODE;
else if (op < RXDEMO_LOWEST_OPCODE || op > RXDEMO_HIGHEST_OPCODE)

z_result = RXGEN_OPCODE;
else

z_result = (*StubProcsArray0[op - RXDEMO_LOWEST_OPCODE])(z_call, &z_xdrs);
return z_result;

}

6.3.3 External Data Rep File: rxdemo.xdr.c

This file is created to provide the special routines needed to map any user-defined struc-
tures appearing as Rx arguments into and out of network byte order. Again, all on-the-
wire data appears in network byte order, insuring proper communication between servers
and clients with different memory organizations.

Since the rxdemo example application does not define any special structures to pass as
arguments in its calls, this generated file contains only the set of definitions appearing
in the interface file. In general, though, should the user define a struct xyz and use it
as a parameter to an RPC function, this file would contain a routine named xdr xyz(),
which converted the structure field-by-field to and from network byte order.

/*==%
% Edward R. Zayas %
% Transarc Corporation %
% %
% %
% The United States Government has rights in this work pursuant %
% to contract no. MDA972-90-C-0036 between the United States Defense %
% Advanced Research Projects Agency and Transarc Corporation. %
% %
% (C) Copyright 1991 Transarc Corporation %
% %
% Redistribution and use in source and binary forms are permitted %
% provided that: (1) source distributions retain this entire copy- %
% right notice and comment, and (2) distributions including binaries %
% display the following acknowledgement: %
% %
% ‘‘This product includes software developed by Transarc %
% Corporation and its contributors’’ %

Example Server and Client 154 August 28, 1991 10:38

Rx Specification

% %
% in the documentation or other materials mentioning features or %
% use of this software. Neither the name of Transarc nor the names %
% of its contributors may be used to endorse or promote products %
% derived from this software without specific prior written %
% permission. %
% %
% THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED %
% WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF %
% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. %
%==*/

/* Machine generated file -- Do NOT edit */

#include "rxdemo.h"

#include <rx/rx.h>
#include <rx/rx_null.h>
#define RXDEMO_SERVER_PORT 8000 /*Service port to advertise*/
#define RXDEMO_SERVICE_PORT 0 /*User server’s port*/
#define RXDEMO_SERVICE_ID 4 /*Service ID*/
#define RXDEMO_NULL_SECOBJ_IDX 0 /*Index of null security object*/
#define RXDEMO_MAX 3
#define RXDEMO_MIN 2
#define RXDEMO_NULL 0
#define RXDEMO_NAME_MAX_CHARS 64
#define RXDEMO_BUFF_BYTES 512
#define RXDEMO_CODE_SUCCESS 0
#define RXDEMO_CODE_CANT_OPEN 1
#define RXDEMO_CODE_CANT_STAT 2
#define RXDEMO_CODE_CANT_READ 3
#define RXDEMO_CODE_WRITE_ERROR 4

6.4 Sample Output

This section contains the output generated by running the example rxdemo server and
rxdemo client programs described above. The server end was run on a machine named
Apollo, and the client program was run on a machine named Bigtime.

The server program on Apollo was started as follows:

apollo: rxdemo_server

rxdemo_server: Example Rx server process

Listening on UDP port 8000

Example Server and Client 155 August 28, 1991 10:38

Rx Specification

At this point, rxdemo server has initialized its Rx module and started up its listener
LWPs, which are sleeping on the arrival of an RPC from any rxdemo client.

The client portion was then started on Bigtime:

bigtime: rxdemo_client apollo

rxdemo: Example Rx client process

Connecting to Rx server on ‘apollo’, IP address 0x1acf37c0, UDP port 8000
---> Connected.

Asking server to add 1 and 2: Reported sum is 3

The command line instructs rxdemo client to connect to the rxdemo server on host
apollo and to use the standard port defined for this service. It reports on the successful
Rx connection establishment, and immediately executes an rxdemo Add(1, 2) RPC. It
reports that the sum was successfully received. When the RPC request arrived at the
server and was dispatched by the rxdemo server code, it printed out the following line:

[Handling call to RXDEMO_Add(1, 2)]

Next, rxdemo client prompts for the name of the file to read from the rxdemo server. It
is told to fetch the Makefile for the Rx demo directory. The server is executing in the
same directory in which it was compiled, so an absolute name for the Makefile is not
required. The client echoes the following:

Name of file to read from server: Makefile
Setting up an Rx call for RXDEMO_GetFile...done

As with the rxdemo Add() call, rxdemo server receives this RPC, and prints out the
following information:

[Handling call to RXDEMO_GetFile(Makefile)]
[File opened]
[File has 2450 bytes]
[File closed]

It successfully opens the named file, and reports on its size in bytes. The rxdemo server
program then executes the streamed portion of the rxdemo GetFile call, and when com-
plete, indicates that the file has been closed. Meanwhile, rxdemo client prints out the
reported size of the file, follows it with the file’s contents, then advises that the test run
has completed:

Example Server and Client 156 August 28, 1991 10:38

Rx Specification

[File contents (2450 bytes) fetched over the Rx call appear below]

#===#
The United States Government has rights in this work pursuant
to contract no. MDA972-90-C-0036 between the United States Defense
Advanced Research Projects Agency and Transarc Corporation.
#
(C) Copyright 1991 Transarc Corporation
#
Redistribution and use in source and binary forms are permitted
provided that: (1) source distributions retain this entire copy-
right notice and comment, and (2) distributions including binaries
display the following acknowledgement:
#
‘‘This product includes software developed by Transarc
Corporation and its contributors’’
#
in the documentation or other materials mentioning features or
use of this software. Neither the name of Transarc nor the names
of its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.
#
THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
#===#

SHELL = /bin/sh
TOOL_CELL = grand.central.org
AFS_INCLIB_CELL = transarc.com
USR_CONTRIB = /afs/${TOOL_CELL}/darpa/usr/contrib/
PROJ_DIR = ${USR_CONTRIB}.site/grand.central.org/rxdemo/
AFS_INCLIB_DIR = /afs/${AFS_INCLIB_CELL}/afs/dest/
RXGEN = ${AFS_INCLIB_DIR}bin/rxgen
INSTALL = ${AFS_INCLIB_DIR}bin/install

LIBS = ${AFS_INCLIB_DIR}lib/librx.a \
${AFS_INCLIB_DIR}lib/liblwp.a

CFLAGS = -g \
-I. \
-I${AFS_INCLIB_DIR}include \
-I${AFS_INCLIB_DIR}include/afs \
-I${AFS_INCLIB_DIR} \
-I/usr/include

system: install

install: all
${INSTALL} rxdemo_client ${PROJ_DIR}bin
${INSTALL} rxdemo_server ${PROJ_DIR}bin

all: rxdemo_client rxdemo_server

Example Server and Client 157 August 28, 1991 10:38

Rx Specification

rxdemo_client: rxdemo_client.o ${LIBS} rxdemo.cs.o
${CC} ${CFLAGS} -o rxdemo_client rxdemo_client.o rxdemo.cs.o ${LIBS}

rxdemo_server: rxdemo_server.o rxdemo.ss.o ${LIBS}
${CC} ${CFLAGS} -o rxdemo_server rxdemo_server.o rxdemo.ss.o ${LIBS}

rxdemo_client.o: rxdemo.h

rxdemo_server.o: rxdemo.h

rxdemo.cs.c rxdemo.ss.c rxdemo.er.c rxdemo.h: rxdemo.xg
rxgen rxdemo.xg

clean:
rm -f *.o rxdemo.cs.c rxdemo.ss.c rxdemo.xdr.c rxdemo.h \

rxdemo_client rxdemo_server core

[End of file data]

rxdemo complete.

The rxdemo server program continues to run after handling these calls, offering its ser-
vices to any other callers. It can be killed by sending it an interrupt signal using Control-
C (or whatever mapping has been set up for the shell’s interrupt character).

Example Server and Client 158 August 28, 1991 10:38

Rx Specification

Bibliography

[1] Transarc Corporation. AFS 3.0 System Administrator’s Guide, F-30-0-D102, Pitts-
burgh, PA, April 1990.

[2] S.P. Miller, B.C. Neuman, J.I. Schiller, J.H. Saltzer. Kerberos Authentication and
Authorization System, Project Athena Technical Plan, Section E.2.1, M.I.T., De-
cember 1987.

[3] Bill Bryant. Designing an Authentication System: a Dialogue in Four Scenes,
Project Athena internal document, M.I.T, draft of 8 February 1988.

[4] S. R. Kleinman. Vnodes: An Architecture for Multiple file System Types in Sun
UNIX, Conference Proceedings, 1986 Summer Usenix Technical Conference, pp.
238-247, El Toro, CA, 1986.

Example Server and Client 159 August 28, 1991 10:38

Index

compile-time const RXDEBUG, 123, 124
const RX ACK DELAY, 71
const RX ACK DUPLICATE, 71
const RX ACK EXCEEDS WINDOW, 71
const RX ACK NOSPACE, 71
const RX ACK OUT OF SEQUENCE, 71
const RX ACK PING RESPONSE, 71
const RX ACK PING, 71
const RX ACK REQUESTED, 71
const RX ADDRINUSE, 72
const RX CALL CLEARED, 67
const RX CALL DEAD, 72, 80, 104
const RX CALL READER WAIT, 67
const RX CALL RECEIVE DONE, 67
const RX CALL TIMEOUT, 72, 102, 121
const RX CALL WAIT PACKETS, 67
const RX CALL WAIT PROC, 67
const RX CALL WAIT WINDOW ALLOC, 67
const RX CALL WAIT WINDOW SEND, 67
const RX CHALLENGE TIMEOUT, 64
const RX CHANNELMASK, 65
const RX CIDMASK, 65
const RX CIDSHIFT, 65, 85
const RX CLIENT CONNECTION, 66, 101
const RX CLIENT INITIATED, 68
const RX CONN DESTROY ME, 65
const RX CONN MAKECALL WAITING, 65, 121
const RX CONN USING PACKET CKSUM, 65,

101
const RX DEBUGI BADTYPE, 72
const RX DEBUGI GETALLCONN, 73, 74
const RX DEBUGI GETCONN, 74
const RX DEBUGI GETSTATS, 74, 90
const RX DEBUGI RXSTATS, 73, 74

const RX DEBUGI VERSION MINIMUM, 73
const RX DEBUGI VERSION W GETALLCONN,

73
const RX DEBUGI VERSION W RXSTATS, 73
const RX DEBUGI VERSION W SECSTATS, 73
const RX DEBUGI VERSION W UNALIGNED CONN,

73
const RX DEBUGI VERSION, 73
const RX DEFAULT STACK SIZE, 64, 94, 101
const RX DONTWAIT, 64
const RX EOF, 72
const RX HEADER SIZE, 69
const RX IDLE DEAD TIME, 64
const RX INVALID OPERATION, 72
const RX IPUDP SIZE, 69
const RX LAST PACKET, 68
const RX LOCAL PACKET SIZE, 69
const RX MAX PACKET DATA SIZE, 69
const RX MAX PACKET SIZE, 69
const RX MAX SERVICES, 64, 120
const RX MAXACKS, 64, 87
const RX MAXCALLS, 3, 79, 80, 82, 85, 121
const RX MODE EOF, 67, 126
const RX MODE ERROR, 67
const RX MODE RECEIVING, 67, 74, 126
const RX MODE SENDING, 67, 74
const RX MORE PACKETS, 68
const RX N PACKET CLASSES, 71
const RX N PACKET TYPES, 70
const RX OTHER IN, 74, 91
const RX OTHER OUT, 74, 91
const RX PACKET CLASS RECEIVE, 71
const RX PACKET CLASS SEND, 71
const RX PACKET CLASS SPECIAL, 71

i

Rx Specification

const RX PACKET TYPE ABORT, 70
const RX PACKET TYPE ACKALL, 70
const RX PACKET TYPE ACK, 70
const RX PACKET TYPE BUSY, 70
const RX PACKET TYPE CHALLENGE, 70
const RX PACKET TYPE DATA, 70, 98
const RX PACKET TYPE DEBUG, 70
const RX PACKET TYPE RESPONSE, 70
const RX PACKET TYPES, 94
const RX PRESET FLAGS, 68
const RX PROCESS MAXCALLS, 64
const RX PROCESS PRIORITY, 64
const RX PROTOCOL ERROR, 72
const RX REMOTE PACKET SIZE, 69
const RX REQUEST ACK, 68
const RX SERVER CONNECTION, 66, 100
const RX STATE ACTIVE, 66, 67, 83, 91,

102
const RX STATE DALLY, 66, 121, 122
const RX STATE NOTINIT, 66
const RX STATE PRECALL, 66
const RX USER ABORT, 72
const RX WAIT, 64

function BoostLock, 29
function CheckLock, 28
function clock Init(), 56
function clock UpdateTime(), 56
function FT GetTimeOfDay, 38
function FT Init, 37
function IOMGR CancelSignal, 32
function IOMGR Finalize, 31
function IOMGR Initialize, 30
function IOMGR Select, 31
function IOMGR Signal, 32
function IOMGR Sleep, 33
function LockInit, 24
function LWP ActiveProcess, 22
function LWP CreateProcess, 17
function LWP CurrentProcess, 22
function LWP DestroyProcess, 18
function LWP DispatchProcess, 21

function LWP GetRock, 24
function LWP InitializeProcessSupport, 16
function LWP MwaitProcess, 19
function LWP NewRock, 23
function LWP NoYieldSignal, 21
function LWP SignalProcess, 20
function LWP StackUsed, 22
function LWP TerminateProcessSupport,

17
function LWP WaitProcess, 19
function ObtainReadLock, 25
function ObtainSharedLock, 26
function ObtainWriteLock, 25
function PRE BeginCritical, 40
function PRE EndCritical, 41
function PRE EndPreempt, 39
function PRE InitPreempt, 39
function PRE PreemptMe, 40
function ReleaseReadLock, 27
function ReleaseSharedLock, 28
function ReleaseWriteLock, 27
function rx EndCall(), 121
function rx Finalize(), 124
function rx FlushWrite(), 126
function rx Init(), 72, 118, 120
function rx MakeCall(), 65
function rx NewCall(), 121, 122, 127
function rx NewConnection(), 120
function rx NewService(), 2, 78, 105, 119,

120, 122
function rx PrintPeerStats(), 124
function rx PrintStats(), 123
function rx ReadData(), 121
function rx ReadProc(), 110, 126
function rx SendData(), 121
function rx SetArrivalProc(), 127
function rx StartServer(), 101, 122
function rx WriteProc(), 95, 110, 125
function rxevent Cancel 1(), 60
function rxevent Init(), 59
function rxevent Post(), 60

Index ii August 28, 1991 10:38

Rx Specification

function rxevent RaiseEvents(), 61
function rxevent TimeToNextEvent(), 61
function rxi SetConnDeadTime(), 104
function TM eql, 37
function TM Final, 34
function TM GetEarliest, 36
function TM GetExpired, 36
function TM Init, 34
function TM Insert, 35
function TM Rescan, 35
function UnboostLock, 29

macro Q(), 48
macro QA(), 48
macro QR(), 49
macro QS(), 49
macro clock Add(), 58
macro clock Advance(), 57
macro clock ElapsedTime(), 57
macro clock Eq(), 57
macro clock Float(), 58
macro clock Ge(), 57
macro clock GetTime(), 56
macro clock Gt(), 57
macro clock IsZero(), 58
macro clock Le(), 57
macro clock Lt(), 58
macro clock Sec(), 56
macro clock Sub(), 58
macro clock Zero(), 58
macro queue Append(), 50
macro queue First(), 52
macro queue Init(), 49
macro queue InsertAfter(), 50
macro queue InsertBefore(), 50
macro queue IsEmpty(), 53
macro queue IsEnd(), 54
macro queue IsFirst(), 53
macro queue IsLast(), 53
macro queue IsNotEmpty(), 53
macro queue IsOnQueue(), 53
macro queue Last(), 52

macro queue MoveAppend(), 51
macro queue MovePrepend(), 51
macro queue Next(), 52
macro queue Prepend(), 49
macro queue Prev(), 52
macro queue Remove(), 51
macro queue Replace(), 51
macro queue Scan(), 54
macro queue ScanBackwards(), 55
macro queue SpliceAppend(), 50
macro queue SplicePrepend(), 50
macro rx ClientConn(), 101
macro rx ConnectionOf(), 94, 95
macro rx DataOf(), 97
macro rx Error(), 97, 110, 125, 126
macro rx GetAfterProc(), 105
macro rx GetBeforeProc(), 104
macro rx GetDataSize(), 98
macro rx GetLocalStatus(), 85, 96
macro rx GetPacketCksum(), 86, 98
macro rx GetRemoteStatus(), 85, 97
macro rx GetRock(), 99
macro rx GetSecurityHeaderSize(), 107
macro rx GetSecurityMaxTrailerSize(), 108
macro rx HostOf(), 96
macro rx IsClientConn(), 100
macro rx IsServerConn(), 100
macro rx IsUsingPktChecksum(), 86
macro rx IsUsingPktCksum(), 101
macro rx MaxUserDataSize(), 109
macro rx PeerOf(), 96
macro rx PortOf(), 96
macro rx Read(), 109, 110, 126
macro rx SecurityClassOf(), 99
macro rx SecurityObjectOf(), 100
macro rx ServerConn(), 100
macro rx SetAfterProc(), 105, 106
macro rx SetBeforeProc(), 105
macro rx SetConnDeadTime(), 103, 104
macro rx SetConnHardDeadTime(), 104
macro rx SetDataSize(), 98

Index iii August 28, 1991 10:38

Rx Specification

macro rx SetDestroyConnProc(), 106
macro rx SetIdleDeadTime(), 102, 104
macro rx SetLocalStatus(), 85, 97
macro rx SetMaxProcs(), 102
macro rx SetMinProcs(), 102
macro rx SetNewConnProc(), 106
macro rx SetPacketCksum(), 86, 99
macro rx SetRemoteStatus(), 85
macro rx SetRock(), 99
macro rx SetRxDeadTime(), 103
macro rx SetRxDeadTime, 92
macro rx SetSecurityHeaderSize(), 107
macro rx SetSecurityMaxTrailerSize(), 108
macro rx SetServiceDeadTime(), 103
macro rx SetStackSize(), 64, 94, 101
macro rx UserDataOf(), 109
macro rx Write(), 94, 109, 110, 125
macro rxevent Cancel(), 60
macro RXS CheckAuthentication(), 114
macro RXS CheckPacket(), 116
macro RXS CheckResponse(), 116
macro RXS Close(), 112
macro RXS CreateChallenge(), 114
macro RXS DestroyConnection(), 117
macro RXS GetChallenge(), 115
macro RXS GetResponse(), 115
macro RXS GetStats(), 117
macro RXS NewConnection(), 112
macro RXS OP(), 111
macro RXS PreparePacket(), 112
macro RXS SendPacket(), 113

rxdebug program, 88

struct clock, 55
struct queue, 48
struct rx ackPacket, 87
struct rx call, 82, 95–97, 105, 106, 113
struct rx connection, 79, 90, 96, 99–

101, 104, 106–109, 112, 114–118
struct rx debugConn vL, 91
struct rx debugConn, 90

struct rx debugIn, 89
struct rx debugStats, 90
struct rx header, 85
struct rx packet, 69, 86, 98, 99, 109,

113, 115, 116
struct rx peer, 81, 95, 96
struct rx securityClass, 76, 111
struct rx securityObjectStats, 77, 118
struct rx securityOps, 75, 111–117
struct rx service, 78, 102, 103, 105–107
struct rx stats, 88, 123
struct rxevent, 59

var clock nUpdates, 56
var rx connDeadTime, 92
var rx extraPackets, 93
var rx extraQuota, 93
var rx idleConnectionTime, 92
var rx idlePeerTime, 92
var rx nFreePackets, 93
var rx nPackets, 93
var rx packetTypes, 70, 94
var rx stackSize, 94
var rx stats, 94

washtool, 145

Index iv August 28, 1991 10:38

