
AFS-3 Programmer’s Reference:
Volume Server/Volume Location Server

Interface

Edward R. Zayas

Transarc Corporation

Version 1.0 of 29 August 1991 14:48

c©Copyright 1991 Transarc Corporation

All Rights Reserved

FS-00-D165

AFS-3 Vol/VL Server Spec

Contents

1 Overview . 1
1.1 Introduction . 1
1.2 Volumes . 1

1.2.1 Definition . 1
1.2.2 Volume Naming . 2
1.2.3 Volume Types . 2

1.3 Scope . 3
1.4 Document Layout . 3

2 Volume Location Server Architecture . 4
2.1 Introduction . 4
2.2 The Need For Volume Location . 4
2.3 The VLDB . 5

2.3.1 Layout . 5
2.3.2 Database Replication . 6

2.4 The vlserver Process . 6

3 Volume Location Server Interface . 8
3.1 Introduction . 8
3.2 Constants . 9

3.2.1 Configuration and Boundary Quantities 9
3.2.2 Update Entry Bits . 10
3.2.3 List-By-Attribute Bits . 11
3.2.4 Volume Type Indices . 11
3.2.5 States for struct vlentry . 12
3.2.6 States for struct vldbentry . 12
3.2.7 ReleaseType Argument Values 13
3.2.8 Miscellaneous . 13

3.3 Structures and Typedefs . 14
3.3.1 struct vldbentry . 14
3.3.2 struct vlentry . 15
3.3.3 struct vital vlheader . 16

Table of Contents i August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.3.4 struct vlheader . 16
3.3.5 struct VldbUpdateEntry . 17
3.3.6 struct VldbListByAttributes 17
3.3.7 struct single vldbentry . 18
3.3.8 struct vldb list . 18
3.3.9 struct vldstats . 18
3.3.10 bulk . 19
3.3.11 bulkentries . 19
3.3.12 vldblist . 20
3.3.13 vlheader . 20
3.3.14 vlentry . 20

3.4 Error Codes . 21
3.5 Macros . 22

3.5.1 COUNT REQ() . 22
3.5.2 COUNT ABO() . 22
3.5.3 DOFFSET() . 22

3.6 Functions . 23
3.6.1 VL CreateEntry . 24
3.6.2 VL DeleteEntry . 25
3.6.3 VL GetEntryByID . 26
3.6.4 VL GetEntryByName . 27
3.6.5 VL GetNewVolumeId . 28
3.6.6 VL ReplaceEntry . 29
3.6.7 VL UpdateEntry . 30
3.6.8 VL SetLock . 31
3.6.9 VL ReleaseLock . 32
3.6.10 VL ListEntry . 33
3.6.11 VL ListAttributes . 34
3.6.12 VL LinkedList . 35
3.6.13 VL GetStats . 36
3.6.14 VL Probe . 37

3.7 Kernel Interface Subset . 38

4 Volume Server Architecture . 39
4.1 Introduction . 39
4.2 Disk Representation . 39
4.3 Transactions . 40
4.4 The volserver Process . 41
4.5 Log File . 42

5 Volume Server Interface . 44
5.1 Introduction . 44

Table of Contents ii August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.2 Constants . 44
5.2.1 Configuration and Boundary Values 45
5.2.2 Interface Routine Opcodes . 45
5.2.3 Transaction Flags . 46

5.2.3.1 vflags . 46
5.2.3.2 iflags . 47
5.2.3.3 tflags . 47

5.2.4 Volume Types . 47
5.2.5 LWP State . 48
5.2.6 States for struct vldbentry . 48
5.2.7 Validity Checks . 48
5.2.8 Miscellaneous . 49

5.3 Exported Variables . 50
5.4 Structures and Typedefs . 51

5.4.1 struct volser trans . 51
5.4.2 struct volDescription . 52
5.4.3 struct partList . 52
5.4.4 struct volser status . 53
5.4.5 struct destServer . 54
5.4.6 struct volintInfo . 54
5.4.7 struct transDebugInfo . 55
5.4.8 struct pIDs . 56
5.4.9 struct diskPartition . 56
5.4.10 struct restoreCookie . 57
5.4.11 transDebugEntries . 57
5.4.12 volEntries . 58

5.5 Error Codes . 59
5.5.1 Standard . 59
5.5.2 Low-Level . 60

5.6 Macros . 61
5.6.1 THOLD() . 61
5.6.2 ISNAMEVALID() . 61

5.7 Functions . 62
5.7.1 AFSVolCreateVolume . 64
5.7.2 AFSVolDeleteVolume . 66
5.7.3 AFSVolNukeVolume . 67
5.7.4 AFSVolDump . 68
5.7.5 AFSVolSignalRestore . 69
5.7.6 AFSVolRestore . 70
5.7.7 AFSVolForward . 71
5.7.8 AFSVolClone . 72

Table of Contents iii August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.9 AFSVolReClone . 73
5.7.10 AFSVolSetForwarding . 74
5.7.11 AFSVolTransCreate . 75
5.7.12 AFSVolEndTrans . 76
5.7.13 AFSVolGetFlags . 77
5.7.14 AFSVolSetFlags . 78
5.7.15 AFSVolGetName . 79
5.7.16 AFSVolGetStatus . 80
5.7.17 AFSVolSetIdsTypes . 81
5.7.18 AFSVolSetDate . 82
5.7.19 AFSVolListPartitions . 83
5.7.20 AFSVolPartitionInfo . 84
5.7.21 AFSVolListVolumes . 85
5.7.22 AFSVolListOneVolume . 86
5.7.23 AFSVolGetNthVolume . 87
5.7.24 AFSVolMonitor . 88

Index . i

Table of Contents iv August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Chapter 1

Overview

1.1 Introduction

This document describes the architecture and interfaces for two of the important agents
of the AFS distributed file system, the Volume Server and the Volume Location Server.
The Volume Server allows operations affecting entire AFS volumes to be executed, while
the Volume Location Server provides a lookup service for volumes, identifying the server
or set of servers on which volume instances reside.

1.2 Volumes

1.2.1 Definition

The underlying concept manipulated by the two AFS servers examined by this document
is the volume. Volumes are the basic mechanism for organizing the data stored within
the file system. They provide the foundation for addressing, storing, and accessing file
data, along with serving as the administrative units for replication, backup, quotas, and
data motion between File Servers.

Specifically, a volume is a container for a hierarchy of files, a connected file system
subtree. In this respect, a volume is much like a traditional unix file system partition.
Like a partition, a volume can be mounted in the sense that the root directory of the
volume can be named within another volume at an AFS mount point. The entire file
system hierarchy is built up in this manner, using mount points to glue together the

Overview 1 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

individual subtrees resident within each volume. The root of this hierarchy is then
mounted by each AFS client machine using a conventional unix mount point within the
workstation’s local file system. By convention, this entryway into the AFS domain is
mounted on the /afs local directory. From a user’s point of view, there is only a single
mount point to the system; the internal mount points are generally transparent.

1.2.2 Volume Naming

There are two methods by which volumes may be named. The first is via a human-
readable string name, and the second is via a 32-bit numerical identifier. Volume iden-
tifiers, whether string or numerical, must be unique within any given cell. AFS mount
points may use either representation to specify the volume whose root directory is to be
accessed at the given position. Internally, however, AFS agents use the numerical form
of identification exclusively, having to translate names to the corresponding 32-bit value.

1.2.3 Volume Types

There are three basic volume types: read-write, read-only, and backup volumes.

• Read-write: The data in this volume may be both read and written by those
clients authorized to do so.

• Read-only: It is possible to create one or more read-only snapshots of read-write
volumes. The read-write volume serving as the source image is referred to as the
parent volume. Each read-only clone, or child, instance must reside on a different
unix disk partition than the other clones. Every clone instance generated from
the same parent read-write volume has the identical volume name and numerical
volume ID. This is the reason why no two clones may appear on the same disk
partition, as there would be no way to differentiate the two. AFS clients are
allowed to read files and directories from read-only volumes, but cannot overwrite
them individually. However, it is possible to make changes to the read-write parent
and then release the contents of the entire volume to all the read-only replicas. The
release operation fails if it does not reach the appropriate replication sites.

• Backup: A backup volume is a special instance of a read-only volume. While it is
also a read-only snapshot of a given read-write volume, only one instance is allowed
to exist at any one time. Also, the backup volume must reside on the same partition
as the parent read-write volume from which it was created. It is from a backup
volume that the AFS backup system writes file system data to tape. In addition,

Overview 2 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

backup volumes may be mounted into the file tree just like the other volume types.
In fact, by convention, the backup volume for each user’s home directory subtree
is typically mounted as OldFiles in that directory. If a user accidentally deletes a
file that resides in the backup snapshot, the user may simply copy it out of the
backup directly without the assistance of a system administrator, or any kind of
tape restore operation.

Backup volume are implemented in a copy-on-write fashion. Thus, backup volumes
may be envisioned as consisting of a set of pointers to the true data objects in the
base read-write volume when they are first created. When a file is overwritten
in the read-write version for the first time after the backup volume was created,
the original data is physically written to the backup volume, breaking the copy-
on-write link. With this mechanism, backup volumes maintain the image of the
read-write volume at the time the snapshot was taken using the minimum amount
of additional disk space.

1.3 Scope

This paper is a member of a documentation suite providing specifications of the operation
and interfaces offered by the various AFS servers and agents. The scope of this work is
to provide readers with a sufficiently detailed description of the Volume Location Server
and the Volume Server so that they may construct client applications which call their
RPC interface routines.

1.4 Document Layout

After this introductory portion of the document, Chapters 2 and 3 examine the archi-
tecture and RPC interface of the Volume Location Server and its replicated database.
Similarly, Chapters 4 and 5 describe the architecture and RPC interface of the Volume
Server.

Overview 3 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Chapter 2

Volume Location Server Architecture

2.1 Introduction

The Volume Location Server allows AFS agents to query the location and basic status of
volumes resident within the given cell. Volume Location Server functions may be invoked
directly from authorized users via the vos utility.

This chapter briefly discusses various aspects of the Volume Location Server’s architec-
ture. First, the need for volume location is examined, and the specific parties that call
the Volume Location Server interface routines are identified. Then, the database main-
tained to provide volume location service, the Volume Location Database (VLDB), is
examined. Finally, the vlserver process which implements the Volume Location Server is
considered.

As with all AFS servers, the Volume Location Server uses the Rx remote procedure call
package for communication with its clients.

2.2 The Need For Volume Location

The Cache Manager agent is the primary consumer of AFS volume location service, on
which it is critically dependent for its own operation. The Cache Manager needs to map
volume names or numerical identifiers to the set of File Servers on which its instances
reside in order to satisfy the file system requests it is processing on behalf of it clients.
Each time a Cache Manager encounters a mount point for which it does not have location
information cached, it must acquire this information before the pathname resolution may

Volume Location Server Architecture 4 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

be successfully completed. Once the File Server set is known for a particular volume, the
Cache Manager may then select the proper site among them (e.g. choosing the single
home for a read-write volume, or randomly selecting a site from a read-only volume’s
replication set) and begin addressing its file manipulation operations to that specific
server.

While the Cache Manager consults the volume location service, it is not capable of
changing the location of volumes and hence modifying the information contained therein.
This capability to perform acts which change volume location is concentrated within the
Volume Server. The Volume Server process running on each server machine manages all
volume operations affecting that platform, including creations, deletions, and movements
between servers. It must update the volume location database every time it performs
one of these actions.

None of the other AFS system agents has a need to access the volume location database
for its site. Surprisingly, this also applies to the File Server process. It is only aware of
the specific set of volumes that reside on the set of physical disks directly attached to the
machine on which they execute. It has no knowlege of the universe of volumes resident
on other servers, either within its own cell or in foreign cells.

2.3 The VLDB

The Volume Location Database (VLDB) is used to allow AFS application programs to
discover the location of any volume within its cell, along with select information about
the nature and state of that volume. It is organized in a very straightforward fashion,
and uses the ubik [4] [5] facility to to provide replication across multiple server sites.

2.3.1 Layout

The VLDB itself is a very simple structure, and synchronized copies may be maintained
at two or more sites. Basically, each copy consists of header information, followed by
a linear (yet unbounded) array of entries. There are several associated hash tables
used to perform lookups into the VLDB. The first hash table looks up volume location
information based on the volume’s name. There are three other hash tables used for
lookup, based on volume ID/type pairs, one for each possible volume type.

The VLDB for a large site may grow to contain tens of thousands of entries, so some at-
tempts were made to make each entry as small as possible. For example, server addresses
within VLDB entries are represented as single-byte indicies into a table containing the

Volume Location Server Architecture 5 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

full longword IP addresses.

A free list is kept for deleted VLDB entries. The VLDB will not grow unless all the
entries on the free list have been exhausted, keeping it as compact as possible.

2.3.2 Database Replication

The VLDB, along with other important AFS databases, may be replicated to multiple
sites to improve its availability. The ubik replication package is used to implement this
functionality for the VLDB. A full description of ubik and of the quorum completion
algorithm it implements may be found in [4] and [5]. The basic abstraction provided
by ubik is that of a disk file replicated to multiple server locations. One machine is
considered to be the synchronization site, handling all write operations on the database
file. Read operations may be directed to any of the active members of the quorum, namely
a subset of the replication sites large enough to insure integrity across such failures as
individual server crashes and network partitions. All of the quorum members participate
in regular elections to determine the current synchronization site. The ubik algorithms
allow server machines to enter and exit the quorum in an orderly and consistent fashion.
All operations to one of these replicated “abstract files” are performed as part of a
transaction. If all the related operations performed under a transaction are successful,
then the transaction is committed, and the changes are made permanent. Otherwise, the
transaction is aborted, and all of the operations for that transaction are undone.

2.4 The vlserver Process

The user-space vlserver process is in charge of providing volume location service for AFS
clients. This program maintains the VLDB replica at its particular server, and cooperates
with all other vlserver processes running in the given cell to propagate updates to the
database. It implements the RPC interface defined in the vldbint.xg definition file for the
rxgen RPC stub generator program. As part of its startup sequence, it must discover
the VLDB version it has on its local disk, move to join the quorum of replication sites
for the VLDB, and get the latest version if the one it came up with was out of date.
Eventually, it will synchronize with the other VLDB replication sites, and it will begin
accepting calls.

The vlserver program uses at most three Rx worker threads to listen for incoming Volume
Location Server calls. It has a single, optional command line argument. If the string
“-noauth” appears when the program is invoked, then vlserver will run in an unau-
thenticated mode where any individual is considered authorized to perform any VLDB

Volume Location Server Architecture 6 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

operation. This mode is necessary when first bootstrapping an AFS installation.

Volume Location Server Architecture 7 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Chapter 3

Volume Location Server Interface

3.1 Introduction

This chapter documents the API for the Volume Location Server facility, as defined by
the vldbint.xg Rxgen interface file and the vldbint.h include file. Descriptions of all
the constants, structures, macros, and interface functions available to the application
programmer appear here.

It is expected that Volume Location Server client programs run in user space, as does the
associated vos volume utility. However, the kernel-resident Cache Manager agent also
needs to call a subset of the Volume Location Server’s RPC interface routines. Thus,
a second Volume Location Server interface is available, built exclusively to satisfy the
Cache Manager’s limited needs. This subset interface is defined by the afsvlint.xg Rxgen
interface file, and is examined in the final section of this chapter.

Volume Location Server Interface 8 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.2 Constants

This section covers the basic constant definitions of interest to the Volume Location
Server application programmer. These definitions appear in the vldbint.h file, automati-
cally generated from the vldbint.xg Rxgen interface file, and in vlserver.h.

Each subsection is devoted to describing the constants falling into the following cate-
gories:

• Configuration and boundary quantities

• Update entry bits

• List-by-attribute bits

• Volume type indices

• States for struct vlentry

• States for struct vldbentry

• ReleaseType argument values

• Miscellaneous items

3.2.1 Configuration and Boundary Quantities

These constants define some basic system values, including configuration information.

Volume Location Server Interface 9 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Name Value Description

MAXNAMELEN 65 Maximum size of various character strings, including
volume name fields in structures and host names.

MAXNSERVERS 8 Maximum number of replication sites for a volume.
MAXTYPES 3 Maximum number of volume types.
VLDBVERSION 1 VLDB database version number.
HASHSIZE 8,191 Size of internal Volume Location Server volume name

and volume ID hash tables. This must always be a
prime number.

NULLO 0 Specifies a null pointer value.
VLDBALLOCCOUNT 40 Value used when allocating memory internally for

VLDB entry records.
BADSERVERID 255 Illegal Volume Location Server host ID.
MAXSERVERID 30 Maximum number of servers appearing in the VLDB.
MAXSERVERFLAG 0x80 First unused flag value in such fields as serverFlags

in struct vldbentry and RepsitesNewFlags in
struct VldbUpdateEntry .

MAXPARTITIONID 126 Maximum number of AFS disk partitions for any one
server.

MAXBUMPCOUNT 0x7fffffff Maximum interval that the current high-watermark
value for a volume ID can be increased in one
operation.

MAXLOCKTIME 0x7fffffff Maximum number of seconds that any VLDB entry
can remained locked.

SIZE 1,024 Maximum size of the name field within a struct

VolumeDiskData inside a struct Volume’s header

field.

3.2.2 Update Entry Bits

These constants define bit values for the Mask field in the struct VldbUpdateEntry.
Specifically, setting these bits is equivalent to declaring that the corresponding field
within an object of type struct VldbUpdateEntry has been set. For example, setting
the VLUPDATE VOLUMENAME flag in Mask indicates that the name field contains a valid
value.

Volume Location Server Interface 10 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Name Value Description

VLUPDATE VOLUMENAME 0x0001 If set, indicates that the name field is valid.
VLUPDATE VOLUMETYPE 0x0002 If set, indicates that the volumeType field is

valid.
VLUPDATE FLAGS 0x0004 If set, indicates that the flags field is valid.
VLUPDATE READONLYID 0x0008 If set, indicates that the ReadOnlyId field is

valid.
VLUPDATE BACKUPID 0x0010 If set, indicates that the BackupId field is

valid.
VLUPDATE REPSITES 0x0020 If set, indicates that the nModifiedRepsites

field is valid.
VLUPDATE CLONEID 0x0080 If set, indicates that the cloneId field is valid.
VLUPDATE REPS DELETE 0x0100 Is the replica being deleted?
VLUPDATE REPS ADD 0x0200 Is the replica being added?
VLUPDATE REPS MODSERV 0x0400 Is the server part of the replica location

correct?
VLUPDATE REPS MODPART 0x0800 Is the partition part of the replica location

correct?
VLUPDATE REPS MODFLAG 0x1000 Various modification flag values.

3.2.3 List-By-Attribute Bits

These constants define bit values for the Mask field in the struct VldbListByAttributes

is to be used in a match. Specifically, setting these bits is equivalent to declaring that the
corresponding field within an object of type struct VldbListByAttributes is set. For
example, setting the VLLIST SERVER flag in Mask indicates that the server field contains
a valid value.

Name Value Description

VLLIST SERVER 0x1 If set, indicates that the server field is valid.
VLLIST PARTITION 0x2 If set, indicates that the partition field is valid.
VLLIST VOLUMETYPE 0x4 If set, indicates that the volumetype field is valid.
VLLIST VOLUMEID 0x8 If set, indicates that the volumeid field is valid.
VLLIST FLAG 0x10 If set, indicates that the flag field is valid.

3.2.4 Volume Type Indices

These constants specify the order of entries in the volumeid array in an object of type
struct vldbentry. They also identify the three different types of volumes in AFS.

Volume Location Server Interface 11 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Name Value Description

RWVOL 0 Read-write volume.
ROVOL 1 Read-only volume.
BACKVOL 2 Backup volume.

3.2.5 States for struct vlentry

The following constants appear in the flags field in objects of type struct vlentry.
The first three values listed specify the state of the entry, while all the rest stamp the
entry with the type of an ongoing volume operation, such as a move, clone, backup,
deletion, and dump. These volume operations are the legal values to provide to the
voloper parameter of the VL SetLock() interface routine.

Name Value Description

VLFREE 0x1 Entry is in the free list.
VLDELETED 0x2 Entry is soft-deleted.
VLLOCKED 0x4 Advisory lock held on the entry.

VLOP MOVE 0x10 The associated volume is being moved between servers.
VLOP RELEASE 0x20 The associated volume is being cloned to its replication

sites.
VLOP BACKUP 0x40 A backup volume is being created for the associated

volume.
VLOP DELETE 0x80 The associated volume is being deleted.
VLOP DUMP 0x100 A dump is being taken of the associated volume.

For convenience, the constant VLOP ALLOPERS is defined as the inclusive OR of the above
values from VLOP MOVE through VLOP DUMP.

3.2.6 States for struct vldbentry

Of the following constants, the first three appear in the flags field within an object
of type struct vldbentry, advising of the existence of the basic volume types for the
given volume, and hence the validity of the entries in the volumeId array field. The rest
of the values provided in this table appear in the serverFlags array field, and apply to
the instances of the volume appearing in the various replication sites.

This structure appears in numerous Volume Location Server interface calls, namely
VL CreateEntry(), VL GetEntryByID(), VL GetEntryByName(), VL ReplaceEntry() and
VL ListEntry().

Volume Location Server Interface 12 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Name Value Description

VLF RWEXISTS 0x1000 The read-write volume ID is valid.
VLF ROEXISTS 0x2000 The read-only volume ID is valid.
VLF BACKEXISTS 0x4000 The backup volume ID is valid.

VLSF NEWREPSITE 0x01 Not used; originally intended to mark an entry as
belonging to a partially-created volume instance.

VLSF ROVOL 0x02 A read-only version of the volume appears at this
server.

VLSF RWVOL 0x04 A read-write version of the volume appears at this
server.

VLSF BACKVOL 0x08 A backup version of the volume appears at this server.

3.2.7 ReleaseType Argument Values

The following values are used in the ReleaseType argument to various Volume Location
Server interface routines, namely VL ReplaceEntry(), VL UpdateEntry() andVL ReleaseLock().

Name Value Description

LOCKREL TIMESTAMP 1 Is the LockTimestamp field valid?
LOCKREL OPCODE 2 Are any of the bits valid in the flags field?
LOCKREL AFSID 4 Is the LockAfsId field valid?

3.2.8 Miscellaneous

Miscellaneous values.

Name Value Description

VLREPSITE NEW 1 Has a replication site gotten a new release of a volume?

A synonym for this constant is VLSF NEWREPSITE.

Volume Location Server Interface 13 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.3 Structures and Typedefs

This section describes the major exported Volume Location Server data structures of
interest to application programmers, along with the typedefs based upon those structures.

3.3.1 struct vldbentry

This structure represents an entry in the VLDB as made visible to Volume Location
Server clients. It appears in numerous Volume Location Server interface calls, namely
VL CreateEntry(), VL GetEntryByID(), VL GetEntryByName(), VL ReplaceEntry() and
VL ListEntry().

Fields

char name[] - The string name for the volume, with a maximum length of MAXNAMELEN
(65) characters, including the trailing null.

long volumeType - The volume type, one of RWVOL, ROVOL, or BACKVOL.

long nServers - The number of servers that have an instance of this volume.

long serverNumber[] - An array of indices into the table of servers, identifying
the sites holding an instance of this volume. There are at most MAXNSERVERS
(8) of these server sites allowed by the Volume Location Server.

long serverPartition[] - An array of partition identifiers, corresponding directly to
the serverNumber array, specifying the partition on which each of those volume
instances is located. As with the serverNumber array, serverPartition has
up to MAXNSERVERS (8) entries.

long serverFlags[] - This array holds one flag value for each of the servers in the
previous arrays. Again, there are MAXNSERVERS (8) slots in this array.

u long volumeId[] - An array of volume IDs, one for each volume type. There are
MAXTYPES slots in this array.

long cloneId - This field is used during a cloning operation.

long flags - Flags concerning the status of the fields within this structure; see
Section 3.2.6 for the bit values that apply.

Volume Location Server Interface 14 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.3.2 struct vlentry

This structure is used internally by the Volume Location Server to fully represent a
VLDB entry. The client-visible struct vldbentry represents merely a subset of the
information contained herein.

Fields

u long volumeId[] - An array of volume IDs, one for each of the MAXTYPES of
volume types.

long flags - Flags concerning the status of the fields within this structure; see
Section 3.2.6 for the bit values that apply.

long LockAfsId - The individual who locked the entry. This feature has not yet
been implemented.

long LockTimestamp - Time stamp on the entry lock.

long cloneId - This field is used during a cloning operation.

long AssociatedChain - Pointer to the linked list of associated VLDB entries.

long nextIdHash[] - Array of MAXTYPES next pointers for the ID hash table pointer,
one for each related volume ID.

long nextNameHash - Next pointer for the volume name hash table.

long spares1[] - Two longword spare fields.

char name[] - The volume’s string name, with a maximum of MAXNAMELEN (65)
characters, including the trailing null.

u char volumeType - The volume’s type, one of RWVOL, ROVOL, or BACKVOL.

u char serverNumber[] - An array of indices into the table of servers, identifying
the sites holding an instance of this volume. There are at most MAXNSERVERS
(8) of these server sites allowed by the Volume Location Server.

u char serverPartition[] - An array of partition identifiers, corresponding directly
to the serverNumber array, specifying the partition on which each of those vol-
ume instances is located. As with the serverNumber array, serverPartition
has up to MAXNSERVERS (8) entries.

u char serverFlags[] - This array holds one flag value for each of the servers in
the previous arrays. Again, there are MAXNSERVERS (8) slots in this array.

u char RefCount - Only valid for read-write volumes, this field serves as a refer-
ence count, basically the number of dependent children volumes.

char spares2[] - This field is used for 32-bit alignment.

Volume Location Server Interface 15 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.3.3 struct vital vlheader

This structure defines the leading section of the VLDB header, of type struct vlheader.
It contains frequently-used global variables and general statistics information.

Fields

long vldbversion - The VLDB version number. This field must appear first in the
structure.

long headersize - The total number of bytes in the header.

long freePtr - Pointer to the first free enry in the free list, if any.

long eofPtr - Pointer to the first free byte in the header file.

long allocs - The total number of calls to the internal AllocBlock() function directed
at this file.

long frees - The total number of calls to the internal FreeBlock() function directed
at this file.

long MaxVolumeId - The largest volume ID ever granted for this cell.

long totalEntries[] - The total number of VLDB entries by volume type in the
VLDB. This array has MAXTYPES slots, one for each volume type.

3.3.4 struct vlheader

This is the layout of the information stored in the VLDB header. Notice it includes an
object of type struct vital vlheader described above (see Section 3.3.3) as the first
field.

Fields

struct vital vlheader vital header - Holds critical VLDB header information.

u long IpMappedAddr[] - Keeps MAXSERVERID+1 mappings of IP addresses to
relative ones.

long VolnameHash[] - The volume name hash table, with HASHSIZE slots.

long VolidHash[][] - The volume ID hash table. The first dimension in this array
selects which of the MAXTYPES volume types is desired, and the second dimen-
sion actually implements the HASHSIZE hash table buckets for the given volume
type.

Volume Location Server Interface 16 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.3.5 struct VldbUpdateEntry

This structure is used as an argument to the VL UpdateEntry() routine (see Section
3.6.7). Please note that multiple entries can be updated at once by setting the appro-
priate Mask bits. The bit values for this purpose are defined in Section 3.2.2.

Fields

u long Mask - Bit values determining which fields are to be affected by the update
operation.

char name[] - The volume name, up to MAXNAMELEN (65) characters including the
trailing null.

long volumeType - The volume type.

long flags - This field is used in conjuction with Mask (in fact, one of the Mask bits
determines if this field is valid) to choose the valid fields in this record.

u long ReadOnlyId - The read-only ID.

u long BackupId - The backup ID.

long cloneId - The clone ID.

long nModifiedRepsites - Number of replication sites whose entry is to be changed
as below.

u long RepsitesMask[] - Array of bit masks applying to the up to MAXNSERVERS
(8) replication sites involved.

long RepsitesTargetServer[] - Array of target servers for the operation, at most
MAXNSERVERS (8) of them.

long RepsitesTargetPart[] - Array of target server partitions for the operation,
at most MAXNSERVERS (8) of them.

long RepsitesNewServer[] - Array of new server sites, at most MAXNSERVERS (8)
of them.

long RepsitesNewPart[] - Array of new server partitions for the operation, at
most MAXNSERVERS (8) of them.

long RepsitesNewFlags[] - Flags applying to each of the new sites, at most
MAXNSERVERS (8) of them.

3.3.6 struct VldbListByAttributes

This structure is used by the VL ListAttributes() routine (see Section 3.6.11).

Volume Location Server Interface 17 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Fields

u long Mask - Bit mask used to select the following attribute fields on which to
match.

long server - The server address to match.

long partition - The partition ID to match.

long volumetype - The volume type to match.

long volumeid - The volume ID to match.

long flag - Flags concerning these values.

3.3.7 struct single vldbentry

This structure is used to construct the vldblist object (See Section 3.3.12), which
basically generates a queueable (singly-linked) version of struct vldbentry.

Fields

vldbentry VldbEntry - The VLDB entry to be queued.

vldblist next vldb - The next pointer in the list.

3.3.8 struct vldb list

This structure defines the item returned in linked list form from the VL LinkedList()
function (see Section 3.6.12). This same object is also returned in bulk form in calls to
the VL ListAttributes() routine (see Section 3.6.11).

Fields

vldblist node - The body of the first object in the linked list.

3.3.9 struct vldstats

This structure defines fields to record statistics on opcode hit frequency. The MAX NUMBER OPCODES

constant has been defined as the maximum number of opcodes supported by this struc-
ture, and is set to 30.

Volume Location Server Interface 18 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Fields

unsigned long start time - Clock time when opcode statistics were last cleared.

long requests[] - Number of requests received for each of the MAX NUMBER OPCODES

opcode types.

long aborts[] - Number of aborts experienced for each of the MAX NUMBER OPCODES

opcode types.

long reserved[] - These five longword fields are reserved for future use.

3.3.10 bulk

typedef opaque bulk<DEFAULTBULK>;

This typedef may be used to transfer an uninterpreted set of bytes across the Volume
Location Server interface. It may carry up to DEFAULTBULK (10,000) bytes.

Fields

bulk len - The number of bytes contained within the data pointed to by the next
field.

bulk val - A pointer to a sequence of bulk len bytes.

3.3.11 bulkentries

typedef vldbentry bulkentries<>;

This typedef is used to transfer an unbounded number of struct vldbentry objects. It
appears in the parameter list for the VL ListAttributes() interface function.

Fields

bulkentries len - The number of vldbentry structures contained within the data
pointed to by the next field.

bulkentries val - A pointer to a sequence of bulkentries len vldbentry struc-
tures.

Volume Location Server Interface 19 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.3.12 vldblist

typedef struct single_vldbentry *vldblist;

This typedef defines a queueable struct vldbentry object, referenced by the single vldbentry

typedef as well as struct vldb list.

3.3.13 vlheader

typedef struct vlheader vlheader;

This typedef provides a short name for objects of type struct vlheader (see Section
3.3.4).

3.3.14 vlentry

typedef struct vlentry vlentry;

This typedef provides a short name for objects of type struct vlentry (see Section
3.3.2).

Volume Location Server Interface 20 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.4 Error Codes

This section covers the set of error codes exported by the Volume Location Server, dis-
playing the printable phrases with which they are associated.

Name Value Description

VL IDEXIST (363520L) Volume Id entry exists in vl database.
VL IO (363521L) I/O related error.
VL NAMEEXIST (363522L) Volume name entry exists in vl database.
VL CREATEFAIL (363523L) Internal creation failure.
VL NOENT (363524L) No such entry.
VL EMPTY (363525L) Vl database is empty.
VL ENTDELETED (363526L) Entry is deleted (soft delete).
VL BADNAME (363527L) Volume name is illegal.
VL BADINDEX (363528L) Index is out of range.
VL BADVOLTYPE (363529L) Bad volume type.
VL BADSERVER (363530L) Illegal server number (out of range).
VL BADPARTITION (363531L) Bad partition number.
VL REPSFULL (363532L) Run out of space for Replication sites.
VL NOREPSERVER (363533L) No such Replication server site exists.
VL DUPREPSERVER (363534L) Replication site already exists.
VL RWNOTFOUND (363535L) Parent R/W entry not found.
VL BADREFCOUNT (363536L) Illegal Reference Count number.
VL SIZEEXCEEDED (363537L) Vl size for attributes exceeded.
VL BADENTRY (363538L) Bad incoming vl entry.
VL BADVOLIDBUMP (363539L) Illegal max volid increment.
VL IDALREADYHASHED (363540L) RO/BACK id already hashed.
VL ENTRYLOCKED (363541L) Vl entry is already locked.
VL BADVOLOPER (363542L) Bad volume operation code.
VL BADRELLOCKTYPE (363543L) Bad release lock type.
VL RERELEASE (363544L) Status report: last release was aborted.
VL BADSERVERFLAG (363545L) Invalid replication site server flag.
VL PERM (363546L) No permission access.
VL NOMEM (363547L) malloc(realloc) failed to alloc enough memory.

Volume Location Server Interface 21 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.5 Macros

The Volume Location Server defines a small number of macros, as described in this
section. They are used to update the internal statistics variables and to compute offsets
into character strings. All of these macros really refer to internal operations, and strictly
speaking should not be exposed in this interface.

3.5.1 COUNT REQ()

#define COUNT_REQ(op)
static int this_op = op-VL_LOWEST_OPCODE;
dynamic_statistics.requests[this_op]++

Bump the appropriate entry in the variable maintaining opcode usage statistics for the
Volume Location Server. Note that a static variable is set up to record this op, namely
the index into the opcode monitoring array. This static variable is used by the related
COUNT ABO() macro defined below.

3.5.2 COUNT ABO()

#define COUNT_ABO dynamic_statistics.aborts[this_op]++

Bump the appropriate entry in the variable maintaining opcode abort statistics for the
Volume Location Server. Note that this macro does not take any arguemnts. It expects
to find a this op variable in its environment, and thus depends on its related macro,
COUNT REQ() to define that variable.

3.5.3 DOFFSET()

#define DOFFSET(abase, astr, aitem)
((abase)+(((char *)(aitem)) - ((char *)(astr))))

Compute the byte offset of charcter object aitem within the enclosing object astr,
also expressed as a character-based object, then offset the resulting address by abase.
This macro is used ot compute locations within the VLDB when actually writing out
information.

Volume Location Server Interface 22 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6 Functions

This section covers the Volume Location Server RPC interface routines. The majority
of them are generated from the vldbint.xg Rxgen file, and are meant to be used by user-
space agents. There is also a subset interface definition provided in the afsvlint.xg Rxgen
file. These routines, described in Section 3.7, are meant to be used by a kernel-space
agent when dealing with the Volume Location Server; in particular, they are called by
the Cache Manager.

Volume Location Server Interface 23 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.1 VL CreateEntry — Create a VLDB entry

int VL CreateEntry(IN struct rx connection *z conn,

IN vldbentry *newentry)

Description

This function creates a new entry in the VLDB, as specified in the newentry argument.
Both the name and numerical ID of the new volume must be unique (e.g., it must not
already appear in the VLDB). For non-read-write entries, the read-write parent volume
is accessed so that its reference count can be updated, and the new entry is added to the
parent’s chain of associated entries.

The VLDB is write-locked for the duration of this operation.

Error Codes

VL PERM The caller is not authorized to execute this function.

VL NAMEEXIST The volume name already appears in the VLDB.

VL CREATEFAIL Space for the new entry cannot be allocated within the VLDB.

VL BADNAME The volume name is invalid.

VL BADVOLTYPE The volume type is invalid.

VL BADSERVER The indicated server information is invalid.

VL BADPARTITION The indicated partition information is invalid.

VL BADSERVERFLAG The server flag field is invalid.

VL IO An error occurred while writing to the VLDB.

Volume Location Server Interface 24 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.2 VL DeleteEntry — Delete a VLDB entry

int VL DeleteEntry(IN struct rx connection *z conn,

IN long Volid,

IN long voltype)

Description

Delete the entry matching the given volume identifier and volume type as specified in the
Volid and voltype arguments. For a read-write entry whose reference count is greater
than 1, the entry is not actually deleted, since at least one child (read-only or backup)
volume still depends on it. For cases of non-read-write volumes, the parent’s reference
count and associated chains are updated.

If the associated VLDB entry is already marked as deleted (i.e., its flags field has the
VLDELETED bit set), then no further action is taken, and VL ENTDELETED is returned. The
VLDB is write-locked for the duration of this operation.

Error Codes

VL PERM The caller is not authorized to execute this function.

VL BADVOLTYPE An illegal volume type has been specified by the voltype argument.

VL NOENT This volume instance does not appear in the VLDB.

VL ENTDELETED The given VLDB entry has already been marked as deleted.

VL IO An error occurred while writing to the VLDB.

Volume Location Server Interface 25 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.3 VL GetEntryByID — Get VLDB entry by volume ID/type

int VL GetEntryByID(IN struct rx connection *z conn,

IN long Volid,

IN long voltype,

OUT vldbentry *entry)

Description

Given a volume’s numerical identifier (Volid) and type (voltype), return a pointer to
the entry in the VLDB describing the given volume instance.

The VLDB is read-locked for the duration of this operation.

Error Codes

VL BADVOLTYPE An illegal volume type has been specified by the voltype argument.

VL NOENT This volume instance does not appear in the VLDB.

VL ENTDELETED The given VLDB entry has already been marked as deleted.

Volume Location Server Interface 26 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.4 VL GetEntryByName — Get VLDB entry by volume name

int VL GetEntryByName(IN struct rx connection *z conn,

IN char *volumename,

OUT vldbentry *entry)

Description

Given the volume name in the volumename parameter, return a pointer to the entry in
the VLDB describing the given volume. The name in volumename may be no longer
than MAXNAMELEN (65) characters, including the trailing null. Note that it is legal to use
the volume’s numerical identifier (in string form) as the volume name.

The VLDB is read-locked for the duration of this operation.

This function is closely related to the VL GetEntryByID() routine, as might be expected.
In fact, the by-ID routine is called if the volume name provided in volumename is the
string version of the volume’s numerical identifier.

Error Codes

VL BADVOLTYPE An illegal volume type has been specified by the voltype argument.

VL NOENT This volume instance does not appear in the VLDB.

VL ENTDELETED The given VLDB entry has already been marked as deleted.

VL BADNAME The volume name is invalid.

Volume Location Server Interface 27 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.5 VL GetNewVolumeId — Generate a new volume ID

int VL GetNewVolumeId(IN struct rx connection *z conn,

IN long bumpcount,

OUT long *newvolumid)

Description

Acquire bumpcount unused, consecutively-numbered volume identifiers from the Vol-
ume Location Server. The lowest-numbered of the newly-acquired set is placed in the
newvolumid argument. The largest number of volume IDs that may be generated with
any one call is bounded by the MAXBUMPCOUNT constant defined in Section 3.2.1. Cur-
rently, there is (effectively) no restriction on the number of volume identifiers that may
thus be reserved in a single call.

The VLDB is write-locked for the duration of this operation.

Error Codes

VL PERM The caller is not authorized to execute this function.

VL BADVOLIDBUMP The value of the bumpcount parameter exceeds the system limit
of MAXBUMPCOUNT.

VL IO An error occurred while writing to the VLDB.

Volume Location Server Interface 28 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.6 VL ReplaceEntry — Replace entire contents of VLDB entry

int VL ReplaceEntry(IN struct rx connection *z conn,

IN long Volid,

IN long voltype,

IN vldbentry *newentry,

IN long ReleaseType)

Description

Perform a wholesale replacement of the VLDB entry corresponding to the volume in-
stance whose identifier is Volid and type voltype with the information contained in
the newentry argument. Individual VLDB entry fields cannot be selectively changed
while the others are preserved; VL UpdateEntry() should be used for this objective. The
permissible values for the ReleaseType parameter are defined in Section 3.2.7.

The VLDB is write-locked for the duration of this operation. All of the hash tables
impacted are brought up to date to incorporate the new information.

Error Codes

VL PERM The caller is not authorized to execute this function.

VL BADVOLTYPE An illegal volume type has been specified by the voltype argument.

VL BADRELLOCKTYPE An illegal release lock has been specified by the ReleaseType
argument.

VL NOENT This volume instance does not appear in the VLDB.

VL BADENTRY An attempt was made to change a read-write volume ID.

VL IO An error occurred while writing to the VLDB.

Volume Location Server Interface 29 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.7 VL UpdateEntry — Update contents of VLDB entry

int VL UpdateEntry(IN struct rx connection *z conn,

IN long Volid,

IN long voltype,

IN VldbUpdateEntry *UpdateEntry,

IN long ReleaseType)

Description

Update the VLDB entry corresponding to the volume instance whose identifier is Volid
and type voltype with the information contained in the UpdateEntry argument. Most
of the entry’s fields can be modified in a single call to VL UpdateEntry(). The Mask field
within the UpdateEntry parameter selects the fields to update with the values stored
within the other UpdateEntry fields. Permissible values for the ReleaseType parameter
are defined in Section 3.2.7.

The VLDB is write-locked for the duration of this operation.

Error Codes

VL PERM The caller is not authorized to execute this function.

VL BADVOLTYPE An illegal volume type has been specified by the voltype argument.

VL BADRELLOCKTYPE An illegal release lock has been specified by the ReleaseType
argument.

VL NOENT This volume instance does not appear in the VLDB.

VL IO An error occurred while writing to the VLDB.

Volume Location Server Interface 30 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.8 VL SetLock — Lock VLDB entry

int VL SetLock(IN struct rx connection *z conn,

IN long Volid,

IN long voltype,

IN long voloper)

Description

Lock the VLDB entry matching the given volume ID (Volid) and type (voltype) for
volume operation voloper (e.g., VLOP MOVE and VLOP RELEASE). If the entry is currently
unlocked, then its LockTimestamp will be zero. If the lock is obtained, the given voloper
is stamped into the flags field, and the LockTimestamp is set to the time of the call.

Note: when the caller attempts to lock the entry for a release operation, special care is
taken to abort the operation if the entry has already been locked for this operation, and
the existing lock has timed out. In this case, VL SetLock() returns VL RERELEASE.

The VLDB is write-locked for the duration of this operation.

Error Codes

VL PERM The caller is not authorized to execute this function.

VL BADVOLTYPE An illegal volume type has been specified by the voltype argument.

VL BADVOLOPER An illegal volume operation was specified in the voloper argument.
Legal values are defined in the latter part of the table in Section 3.2.5.

VL ENTDELETED The given VLDB entry has already been marked as deleted.

VL ENTRYLOCKED The given VLDB entry has already been locked (which has not
yet timed out).

VL RERELEASE A VLDB entry locked for release has timed out, and the caller also
wanted to perform a release operation on it.

VL IO An error was experienced while attempting to write to the VLDB.

Volume Location Server Interface 31 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.9 VL ReleaseLock — Unlock VLDB entry

int VL ReleaseLock(IN struct rx connection *z conn,

IN long Volid,

IN long voltype,

IN long ReleaseType)

Description

Unlock the VLDB entry matching the given volume ID (Volid) and type (voltype). The
ReleaseType argument determines which VLDB entry fields from flags and LockAfsId
will be cleared along with the lock timestamp in LockTimestamp. Permissible values for
the ReleaseType parameter are defined in Section 3.2.7.

The VLDB is write-locked for the duration of this operation.

Error Codes

VL PERM The caller is not authorized to execute this function.

VL BADVOLTYPE An illegal volume type has been specified by the voltype argument.

VL BADRELLOCKTYPE An illegal release lock has been specified by the ReleaseType
argument.

VL NOENT This volume instance does not appear in the VLDB.

VL ENTDELETED The given VLDB entry has already been marked as deleted.

VL IO An error was experienced while attempting to write to the VLDB.

Volume Location Server Interface 32 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.10 VL ListEntry — Get contents of VLDB via index

int VL ListEntry(IN struct rx connection *z conn,

IN long previous index,

OUT long *count,

OUT long *next index,

OUT vldbentry *entry)

Description

This function assists in the task of enumerating the contents of the VLDB. Given an
index into the database, previous index, this call return the single VLDB entry at that
offset, placing it in the entry argument. The number of VLDB entries left to list is
placed in count, and the index of the next entry to request is returned in next index.
If an illegal index is provided, count is set to -1.

The VLDB is read-locked for the duration of this operation.

Error Codes

--- None.

Volume Location Server Interface 33 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.11 VL ListAttributes — List all VLDB entry matching given attributes,
single return object

int VL ListAttributes(IN struct rx connection *z conn,

IN VldbListByAttributes *attributes,

OUT long *nentries,

OUT bulkentries *blkentries)

Description

Retrieve all the VLDB entries that match the attributes listed in the attributes pa-
rameter, placing them in the blkentries object. The number of matching entries is
placed in nentries. Matching can be done by server number, partition, volume type,
flag, or volume ID. The legal values to use in the attributes argument are listed in
Section 3.2.3. Note that if the VLLIST VOLUMEID bit is set in attributes, all other bit
values are ignored and the volume ID provided is the sole search criterion.

The VLDB is read-locked for the duration of this operation.

Note that VL ListAttributes() is a potentially expensive function, as sequential search
through all of the VLDB entries is performed in most cases.

Error Codes

VL NOMEM Memory for the blkentries object could not be allocated.

VL NOENT This specified volume instance does not appear in the VLDB.

VL SIZEEXCEEDED Ran out of room in the blkentries object.

VL IO Error while reading from the VLDB.

Volume Location Server Interface 34 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.12 VL LinkedList — List all VLDB entry matching given attributes,
linked list return object

int VL LinkedList(IN struct rx connection *z conn,

IN VldbListByAttributes *attributes,

OUT long *nentries,

OUT vldb list *linkedentries)

Description

Retrieve all the VLDB entries that match the attributes listed in the attributes param-
eter, creating a linked list of entries based in the linkedentries object. The number
of matching entries is placed in nentries. Matching can be done by server number,
partition, volume type, flag, or volume ID. The legal values to use in the attributes
argument are listed in Section 3.2.3. Note that if the VLLIST VOLUMEID bit is set in
attributes, all other bit values are ignored and the volume ID provided is the sole
search criterion.

The VL LinkedList() function is identical to the VL ListAttributes(), except for the
method of delivering the VLDB entries to the caller.

The VLDB is read-locked for the duration of this operation.

Error Codes

VL NOMEM Memory for an entry in the list based at linkedentries object could
not be allocated.

VL NOENT This specified volume instance does not appear in the VLDB.

VL SIZEEXCEEDED Ran out of room in the current list object.

VL IO Error while reading from the VLDB.

Volume Location Server Interface 35 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.13 VL GetStats — Get Volume Location Server statistics

int VL GetStats(IN struct rx connection *z conn,

OUT vldstats *stats,

OUT vital vlheader *vital header)

Description

Collect the different types of VLDB statistics. Part of the VLDB header is returned in
vital header, which includes such information as the number of allocations and frees
performed, and the next volume ID to be allocated. The dynamic per-operation stats
are returned in the stats argument, reporting the number and types of operations and
aborts.

The VLDB is read-locked for the duration of this operation.

Error Codes

VL PERM The caller is not authorized to execute this function.

Volume Location Server Interface 36 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.14 VL Probe — Verify Volume Location Server connectivity/status

int VL Probe(IN struct rx connection *z conn)

Description

This routine serves a “pinging” function to determine whether the Volume Location
Server is still running. If this call succeeds, then the Volume Location Server is shown
to be capable of responding to RPCs, thus confirming connectivity and basic operation.

The VLDB is not locked for this operation.

Error Codes

--- None.

Volume Location Server Interface 37 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.7 Kernel Interface Subset

The interface described by this document so far applies to user-level clients, such as the
vos utility. However, some volume location operations must be performed from within
the kernel. Specifically, the Cache Manager must find out where volumes reside and
otherwise gather information about them in order to conduct its business with the File
Servers holding them. In order to support Volume Location Server interconnection for
agents operating within the kernel, the afsvlint.xg Rxgen interface was built. It is a min-
imal subset of the user-level vldbint.xg definition. Within afsvlint.xg, there are duplicate
definitions for such constants as MAXNAMELEN, MAXNSERVERS, MAXTYPES, VLF RWEXISTS,
VLF ROEXISTS, VLF BACKEXISTS, VLSF NEWREPSITE, VLSF ROVOL, VLSF RWVOL, and VLSF BACKVOL.
Since the only operations the Cache Manager must perform are volume location given
a specific volume ID or name, and to find out about unresponsive Volume Location
Servers, the following interface routines are duplicated in afsvlint.xg, along with the
struct vldbentry declaration:

• VL GetEntryByID()

• VL GetEntryByName()

• VL Probe()

Volume Location Server Interface 38 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Chapter 4

Volume Server Architecture

4.1 Introduction

The Volume Server allows administrative tasks and probes to be performed on the set of
AFS volumes residing on the machine on which it is running. As described in Chapter
2, a distributed database holding volume location info, the VLDB, is used by client
applications to locate these volumes. Volume Server functions are typically invoked
either directly from authorized users via the vos utility or by the AFS backup system.

This chapter briefly discusses various aspects of the Volume Server’s architecture. First,
the high-level on-disk representation of volumes is covered. Then, the transactions used
in conjuction with volume operations are examined. Then, the program implementing
the Volume Server, volserver, is considered. The nature and format of the log file kept
by the Volume Server rounds out the description.

As with all AFS servers, the Volume Server uses the Rx remote procedure call package
for communication with its clients.

4.2 Disk Representation

For each volume on an AFS partition, there exists a file visible in the unix name
space which describes the contents of that volume. By convention, each of these files is
named by concatenating a prefix string, “V”, the numerical volume ID, and the post-
fix string “.vol”. Thus, file V0536870918.vol describes the volume whose numerical ID
is 0536870918. Internally, each per-volume descriptor file has such fields as a version

Volume Server Architecture 39 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

number, the numerical volume ID, and the numerical parent ID (useful for read-only or
backup volumes). It also has a list of related inodes, namely files which are not visible
from the unix name space (i.e., they do not appear as entries in any unix directory
object). The set of important related inodes are:

• Volume info inode: This field identifies the inode which hosts the on-disk repre-
sentation of the volume’s header. It is very similar to the information pointed to by
the volume field of the struct volser trans defined in Section 5.4.1, recording
important status information for the volume.

• Large vnode index inode: This field identifies the inode which holds the list
of vnode identifiers for all directory objects residing within the volume. These are
“large” since they must also hold the Access Control List (ACL) information for
the given AFS directory.

• Small vnode index inode: This field identifies the inode which holds the list of
vnode identifiers for all non-directory objects hosted by the volume.

All of the actual files and directories residing within an AFS volume, as identified by
the contents of the large and small vnode index inodes, are also free-floating inodes, not
appearing in the conventional unix name space. This is the reason the vendor-supplied
fsck program should not be run on partitions containing AFS volumes. Since the inodes
making up AFS files and directories, as well as the inodes serving as volume indices for
them, are not mapped to any directory, the standard fsck program would throw away
all of these “unreferenced” inodes. Thus, a special version of fsck is provided that
recognizes partitions containing AFS volumes as well as standard unix partitions.

4.3 Transactions

Each individual volume operation is carried out by the Volume Server as a transaction,
but not in the atomic sense of the word. Logically, creating a Volume Server transaction
can be equated with performing an “exclusive open” on the given volume before begin-
ning the actual work of the desired volume operation. No other Volume Server (or File
Server) operation is allowed on the opened volume until the transaction is terminated.
Thus, transactions in the context of the Volume Server serve to provide mutual exclu-
sion without any of the normal atomicity guarantees. Volumes maintain enough internal
state to enable recovery from interrupted or failed operations via use of the salvager
program. Whenever volume inconsistencies are detected, this salvager program is run,
which then attempts to correct the problem.

Volume Server Architecture 40 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Volume transactions have timeouts associated with them. This guarantees that the death
of the agent performing a given volume operation cannot result in the volume being per-
manently removed from circulation. There are actually two timeout periods defined for
a volume transaction. The first is the warning time, defined to be 5 minutes. If a trans-
action lasts for more than this time period without making progress, the Volume Server
prints a warning message to its log file (see Section 4.5). The second time value associ-
ated with a volume transaction is the hard timeout, defined to occur 10 minutes after any
progress has been made on the given operation. After this period, the transaction will
be unconditionally deleted, and the volume freed for any other operations. Transactions
are reference-counted. Progress will be deemed to have occurred for a transaction, and
its internal timeclock field will be updated, when:

1. The transaction is first created.

2. A reference is made to the transaction, causing the Volume Server to look it up in
its internal tables.

3. The transaction’s reference count is decremented.

4.4 The volserver Process

The volserver user-level program is run on every AFS server machine, and implements
the Volume Server agent. It is responsible for providing the Volume Server interface as
defined by the volint.xg Rxgen file.

The volserver process defines and launches five threads to perform the bulk of its duties.
One thread implements a background daemon whose job it is to garbage-collect timed-
out transaction structures. The other four threads are RPC interface listeners, primed
to accept remote procedure calls and thus perform the defined set of volume operations.

Certain non-standard configuration settings are made for the RPC subsystem by the
volserver program. For example, it chooses to extend the length of time that an Rx
connection may remain idle from the default 12 seconds to 120 seconds. The reasoning
here is that certain volume operations may take longer than 12 seconds of processing
time on the server, and thus the default setting for the connection timeout value would
incorrectly terminate an RPC when in fact it was proceeding normally and correctly.

The volserver program takes a single, optional command line argument. If a positive
integer value is provided on the command line, then it shall be used to set the debugging
level within the Volume Server. By default, a value of zero is used, specifying that

Volume Server Architecture 41 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

no special debugging output will be generated and fed to the Volume Server log file
described below.

4.5 Log File

The Volume Server keeps a log file, recording the set of events of special interest it has
encountered. The file is named VolserLog, and is stored in the /usr/afs/logs directory
on the local disk of the server machine on which the Volume Server runs. This is a
human-readable file, with every entry time-stamped.

Whenever the volserver program restarts, it renames the current VolserLog file to Volser-
Log.old, and starts up a fresh log. A properly-authorized individual can easily inspect
the log file residing on any given server machine. This is made possible by the BOS
Server AFS agent running on the machine, which allows the contents of this file to be
fetched and displayed on the caller’s machine via the bos getlog command.

An excerpt from a Volume Server log file follows below. The numbers appearing in square
brackets at the beginning of each line have been inserted so that we may reference the
individual lines of the log excerpt in the following paragraph.

[1] Wed May 8 06:03:00 1991 AttachVolume: Error attaching volume
/vicepd/V1969547815.vol; volume needs salvage

[2] Wed May 8 06:03:01 1991 Volser: ListVolumes: Could not attach volume 1969547815
[3] Wed May 8 07:36:13 1991 Volser: Clone: Cloning volume 1969541499 to new

volume 1969541501
[4] Wed May 8 11:25:05 1991 AttachVolume: Cannot read volume header

/vicepd/V1969547415.vol
[5] Wed May 8 11:25:06 1991 Volser: CreateVolume: volume 1969547415

(bld.dce.s3.dv.pmax_ul3) created

Line [1] indicates that the volume whose numerical ID is 1969547815 could not be at-
tached on partition /vicepd. This error is probably the result of an aborted transaction
which left the volume in an inconsistent state, or by actual damage to the volume struc-
ture or data. In this case, the Volume Server recommends that the salvager program be
run on this volume to restore its integrity. Line [2] records the operation which revealed
this situation, namely the invocation of an AFSVolListVolumes() RPC.

Line [4] reveals that the volume header file for a specific volume could not be read. Line
[5], as with line [2] in the above paragraph, indicates why this is true. Someone had called
the AFSVolCreateVolume() interface function, and as a precaution, the Volume Server
first checked to see if such a volume was already present by attempting to read its header.

Volume Server Architecture 42 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Thus verifying that the volume did not previously exist, the Volume Server allowed
the AFSVolCreateVolume() call to continue its processing, creating and initializing the
proper volume file, V1969547415.vol, and the associated header and index inodes.

Volume Server Architecture 43 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Chapter 5

Volume Server Interface

5.1 Introduction

This chapter documents the API for the Volume Server facility, as defined by the volint.xg
Rxgen interface file and the volser.h include file. Descriptions of all the constants, struc-
tures, macros, and interface functions available to the application programmer appear
here.

5.2 Constants

This section covers the basic constant definitions of interest to the Volume Server appli-
cation programmer. These definitions appear in the volint.h file, automatically generated
from the volint.xg Rxgen interface file, and in volser.h.

Each subsection is devoted to describing the constants falling into the following cate-
gories:

• Configuration and boundary values

• Interface routine opcodes

• Transaction Flags

• Volume Types

• LWP State

Volume Server Interface 44 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

• States for struct vldbentry

• Validity Checks

• Miscellaneous

5.2.1 Configuration and Boundary Values

These constants define some basic system configuration values, along with such things
as maximum sizes of important arrays.

Name Value Description

MyPort 5,003 The Rx UDP port on which the Volume Server
service may be found.

NameLen 80 Used by the vos utility to define maximum lengths
for internal filename variables.

VLDB MAXSERVERS 10 Maximum number of server agents implementing
the AFS Volume Location Database (VLDB) for
the cell.

VOLSERVICE ID 4 The Rx service number on the given UDP port
(MyPort) above.

INVALID BID 0 Used as an invalid read-only or backup volume ID.
VOLSER MAXVOLNAME 65 The number of characters in the longest possible

volume name, including the trailing null. Note:
this is only used by the vos utility; the Volume
Server uses the “old” value below.

VOLSER OLDMAXVOLNAME 32 The “old” maximum number of characters in an
AFS volume name, including the trailing null. In
reality, it is also the current maximum.

VOLSER MAX REPSITES 7 The maximum number of replication sites for a
volume.

VNAMESIZE 32 Size in bytes of the name field in struct

volintInfo (see Section 5.4.6).

5.2.2 Interface Routine Opcodes

These constants, appearing in the volint.xg Rxgen interface file for the Volume Server,
define the opcodes for the RPC routines. Every Rx call on this interface contains this
opcode, and the dispatcher uses it to select the proper code at the server site to carry
out the call.

Volume Server Interface 45 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Name Value Description

VOLCREATEVOLUME 100 Opcode for AFSVolCreateVolume()
VOLDELETEVOLUME 101 Opcode for AFSVolDeleteVolume()
VOLRESTORE 102 Opcode for AFSVolRestoreVolume()
VOLFORWARD 103 Opcode for AFSVolForward()
VOLENDTRANS 104 Opcode for AFSVolEndTrans()
VOLCLONE 105 Opcode for AFSVolClone() .
VOLSETFLAGS 106 Opcode for AFSVolSetFlags()
VOLGETFLAGS 107 Opcode for AFSVolGetFlags()
VOLTRANSCREATE 108 Opcode for AFSVolTransCreate()
VOLDUMP 109 Opcode for AFSVolDump()
VOLGETNTHVOLUME 110 Opcode for AFSVolGetNthVolume()
VOLSETFORWARDING 111 Opcode for AFSVolSetForwarding()
VOLGETNAME 112 Opcode for AFSVolGetName()
VOLGETSTATUS 113 Opcode for AFSVolGetStatus()
VOLSIGRESTORE 114 Opcode for AFSVolSignalRestore()
VOLLISTPARTITIONS 115 Opcode for AFSVolListPartitions()
VOLLISTVOLS 116 Opcode for AFSVolListVolumes()
VOLSETIDSTYPES 117 Opcode for AFSVolSetIdsTypes()
VOLMONITOR 118 Opcode for AFSVolMonitor()
VOLDISKPART 119 Opcode for AFSVolPartitionInfo()
VOLRECLONE 120 Opcode for AFSVolReClone()
VOLLISTONEVOL 121 Opcode for AFSVolListOneVolume()
VOLNUKE 122 Opcode for AFSVolNukeVolume()
VOLSETDATE 123 Opcode for AFSVolSetDate()

5.2.3 Transaction Flags

These constants define the various flags the Volume Server uses in assocation with vol-
ume transactions, keeping track of volumes upon which operations are currently proceed-
ing. There are three sets of flag values, stored in three different fields within a struct

volser trans: general volume state, attachment modes, and specific transaction states.

5.2.3.1 vflags

These values are used to represent the general state of the associated volume. They
appear in the vflags field within a struct volser trans.

Volume Server Interface 46 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Name Value Description

VTDeleteOnSalvage 1 The volume should be deleted on next salvage.
VTOutOfService 2 This volume should never be put online.
VTDeleted 4 This volume has been deleted (via AFSVolDeleteVol-

ume()), and thus should not be manipulated.

5.2.3.2 iflags

These constants represent the desired attachment mode for a volume at the start of a
transaction. Once attached, the volume header is marked to reflect this mode. Attach-
ment modes are useful in salvaging partitions, as they indicate whether the operations
being performed on individual volumes at the time the crash occured could have in-
troduced inconsistencies in their metadata descriptors. If a volume was attached in a
read-only fashion, then the salvager may decide (taking other factors into consideration)
that the volume doesn’t need attention as a result of the crash.

These values appear in the iflags field within a struct volser trans.

Name Value Description

ITOffline 0x1 Volume offline on server (returns VOFFLINE).
ITBusy 0x2 Volume busy on server (returns VBUSY).
ITReadOnly 0x8 Volume is read-only on client, read-write on server -

DO NOT USE.
ITCreate 0x10 Volume does not exist correctly yet.
ITCreateVolID 0x1000 Create volid.

5.2.3.3 tflags

This value is used to represent the transaction state of the associated volume, and appears
in the tflags field within a struct volser trans.

Name Value Description

TTDeleted 1 Delete transaction not yet freed due to high reference count.

5.2.4 Volume Types

The following constants may be supplied as values for the type argument to the AFSVol-
CreateVolume() interface call. They are just synonyms for the three values RWVOL, ROVOL,

Volume Server Interface 47 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

and BACKVOL.

Name Value Description

volser RW 0 Specifies a read-write volume type.
volser RO 1 Specifies a read-only volume type.
volser BACK 2 Specifies a backup volume type.

5.2.5 LWP State

This set of exported definitions refers to objects internal to the Volume Server, and
strictly speaking should not be visible to other agents. Specifically, a busyFlags array
keeps a set of flags referenced by the set of lightweight threads running within the Volume
Server. These flags reflect and drive the state of each of these worker LWPs.

Name Value Description

VHIdle 1 Volume Server LWP is idle, waiting for new work.
VHRequest 2 A work item has been queued.

5.2.6 States for struct vldbentry

The Volume Server defines a collection of synonyms for certain values defined by the
Volume Location Server. These particular constants are used within the flags field in
objects of type struct vldbentry. The equivalent Volume Location Server values are
described in Section 3.2.6.

Name Value Description

RW EXISTS 0x1000 Synonym for VLF RWEXISTS.
RO EXISTS 0x2000 Synonym for VLF ROEXISTS.
BACK EXISTS 0x4000 Synonym for VLF BACKEXISTS.
NEW REPSITE 0x01 Synonym for VLSF NEWREPSITE.
ITSROVOL 0x02 Synonym for VLFS ROVOL.
ITSRWVOL 0x04 Synonym for VLSF RWVOL.
ITSBACKVOL 0x08 Synonym for VLSF BACKVOL.

5.2.7 Validity Checks

These values are used for performing validity checks. The first one appears only within
the partFlags field within objects of type partList (see Section 5.4.3). The rest (ex-

Volume Server Interface 48 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

cept VOK and VBUSY) appear in the volFlags field within an object of type struct

volDescription. These latter defintions are used within the volFlags field to mark
whether the rest of the fields within the struct volDescription are valid. Note that
while several constants are defined, only some are actually used internally by the Volume
Server code.

Name Value Description

PARTVALID 0x01 The indicated partition is valid.
CLONEVALID 0x02 The indicated clone (field volCloneId) is a valid one.
CLONEZAPPED 0x04 The indicated clone volume (field volCloneId) has been

deleted.
IDVALID 0x08 The indicated volume ID (field volId) is valid.
NAMEVALID 0x10 The indicted volume name (field volName) is valid. Not

used internally by the Volume Server.
SIZEVALID 0x20 The indicated volume size (field volSize) is valid. Not

used internally by the Volume Server.
ENTRYVALID 0x40 The struct volDescription refers to a valid volume.
REUSECLONEID 0x80 The indicated clone ID (field volCloneId) should be

reused.
VOK 0x02 Used in the status field of struct volintInfo to show

that everything is OK.
VBUSY 110 Used in the status field of struct volintInfo to show

that the volume is currently busy.

5.2.8 Miscellaneous

This section covers the set of exported Volume Server definitions that don’t easily fall
into the above categories.

Name Value Description

SIZE 1,024 Not used internally by the Volume Server; used as a maxi-
mum size for internal character arrays.

MAXHELPERS 10 Size of an internal Volume Server character array
(busyFlags), it marks the maximum number of threads
within the server.

STDERR stderr Synonym for the unix standard input file descriptor.
STDOUT stdout Synonym for the unix standard output file descriptor.

Volume Server Interface 49 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.3 Exported Variables

This section describes the single variable that the Volume Server exports to its applica-
tions.

The QI GlobalWriteTrans exported variable represents a pointer to the head of the
global queue of transaction structures for operations being handled by a Volume Server.
Each object in this list is of type struct volser trans (see Section 5.4.1 below).

Volume Server Interface 50 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.4 Structures and Typedefs

This section describes the major exported Volume Server data structures of interest to
application programmers, along with some of the the typedefs based on those structures.
Please note that typedefs in shose definitions angle brackets appear are those fed through
the Rxgen RPC stub generator. Rxgen uses these angle brackets to specify an array of
indefinite size.

5.4.1 struct volser trans

This structure defines the transaction record for all volumes upon which an active oper-
ation is proceeding.

Fields

struct volser trans *next - Pointer to the next transaction structure in the queue.

long tid - Transaction ID.

long time - The time this transaction was last active, for timeout purposes. This
is the standard unix time format.

long creationTime - The time a which this transaction started.

long returnCode - The overall transaction error code.

struct Volume *volume - Pointer to the low-level object describing the associated
volume. This is included here for the use of lower-level support code.

long volid - The associated volume’s numerical ID.

long partition - The partition on which the given volume resides.

long dumpTransId - Not used.

long dumpSeq - Not used.

short refCount - Reference count on this structure.

short iflags - Initial attach mode flags.

char vflags - Current volume status flags.

char tflags - Transaction flags.

char incremental - If non-zero, indicates that an incremental restore operation
should be performed.

Volume Server Interface 51 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

char lastProcName[] - Name of the last internal Volume Server procedure that
used this transaction. This field may be up to 30 characters long, including
the trailing null, and is intended for debugging purposes only.

struct rx call *rxCallPtr - Pointer to latest associated rx call. This field is in-
tended for debugging purposes only.

5.4.2 struct volDescription

This structure is used by the AFS backup system to group certain key fields of volume
information.

Fields

char volName[] - The name of the given volume; maximum length of this string
is VOLSER MAXVOLNAME characters, including the trailing null.

long volId - The volume’s numerical ID.

int volSize - The size of the volume, in bytes.

long volFlags - Keeps validity information on the given volume and its clones.
This field takes on values from the set defined in Section 5.2.7

long volCloneId - The volume’s current clone ID.

5.4.3 struct partList

This structure is used by the backup system and the vos tool to keep track of the state
of the AFS disk partitions on a given server.

Fields

long partId[] - Set of 26 partition IDs.

long partFlags[] - Set to PARTVALID if the associated partition slot corresponds to
a valid partition. There are 26 entries in this array.

Volume Server Interface 52 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.4.4 struct volser status

This structure holds the status of a volume as it is known to the Volume Server, and is
passed to clients through the AFSVolGetStatus() interface call.

Two fields appearing in this structure, accessDate and updateDate, deserve a special
note. In particular, it is important to observe that these fields are not kept in full
synchrony with reality. When a File Server provides one of its client Cache Managers
with a chunk of a file on which to operate, it is incapable of determining exactly when
the data in that chunk is accessed, or exactly when it is updated. This is because the
manipulations occur on the client machine, without any information on these accesses
or updates passed back to the server. The only time these fields can be modified is when
the chunk of a file resident within the given volume is delivered to a client (in the case of
accessDate), or when a client writes back a dirty chunk to the File Server (in the case
of updateDate).

Fields

long volID - The volume’s numerical ID, unique within the cell.

long nextUnique - Next value to use for a vnode uniquifier within this volume.

int type - Basic volume class, one of RWVOL, ROVOL, or BACKVOL.

long parentID - Volume ID of the parent, if this volume is of type ROVOL or
BACKVOL.

long cloneID - ID of the latest read-only clone, valid iff the type field is set to
RWVOL.

long backupID - Volume ID of the latest backup of this read-write volume.

long restoredFromID - The volume ID contained in the dump from which this
volume was restored. This field is used to simply make sure that an incremental
dump is not restored on top of something inappropriate. Note that this field
itself is not dumped.

long maxQuota - The volume’s maximum quota, in 1Kbyte blocks.

long minQuota - The volume’s minimum quota, in 1Kbyte blocks.

long owner - The user ID of the person responsible for this volume.

long creationDate - For a volume of type RWVOL, this field marks its creation date.
For the original copy of a clone, this field represents the cloning date.

long accessDate - Last access time by a user for this volume. This value is ex-
pressed as a standard unix longword date quantity.

Volume Server Interface 53 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

long updateDate - Last modification time by a user for this volume. This value
is expressed as a standard unix longword date quantity.

long expirationDate - Expiration date for this volume. If the volume never ex-
pires, then this field is set to zero.

long backupDate - The last time a backup clone was created for this volume.

long copyDate - The time that this copy of this volume was created.

5.4.5 struct destServer

Used to specify the destination server in an AFSVolForward() invocation (see Section
5.7.7).

Fields

long destHost - The IP address of the destination server.

long destPort - The UDP port for the Volume Server Rx service there.

long destSSID - Currently, this field is always set to 1.

5.4.6 struct volintInfo

This structure is used to communicate volume information to the Volume Server’s RPC
clients. It is used to build the volEntries object, which appears as a parameter to the
AFSVolListVolumes() call.

The comments in Section 5.4.4 concerning the accessDate and updateDate fields are
equally valid for the analogue fields in this structure.

Fields

char name[] - The null-terminated name for the volume, which can be no longer
than VNAMESIZE (32) characters, including the trailing null.

long volid - The volume’s numerical ID.

long type - The volume’s basic class, one of RWVOL, ROVOL, or BACKVOL.

long backupID - The latest backup volume’s ID.

long parentID - The parent volume’s ID.

Volume Server Interface 54 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

long cloneID - The latest clone volume’s ID.

long status - Status of the volume; may be one of VOK or VBUSY.

long copyDate - The time that this copy of this volume was created.

unsigned char inUse - If non-zero, an indication that this volume is online.

unsigned char needsSalvaged - If non-zero, an indication that this volume needs
to be salvaged.

unsigned char destroyMe - If non-zero, an indication that this volume should be
destroyed.

long creationDate - Creation date for a read/write volume; cloning date for the
original copy of a read-only volume.

long accessDate - Last access time by a user for this volume.

long updateDate - Last modification time by a user for this volume.

long backupDate - Last time a backup copy was made of this volume.

int dayUse - Number of times this volume was accessed since midnight of the
current day.

int filecount - the number of file system objects contained within the volume.

int maxquota - The upper limit on the number of 1-Kbyte disk blocks of storage
that this volume may obtain.

int size - Not known.

long flags - Values used by the backup system are stored here.

long spare1 - spare3 - Spare fields, reserved for future use.

5.4.7 struct transDebugInfo

This structure is provided for monitoring and debugging purposes. It is used to compose
the transDebugEntries variable-sized object, which in turn appears as a parameter to
the AFSVolMonitor() interface call.

Fields

long tid - The transaction ID.

long time - The time when the transaction was last active, for timeout purposes.

long creationTime - The time the transaction started.

long returnCode - The overall transaction error code.

Volume Server Interface 55 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

long volid - The open volume’s ID.

long partition - The open volume’s partition.

short iflags - Initial attach mode flags (IT*).

char vflags - Current volume status flags (VT*).

char tflags - Transaction flags (TT*).

char lastProcName[] - The string name of the last procedure which used trans-
action. This field may be up to 30 characters long, including the trailing null,
and is intended for debugging purposes only.

int callValid - Flag which determines if the following fields are valid.

long readNext - Sequence number of the next Rx packet to be read.

long transmitNext - Sequence number of the next Rx packet to be transmitted.

int lastSendTime - The last time anything was sent over the wire for this trans-
action.

int lastReceiveTime - The last time anything was received over the wire for this
transaction.

5.4.8 struct pIDs

Used by the AFSVolListPartitions() interface call, this structure is used to store infor-
mation on all of the partitions on a given Volume Server.

Fields

long partIds[] - One per letter of the alphabet (/vicepa through /vicepz). Filled
with 0 for ’/vicepa’, 25 for ’/vicepz’. Invalid partition slots are filled in with a
-1.

5.4.9 struct diskPartition

This structure contains information regarding an individual AFS disk partition. It is
returned as a parameter to the AFSVolPartitionInfo() call.

Volume Server Interface 56 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Fields

char name[] - Mounted partition name, up to 32 characters long including the
trailing null.

char devName[] - Device name on which the partition lives, up to 32 characters
long including the trailing null.

int lock fd - A lock used for mutual exclusion to the named partition. A value
of -1 indicates the lock is not currently being held. Otherwise, it has the file
descriptor resulting from the unix open() call on the file specified in the name
field used to “acquire” the lock.

int totalUsable - The number of blocks within the partition which are available.

int free - The number of free blocks in the partition.

int minFree - The minimum number of blocks that must remain free regardless of
allocation requests.

5.4.10 struct restoreCookie

Used as a parameter to both AFSVolRestore() and AFSVolForward(), a restoreCookie
keeps information that must be preserved between various Volume Server operations.

Fields

char name[] - The volume name, up to 32 characters long including the trailing
null.

long type - The volume type, one of RWVOL, ROVOL, and BACKVOL.

long clone - The current read-only clone ID for this volume.

long parent - The parent ID for this volume.

5.4.11 transDebugEntries

typedef transDebugInfo transDebugEntries<>;

This typedef is used to generate a variable-length object which is passed as a parameter
to the AFSVolMonitor() interface function. Thus, it may carry any number of descriptors
for active transactions on the given Volume Server. Specifically, it causes a C structure
of the same name to be defined with the following fields:

Volume Server Interface 57 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Fields

u int transDebugEntries len - The number of struct transDebugInfo (see
Section 5.4.7) objects appearing at the memory location pointed to by the
transDebugEntries val field.

transDebugInfo *transDebugEntries val - A pointer to a region of memory
containing an array of transDebugEntries len objects of type struct transDebugInfo.

5.4.12 volEntries

typedef volintInfo volEntries<>;

This typedef is used to generate a variable-length object which is passed as a parameter
to AFSVolListVolumes(). Thus, it may carry any number of descriptors for volumes on
the given Volume Server. Specifically, it causes a C structure of the same name to be
defined with the following fields:

Fields

u int volEntries len - The number of struct volintInfo (see Section 5.4.6) ob-
jects appearing at the memory location pointed to by the volEntries val

field.

volintInfo *volEntries val - A pointer to a region of memory containing an array
of volEntries len objects of type struct volintInfo.

Volume Server Interface 58 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.5 Error Codes

The Volume Server advertises two groups of error codes. The first set consists of the
standard error codes defined by the package. The second is a collection of lower-level
return values which are exported here for convenience.

5.5.1 Standard

The error codes described in this section were defined by the Volume Server to describe
exceptional conditions arising in the course of RPC call handling.

Name Value Description

VOLSERTRELE ERROR 1492325120L internal error releasing
transaction.

VOLSERNO OP 1492325121L unknown internal error.
VOLSERREAD DUMPERROR 1492325122L badly formatted dump.
VOLSERDUMPERROR 1492325123L badly formatted dump(2).
VOLSERATTACH ERROR 1492325124L could not attach volume.
VOLSERILLEGAL PARTITION 1492325125L illegal partition.
VOLSERDETACH ERROR 1492325126L could not detach volume.
VOLSERBAD ACCESS 1492325127L insufficient privilege for vol-

ume operation.
VOLSERVLDB ERROR 1492325128L error from volume location

database.
VOLSERBADNAME 1492325129L bad volume name.
VOLSERVOLMOVED 1492325130L volume moved.
VOLSERBADOP 1492325131L illegal volume operation.
VOLSERBADRELEASE 1492325132L volume release failed.
VOLSERVOLBUSY 1492325133L volume still in use by

volserver.
VOLSERNO MEMORY 1492325134L out of virtual memory in

volserver.
VOLSERNOVOL 1492325135L no such volume.
VOLSERMULTIRWVOL 1492325136L more than one read/write

volume.
VOLSERFAILEDOP 1492325137L failed volume server

operation.

Volume Server Interface 59 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.5.2 Low-Level

These error codes are duplicates of those defined from a package which is internal to the
Volume Server. They are re-defined here to make them visible to Volume Server clients.

Name Value Description

VSALVAGE 101 Volume needs to be salvaged.
VNOVNODE 102 Bad vnode number encountered.
VNOVOL 103 The given volume is either not attached, doesn’t exist, or is

not online.
VVOLEXISTS 104 The given volume already exists.
VNOSERVICE 105 The volume is currently not in service.
VOFFLINE 106 The specified volume is offline, for the reason given in the

offline message field (a subfield within the volume field in
struct volser trans).

VONLINE 107 Volume is already online.
VDISKFULL 108 The disk partition is full.
VOVERQUOTA 109 The given volume’s maximum quota, as expressed in

the maxQuota field of the struct volintInfo, has been
exceeded.

VBUSY 110 The named volume is temporarily unavailable, and the client
is encouraged to retry the operation shortly.

VMOVED 111 The given volume has moved to a new server.

The VICE SPECIAL ERRORS constant is defined to be the lowest of these error codes.

Volume Server Interface 60 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.6 Macros

The Volume Server defines a small number of macros, as described in this section.

5.6.1 THOLD()

#define THOLD(tt) ((tt)->refCount++)

This macro is used to increment the reference count field, refCount, in an object of type
struct volser trans. Thus, the associated transaction is effectively “held”, insuring it
won’t be garbage-collected. The counterpart to this operation, TRELE(), is implemented
by the Volume Server as a function.

5.6.2 ISNAMEVALID()

#define ISNAMEVALID(name) (strlen(name) < (VOLSER_OLDMAXVOLNAME - 9))

This macro checks to see if the given name argument is of legal length. It must be no
more than the size of the container, which is at most VOLSER OLDMAXVOLNAME characters,
minus the length of the longest standardized volume name postfix known to the system.
That postfix is the 9-character .restored string, which is tacked on to the name of a
volume that has been restored from a dump.

Volume Server Interface 61 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7 Functions

This section covers the Volume Server RPC interface routines, defined by and generated
from the volint.xg Rxgen file. The following is a summary of the interface functions and
their purpose:

Fcn Name Description

AFSVolCreateVolume Create a volume.
AFSVolDeleteVolume Delete a volume.
AFSVolNukeVolume Obliterate a volume completely.
AFSVolDump Dump (i.e., save) the contents of a volume.
AFSVolSignalRestore Show intention to call AFSVolRestore().
AFSVolRestore Recreate a volume from a dump.
AFSVolForward Dump a volume, then restore to a given server and

volume.
AFSVolClone Clone (and optionally purge) a volume.
AFSVolReClone Re-clone a volume.
AFSVolSetForwarding Set forwarding info for a moved volume.
AFSVolTransCreate Create transaction for a [volume, partition].
AFSVolEndTrans End a transaction.
AFSVolGetFlags Get volume flags for a transaction.
AFSVolSetFlags Set volume flags for a transaction.
AFSVolGetName Get the volume name associated with a transaction.
AFSVolGetStatus Get status of a transaction/volume.
AFSVolSetIdsTypes Set header info for a volume.
AFSVolSetDate Set creation date in a volume.
AFSVolListPartitions Return a list of AFS partitions on a server.
AFSVolPartitionInfo Get partition information.
AFSVolListVolumes Return a list of volumes on the server.
AFSVolListOneVolume Return header info for a single volume.
AFSVolGetNthVolume Get volume header given its index.
AFSVolMonitor Collect server transaction state.

There are two general comments that apply to most of the Volume Server interface
routines:

1. AFS partitions are identified by integers ranging from 0 to 25, corresponding to the
letters ’a’ through ’z’. By convention, AFS partitions are named /vicepx, where
x is any lower-case letter.

Volume Server Interface 62 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

2. Legal volume types to pass as parameters are RWVOL, ROVOL, and BACKVOL, as
defined in Section 3.2.4.

Volume Server Interface 63 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.1 AFSVolCreateVolume — Create a volume

int AFSVolCreateVolume(IN struct rx connection *z conn,

IN long partition,

IN char *name,

IN long type,

IN long parent,

INOUT long *volid,

OUT long *trans)

Description

Create a volume named name, with numerical identifier volid, and of type type. The
new volume is to be placed in the specified partition for the server machine as identified
by the Rx connection information pointed to by z conn. If a value of 0 is provided for
the parent argument, it will be set by the Volume Server to the value of volid itself.
The trans parameter is set to the Volume Location Server transaction ID corresponding
to the volume created by this call, if successful.

The numerical volume identifier supplied in the volid parameter must be generated
beforehand by calling VL GetNewVolumeID() (see Section 3.6.5). After AFSVolCreat-
eVolume() completes correctly, the new volume is marked as offline. It must be explicitly
brought online through a call to AFSVolSetFlags() (see Section 5.7.14) while passing the
trans transaction ID generated by AFSVolCreateVolume(). The “hold” on the new
volume guaranteed by the trans transaction may be “released” by calling AFSVolEnd-
Trans(). Until then, no other process may operate on the volume.

Upon creation, a volume’s maximum quota (as specified in the maxquota field of a struct
volintInfo) is set to 5,000 1-Kbyte blocks.

Note that the AFSVolCreateVolume() routine is the only Volume Server function that
manufactures its own transaction. All others must have already acquired a transaction
ID via either a previous call to AFSVolCreateVolume() or AFSVolTransCreate().

Error Codes

VOLSERBADNAME The volume name parameter was longer than 31 characters plus
the trailing null.

VOLSERBAD ACCESS The caller is not authorized to create a volume.

Volume Server Interface 64 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

EINVAL The type parameter was illegal.

E2BIG A value of 0 was provided in the volid parameter.

VOLSERVOLBUSY A transaction could not be created, thus the given volume was
busy.

EIO The new volume entry could not be created.

VOLSERTRELE ERROR The trans transaction’s reference count could not be dropped
to the proper level.

<misc> If the partition parameter is unintelligible, this routine will return a
low-level unix error.

Volume Server Interface 65 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.2 AFSVolDeleteVolume — Delete a volume

int AFSVolDeleteVolume(IN struct rx connection *z conn,

IN long trans)

Description

Delete the volume associated with the open transaction ID specified within trans. All
of the file system objects contained within the given volume are destroyed, and the
on-disk volume metadata structures are reclaimed. In addition, the in-memory volume
descriptor’s vflags field is set to VTDeleted, indicating that it has been deleted.

Under some circumstances, a volume should be deleted by calling AFSVolNukeVolume()
instead of this routine. See Section 5.7.3 for more details.

Error Codes

VOLSERBAD ACCESS The caller is not authorized to delete a volume.

ENOENT The trans transaction was not found.

VOLSERTRELE ERROR The trans transaction’s reference count could not be dropped
to the proper level.

Volume Server Interface 66 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.3 AFSVolNukeVolume — Obliterate a volume completely

int AFSVolNukeVolume(IN struct rx connection *z conn,

IN long partID,

IN long volID)

Description

Completely obliterate the volume living on partition partID whose ID is volID. This
involves scanning all inodes on the given partition and removing those marked with the
specified volID. If the volume is a read-only clone, only the header inodes are removed,
since they are the only ones stamped with the read-only ID. To reclaim the space taken up
by the actual data referenced through a read-only clone, this routine should be called on
the read-write master. Note that calling AFSVolNukeVolume() on a read-write volume
effectively destroys all the read-only volumes cloned from it, since everything except for
their indicies to the (now-deleted) data will be gone.

Under normal circumstances, it is preferable to use AFSVolDeleteVolume() instead of
AFSVolNukeVolume() to delete a volume. The former is much more efficient, as it only
touches those objects in the partition that belong to the named volume, walking the
on-disk volume metadata structures. However, AFSVolNukeVolume() must be used
in situations where the volume metadata structures are known to be damaged. Since a
complete scan of all inodes in the partition is performed, all disconnected or unreferenced
portions of the given volume will be reclaimed.

Error Codes

VOLSERBAD ACCESS The caller is not authorized to call this routine.

VOLSERNOVOL The partition specified by the partID argument is illegal.

Volume Server Interface 67 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.4 AFSVolDump — Dump (i.e., save) the contents of a volume

int AFSVolDump(IN struct rx connection *z conn,

IN long fromTrans,

IN long fromDate)

Description

Generate a canonical dump of the contents of the volume associated with transaction
fromTrans as of calendar time fromDate. If the given fromDate is zero, then a full dump
will be carried out. Otherwise, the resulting dump will be an incremental one.

This is specified as a split function within the volint.xg Rxgen interface file. This specifies
that two routines are generated, namely StartAFSVolDump() and EndAFSVolDump().
The former is used to marshall the IN arguments, and the latter is used to unmarshall
the return value of the overall operation. The actual dump data appears in the Rx
stream for the call (see the section entitled Example Server and Client in the companion
AFS-3 Programmer’s Reference: Specification for the Rx Remote Procedure Call Facility
document).

Error Codes

VOLSERBAD ACCESS The caller is not authorized to dump a volume.

ENOENT The fromTrans transaction was not found.

VOLSERTRELE ERROR The trans transaction’s reference count could not be dropped
to the proper level.

Volume Server Interface 68 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.5 AFSVolSignalRestore — Show intention to call AFSVolRestore()

int AFSVolSignalRestore(IN struct rx connection *z conn,

IN char *name,

IN int type,

IN long pid,

IN long cloneid)

Description

Show an intention to the Volume Server that the client will soon call AFSVolRestore().
The parameters, namely the volume name, type, parent ID pid and clone ID cloneid are
stored in a well-known set of global variables. These values are used to set the restored
volume’s header, overriding those values present in the dump from which the volume will
be resurrected.

Error Codes

VOLSERBAD ACCESS The caller is not authorized to call this routine.

VOLSERBADNAME The volume name contained in name was longer than 31 characters
plus the trailing null.

Volume Server Interface 69 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.6 AFSVolRestore — Recreate a volume from a dump

int AFSVolRestore(IN struct rx connection *z conn,

IN long toTrans,

IN long flags,

IN struct restoreCookie *cookie)

Description

Interpret a canonical volume dump (generated as the result of calling AFSVolDumpVol-
ume()), passing it to the volume specified by the toTrans transaction. Only the low
bit in the flags argument is inspected. If this low bit is turned on, the dump will be
restored as incremental; otherwise, a full restore will be carried out.

All callbacks to the restored volume are broken.

This is specified as a split function within the volint.xg Rxgen interface file. This specifies
that two routines are generated, namely StartAFSVolRestore() and EndAFSVolRestore()
. The former is used to marshall the IN arguments, and the latter is used to unmarshall
the return value of the overall operation. The actual dump data flows over the Rx
stream for the call (see the section entitled Example Server and Client in the companion
AFS-3 Programmer’s Reference: Specification for the Rx Remote Procedure Call Facility
document).

The AFSVolSignalRestore() routine (see Section 5.7.5) should be called before invoking
this function in order to signal the intention to restore a particular volume.

Error Codes

VOLSERREAD DUMPERROR Dump data being restored is corrupt.

VOLSERBAD ACCESS The caller is not authorized to restore a volume.

ENOENT The fromTrans transaction was not found.

VOLSERTRELE ERROR The trans transaction’s reference count could not be dropped
to the proper level.

Volume Server Interface 70 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.7 AFSVolForward — Dump a volume, then restore to given server and
volume

int AFSVolForward(IN struct rx connection *z conn,

IN long fromTrans,

IN long fromDate,

IN struct destServer *destination,

IN long destTrans,

IN struct restoreCookie *cookie)

Description

Dumps the volume associated with transaction fromTrans from the given fromDate.
The dump itself is sent to the server described by destination, where it is restored as
the volume associated with transaction destTrans. In reality, an Rx connection is set
up to the destServer, StartAFSVolRestore() directs writing to the Rx call’s stream, and
then EndAFSVolRestore() is used to deliver the dump for the volume corresponding to
fromTrans. If a non-zero fromDate is provided, then the dump will be incremental from
that date. Otherwise, a full dump will be delivered.

The Rx connection set up for this task is always destroyed before the function returns.
The destination volume should exist before carrying out this operation, and the invoking
process should have started transactions on both participating volumes.

Error Codes

VOLSERBAD ACCESS The caller is not authorized to forward a volume.

ENOENT The fromTrans transaction was not found.

VOLSERTRELE ERROR The trans transaction’s reference count could not be dropped
to the proper level.

ENOTCONN An Rx connection to the destination server could not be established.

Volume Server Interface 71 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.8 AFSVolClone — Clone (and optionally purge) a volume

int AFSVolClone(IN struct rx connection *z conn,

IN long trans,

IN long purgeVol,

IN long newType,

IN char *newName,

INOUT long *newVol)

Description

Make a clone of the read-write volume associated with transaction trans, giving the
cloned volume a name of newName. The newType parameter specifies the type for the
new clone, and may be either ROVOL or BACKVOL. If purgeVol is set to a non-zero value,
then that volume will be purged during the clone operation. This may be more efficient
that separate clone and purge calls when making backup volumes. The newVol parameter
sets the new clone’s ID. It is illegal to pass a zero in newVol.

Error Codes

VOLSERBADNAME The volume name contained in newName was longer than 31 char-
acters plus the trailing null.

VOLSERBAD ACCESS The caller is not authorized to clone a volume.

ENOENT The fromTrans transaction was not found.

VOLSERTRELE ERROR The trans transaction’s reference count could not be dropped
to the proper level.

VBUSY The given transaction was already in use; indicating that someone else is
currently manipulating the specified clone.

EROFS The volume associated with the given trans is read-only (either ROVOL or
BACKVOL).

EXDEV The volume associated with the trans transaction and the one specified by
purgeVol must be on the same disk device, and they must be cloned from the
same parent volume.

EINVAL The purgeVol must be read-only, i.e. either type ROVOL or BACKVOL.

Volume Server Interface 72 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.9 AFSVolReClone — Re-clone a volume

int AFSVolReClone(IN struct rx connection *z conn,

IN long tid,

IN long cloneID)

Description

Recreate an existing clone, with identifier cloneID, from the volume associated with
transaction tid.

Error Codes

VOLSERBAD ACCESS The caller is not authorized to clone a volume.

ENOENT The tid transaction was not found.

VOLSERTRELE ERROR The tid transaction’s reference count could not be dropped
to the proper level.

VBUSY The given transaction was already in use; indicating that someone else is
currently manipulating the specified clone.

EROFS The volume to be cloned must be read-write (of type RWVOL).

EXDEV The volume to be cloned and the named clone itself must be on the same
device. Also, cloneID must have been cloned from the volume associated with
transaction tid.

EINVAL The target clone must be a read-only volume (i.e., of type ROVOL or
BACKVOL).

Volume Server Interface 73 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.10 AFSVolSetForwarding — Set forwarding info for a moved volume

int AFSVolSetForwarding(IN struct rx connection *z conn,

IN long tid,

IN long newsite)

Description

Record the IP address specified within newsite as the location of the host which now
hosts the volume associated with transaction tid, formerly resident on the current host.
This is intended to gently guide Cache Managers who have stale volume location cached
to the volume’s new site, ensuring the move is transparent to clients using that volume.

Error Codes

VOLSERBAD ACCESS The caller is not authorized to create a forwarding address.

ENOENT The trans transaction was not found.

Volume Server Interface 74 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.11 AFSVolTransCreate — Create transaction for a [volume, partition]

int AFSVolTransCreate(IN struct rx connection *z conn,

IN long volume,

IN long partition,

IN long flags,

OUT long *trans)

Description

Create a new Volume Server transaction associated with volume ID volume on partition
partition. The type of volume transaction is specified by the flags parameter. The
values in flags specify whether the volume should be treated as busy (ITBusy), offline
(ITOffline), or in shared read-only mode (ITReadOnly). The identifier for the new
transaction built by this function is returned in trans.

Creating a transaction serves as a signal to other agents that may be interested in
accessing a volume that it is unavailable while the Volume Server is manipulating it.
This prevents the corruption that could result from multiple simultaneous operations on
a volume.

Error Codes

EINVAL Illegal value encountered in flags.

VOLSERVOLBUSY A transaction could not be created, thus the given [volume, parti-
tion] pair was busy.

VOLSERTRELE ERROR The trans transaction’s reference count could not be dropped
to the proper level after creation.

Volume Server Interface 75 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.12 AFSVolEndTrans — End a transaction

int AFSVolEndTrans(IN struct rx connection *z conn,

IN long trans,

OUT long *rcode)

Description

End the transaction identified by trans, returning its final error code into rcode. This
makes the associated [volume, partition] pair eligible for further Volume Server opera-
tions.

Error Codes

VOLSERBAD ACCESS The caller is not authorized to create a transaction.

ENOENT The trans transaction was not found.

Volume Server Interface 76 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.13 AFSVolGetFlags — Get volume flags for a transaction

int AFSVolGetFlags(IN struct rx connection *z conn,

IN long trans,

OUT long *flags)

Description

Return the value of the vflags field of the struct volser trans object describing
the transaction identified as trans. The set of values placed in the flags parameter
is described in Section 5.2.3.1. Briefly, they indicate whether the volume has been
deleted (VTDeleted), out of service (VTOutOfService), or marked delete-on-salvage
(VTDeleteOnSalvage).

Error Codes

ENOENT The trans transaction was not found.

VOLSERTRELE ERROR The trans transaction’s reference count could not be dropped
to the proper level.

Volume Server Interface 77 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.14 AFSVolSetFlags — Set volume flags for a transaction

int AFSVolSetFlags(IN struct rx connection *z conn,

IN long trans,

IN long flags)

Description

Set the value of the vflags field of the struct volser trans object describing the
transaction identified as trans to the contents of flags. The set of legal values for the
flags parameter is described in Section 5.2.3.1. Briefly, they indicate whether the volume
has been deleted (VTDeleted), out of service (VTOutOfService), or marked delete-on-
salvage (VTDeleteOnSalvage).

Error Codes

ENOENT The trans transaction was not found.

EROFS Updates to this volume are not allowed.

VOLSERTRELE ERROR The trans transaction’s reference count could not be dropped
to the proper level.

Volume Server Interface 78 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.15 AFSVolGetName — Get the volume name associated with a trans-
action

int AFSVolGetName(IN struct rx connection *z conn,

IN long tid,

OUT char **tname)

Description

Given a transaction identifier tid, return the name of the volume associated with the
given transaction. The tname parameter is set to point to the address of a string buffer of
at most 256 chars containing the desired information, which is created for this purpose.
Note: the caller is responsible for freeing the buffer pointed to by tname when its
information is no longer needed.

Error Codes

ENOENT The tid transaction was not found, or a volume was not associated with
it (VSrv internal error).

E2BIG The volume name was too big (greater than or equal to SIZE (1,024) char-
acters.

VOLSERTRELE ERROR The trans transaction’s reference count could not be dropped
to the proper level.

Volume Server Interface 79 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.16 AFSVolGetStatus — Get status of a transaction/volume

int AFSVolGetStatus(IN struct rx connection *z conn,

IN long tid,

OUT struct volser status *status)

Description

This routine fills the status structure passed as a parameter with status information for
the volume identified by the transaction identified by tid, if it exists. Included in this
status information are the volume’s ID, its type, disk quotas, the IDs of its clones and
backup volumes, and several other administrative details.

Error Codes

ENOENT The tid transaction was not found.

VOLSERTRELE ERROR The tid transaction’s reference count could not be dropped
to the proper level.

Volume Server Interface 80 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.17 AFSVolSetIdsTypes — Set header info for a volume

int AFSVolSetIdsTypes(IN struct rx connection *z conn,

IN long tId

IN char *name,

IN long type,

IN long pId,

IN long cloneId,

IN long backupId)

Description

The transaction identifed by tId is located, and the values supplied for the volume name,
volume type, parent ID pId, clone ID cloneId and backup ID backupId are recorded
into the given transaction.

Error Codes

ENOENT The tId transaction was not found.

VOLSERBAD ACCESS The caller is not authorized to call this routine.

VOLSERBADNAME The volume name contained in name was longer than 31 characters
plus the trailing null.

VOLSERTRELE ERROR The tId transaction’s reference count could not be dropped
to the proper level.

Volume Server Interface 81 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.18 AFSVolSetDate — Set creation date in a volume

int AFSVolSetDate(IN struct rx connection *z conn,

IN long tid,

IN long newDate)

Description

Set the creationDate of the struct volintInfo describing the volume associated with
transaction tid to newDate.

Error Codes

VOLSERBAD ACCESS The caller is not authorized to call this routine.

ENOENT The tId transaction was not found.

VOLSERTRELE ERROR The tid transaction’s reference count could not be dropped
to the proper level.

Volume Server Interface 82 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.19 AFSVolListPartitions — Return a list of AFS partitions on a server

int AFSVolListPartitions(IN struct rx connection *z conn,

OUT struct pIDs *partIDs)

Description

Return a list of AFS partitions in use by the server processing this call. The output
parameter is the fixed-length partIDs array, with one slot for each of 26 possible par-
titions. By convention, AFS partitions are named /vicepx, where x is any letter. The
/vicepa partition is represented by a zero in this array, /vicepa by a 1, and so on.
Unused partitions are represented by slots filled with a -1.

Error Codes

--- None.

Volume Server Interface 83 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.20 AFSVolPartitionInfo — Get partition information

int AFSVolPartitionInfo(IN struct rx connection *z conn,

IN char *name,

OUT struct diskPartition *partition)

Description

Collect information regarding the partition with the given character string name, and
place it into the partition object provided.

Error Codes

VOLSERBAD ACCESS The caller is not authorized to call this routine.

VOLSERILLEGAL PARTITION An illegal partition was specified by name

Volume Server Interface 84 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.21 AFSVolListVolumes — Return a list of volumes on the server

int AFSVolListVolumes(IN struct rx connection *z conn,

IN long partID,

IN long flags,

OUT volEntries *resultEntries)

Description

Sweep through all the volumes on the partition identified by partid, filling in consecutive
records in the resultEntries object. If the flags parameter is set to a non-zero value,
then full status information is gathered. Otherwise, just the volume ID field is written for
each record. The fields for a volEntries object like the one pointed to by resultEntries
are described in Section 5.4.6, which covers the struct volintInfo definition.

Error Codes

VOLSERILLEGAL PARTITION An illegal partition was specified by partID

VOLSERNO MEMORY Not enough memory was available to hold all the required entries
within resultEntries.

Volume Server Interface 85 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.22 AFSVolListOneVolume — Return header info for a single volume

int AFSVolListOneVolume(IN struct rx connection *z conn,

IN long partID,

IN long volid,

OUT volEntries *resultEntries)

Description

Find the information for the volume living on partition partID whose ID is volid, and
place a single struct volintInfo entry within the variable-size resultEntries object.

This is similar to the AFSVolListVolumes() call, which returns information on all volumes
on the specified partition. The full volume information is always written into the returned
entry (equivalent to setting the flags argument to AFSVolListVolumes() to a non-zero
value).

Error Codes

VOLSERILLEGAL PARTITION An illegal partition was specified by partID

ENODEV The given volume was not found on the given partition.

Volume Server Interface 86 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.23 AFSVolGetNthVolume — Get volume header given its index

int AFSVolGetNthVolume(IN struct rx connection *z conn,

IN long index,

OUT long *volume,

OUT long *partition)

Description

Using index as a zero-based index into the set of volumes hosted by the server chosen
by the z conn argument, return the volume ID and partition of residence for the given
index.

Note: This functionality has not yet been implemented.

Error Codes

VOLSERNO OP Not implemented.

Volume Server Interface 87 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.24 AFSVolMonitor — Collect server transaction state

int AFSVolMonitor(IN struct rx connection *z conn,

OUT transDebugEntries *result)

Description

This call allows the transaction state of a Volume Server to be monitored for debugging
purposes. Anyone wishing to supervise this Volume Server state may call this routine,
causing all active transactions to be recorded in the given result object.

Error Codes

--- None.

Volume Server Interface 88 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Bibliography

[1] Transarc Corporation. AFS 3.0 System Administrator’s Guide, F-30-0-D102, Pitts-
burgh, PA, April 1990.

[2] Transarc Corporation. AFS 3.0 Command Reference Manual, F-30-0-D103, Pitts-
burgh, PA, April 1990.

[3] CMU Information Technology Center. Synchronization and Caching Issues in the
Andrew File System, USENIX Proceedings, Dallas, TX, Winter 1988.

[4] Information Technology Center, Carnegie Mellon University. Ubik - A Library For
Managing Ubiquitous Data, ITCID, Pittsburgh, PA, Month, 1988.

[5] Information Technology Center, Carnegie Mellon University. Quorum Completion,
ITCID, Pittsburgh, PA, Month, 1988.

Volume Server Interface 89 August 29, 1991 15:02

Index

VOLSER OLDMAXVOLNAME, 61

AFSVolForward(), 57

const BACK EXISTS, 48

const BACKVOL, 12

const BADSERVERID, 10

const CLONEZAPPED, 49

const DEFAULTBULK, 19

const ENTRYVALID, 49

const HASHSIZE, 10

const IDVALID, 49

const INVALID BID, 45

const ITBusy, 47

const ITCreateVolID, 47

const ITCreate, 47

const ITOffline, 47

const ITReadOnly, 47

const ITSBACKVOL, 48

const ITSROVOL, 48

const ITSRWVOL, 48

const LOCKREL AFSID, 13

const LOCKREL OPCODE, 13

const LOCKREL TIMESTAMP, 13

const MAX NUMBER OPCODES, 18

const MAXBUMPCOUNT, 10

const MAXHELPERS, 49

const MAXLOCKTIME, 10

const MAXNAMELEN, 10

const MAXNSERVERS, 10

const MAXPARTITIONID, 10

const MAXSERVERFLAG, 10

const MAXSERVERID, 10

const MAXTYPES, 10

const MyPort, 45

const NameLen, 45

const NAMEVALID, 49

const NEW REPSITE, 48

const NULLO, 10

const REUSECLONEID, 49

const RO EXISTS, 48

const ROVOL, 12

const RW EXISTS, 48

const RWVOL, 12

const SIZEVALID, 49

const SIZE, 10, 49

const STDERR, 49

const STDOUT, 49

const TTDeleted, 47

const VBUSY, 49, 60

const VDISKFULL, 60

const VHIdle, 48

const VHRequest, 48

const VICE SPECIAL ERRORS, 60

const VL BADENTRY, 21

const VL BADINDEX, 21

const VL BADNAME, 21

const VL BADPARTITION, 21

const VL BADREFCOUNT, 21

const VL BADRELLOCKTYPE, 21

const VL BADSERVERFLAG, 21

const VL BADSERVER, 21

const VL BADVOLIDBUMP, 21

const VL BADVOLOPER, 21

const VL BADVOLTYPE, 21

const VL CREATEFAIL, 21

const VL DUPREPSERVER, 21

const VL EMPTY, 21

const VL ENTDELETED, 21

i

AFS-3 Vol/VL Server Spec

const VL ENTRYLOCKED, 21

const VL IDALREADYHASHED, 21

const VL IDEXIST, 21

const VL IO, 21

const VL NAMEEXIST, 21

const VL NOENT, 21

const VL NOMEM, 21

const VL NOREPSERVER, 21

const VL PERM, 21

const VL REPSFULL, 21

const VL RERELEASE, 21

const VL RWNOTFOUND, 21

const VL SIZEEXCEEDED, 21

const VLDB MAXSERVERS, 45

const VLDBALLOCCOUNT, 10

const VLDBVERSION, 10

const VLDELETED, 12

const VLF BACKEXISTS, 13

const VLF ROEXISTS, 13

const VLF RWEXISTS, 13

const VLFREE, 12

const VLLIST FLAG, 11

const VLLIST PARTITION, 11

const VLLIST SERVER, 11

const VLLIST VOLUMEID, 11

const VLLIST VOLUMETYPE, 11

const VLLOCKED, 12

const VLOP ALLOPERS, 12

const VLOP BACKUP, 12

const VLOP DELETE, 12

const VLOP DUMP, 12

const VLOP MOVE, 12

const VLOP RELEASE, 12

const VLREPSITE NEW, 13

const VLSF BACKVOL, 13

const VLSF NEWREPSITE, 13

const VLSF ROVOL, 13

const VLSF RWVOL, 13

const VLUPDATE BACKUPID, 11

const VLUPDATE CLONEID, 11

const VLUPDATE FLAGS, 11

const VLUPDATE READONLYID, 11

const VLUPDATE REPS ADD, 11

const VLUPDATE REPS DELETE, 11

const VLUPDATE REPS MODFLAG, 11

const VLUPDATE REPS MODPART, 11

const VLUPDATE REPS MODSERV, 11

const VLUPDATE REPSITES, 11

const VLUPDATE VOLUMENAME, 11

const VLUPDATE VOLUMETYPE, 11

const VMOVED, 60

const VNAMESIZE, 45

const VNOSERVICE, 60

const VNOVNODE, 60

const VNOVOL, 60

const VOFFLINE, 60

const VOK, 49

const VOLCLONE, 46

const VOLCREATEVOLUME, 46

const VOLDELETEVOLUME, 46

const VOLDISKPART, 46

const VOLDUMP, 46

const VOLENDTRANS, 46

const VOLFORWARD, 46

const VOLGETFLAGS, 46

const VOLGETNAME, 46

const VOLGETNTHVOLUME, 46

const VOLGETSTATUS, 46

const VOLLISTONEVOL, 46

const VOLLISTPARTITIONS, 46

const VOLLISTVOLS, 46

const VOLMONITOR, 46

const VOLNUKE, 46

const VOLRECLONE, 46

const VOLRESTORE, 46

const volser BACK, 48

const VOLSER MAX REPSITES, 45

const VOLSER MAXVOLNAME, 45

const VOLSER OLDMAXVOLNAME, 45

const volser RO, 48

const volser RW, 48

const VOLSERATTACH ERROR, 59

Index ii August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

const VOLSERBAD ACCESS, 59

const VOLSERBADNAME, 59

const VOLSERBADOP, 59

const VOLSERBADRELEASE, 59

const VOLSERDETACH ERROR, 59

const VOLSERDUMPERROR, 59

const VOLSERFAILEDOP, 59

const VOLSERILLEGAL PARTITION, 59

const VOLSERMULTIRWVOL, 59

const VOLSERNO MEMORY, 59

const VOLSERNO OP, 59

const VOLSERNOVOL, 59

const VOLSERREAD DUMPERROR, 59

const VOLSERTRELE ERROR, 59

const VOLSERVICE ID, 45

const VOLSERVLDB ERROR, 59

const VOLSERVOLBUSY, 59

const VOLSERVOLMOVED, 59

const VOLSETDATE, 46

const VOLSETFLAGS, 46

const VOLSETFORWARDING, 46

const VOLSETIDSTYPES, 46

const VOLSIGRESTORE, 46

const VOLTRANSCREATE, 46

const VONLINE, 60

const VOVERQUOTA, 60

const VSALVAGE, 60

const VTDeleted, 47

const VTDeleteOnSalvage, 47

const VTOutOfService, 47

const VVOLEXISTS, 60

const , 49

file afsvlint.xg, 23, 38

file vldbint.xg, 6, 38

file volint.h, 44

file volint.xg, 41, 44, 45, 62, 68, 70

file volser.h, 44

fsck, 40

function AFSVolClone(), 46, 62, 72

function AFSVolCreateVolume(), 42, 43,

46, 47, 62, 64

function AFSVolDeleteVolume(), 46, 47,

62, 66

function AFSVolDump(), 46, 62, 68

function AFSVolDumpVolume(), 70

function AFSVolEndTrans(), 46, 62,

64, 76

function AFSVolForward(), 46, 54, 62,

71

function AFSVolGetFlags(), 46, 62, 77

function AFSVolGetName(), 46, 62,

79

function AFSVolGetNthVolume(), 46,

62, 87

function AFSVolGetStatus(), 46, 53,

62, 80

function AFSVolListOneVolume(), 46,

62, 86

function AFSVolListPartitions(), 46, 56,

62, 83

function AFSVolListVolumes(), 42, 46,

54, 58, 62, 85, 86

function AFSVolMonitor(), 46, 55, 57,

62, 88

function AFSVolNukeVolume(), 46, 62,

67

function AFSVolPartitionInfo(), 46, 62,

84

function AFSVolReClone(), 46, 62, 73

function AFSVolRestore(), 57, 62, 69,

70

function AFSVolRestoreVolume(), 46

function AFSVolSetDate(), 46, 62, 82

function AFSVolSetFlags(), 46, 62, 78

function AFSVolSetForwarding(), 46,

62, 74

function AFSVolSetIdsTypes(), 46, 62,

81

function AFSVolSignalRestore(), 46, 62,

69, 70

function AFSVolTransCreate(), 46, 62,

64, 75

Index iii August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

function EndAFSVolDump(), 68

function EndAFSVolRestore(), 70, 71

function StartAFSVolDump(), 68

function StartAFSVolRestore(), 70, 71

function VL CreateEntry(), 12, 14, 24

function VL DeleteEntry(), 25

function VL GetEntryByID(), 12, 14,

26, 27, 38

function VL GetEntryByName(), 12,

14, 27, 38

function VL GetNewVolumeID(), 64

function VL GetNewVolumeId(), 28

function VL GetStats(), 36

function VL LinkedList(), 18, 35

function VL ListAttributes(), 17, 18,

34, 35

function VL ListByAttributes(), 19

function VL ListEntry(), 12, 14, 33

function VL Probe(), 37, 38

function VL ReleaseLock(), 13, 32

function VL ReplaceEntry(), 12--14,

29

function VL SetLock(), 12, 31

function VL UpdateEntry(), 13, 17, 29,

30

macro COUNT ABO(), 22

macro COUNT REQ(), 22

macro DOFFSET(), 22

macro ISNAMEVALID(), 61

macro THOLD(), 61

salvager, 40, 42

struct destServer, 54

struct diskPartition, 56

struct partList, 52

struct pIDs, 56

struct restoreCookie, 57

struct single vldbentry, 18

struct transDebugInfo, 55

struct vital vlheader, 16

struct vldb list, 18, 20

struct vldbentry, 10--12, 14, 15, 18,

38

struct VldbListByAttributes, 11, 17

struct VldbUpdateEntry, 10, 17

struct vldstats, 18

struct vlentry, 12, 15

struct vlheader, 16

struct volDescription, 52

struct volintInfo, 54

struct volser status, 53

struct volser trans, 40, 51

struct VolumeDiskData, 10

struct Volume, 10

typedef bulkentries, 19

typedef bulk, 19

typedef single vldbentry, 20

typedef transDebugEntries, 57

typedef vldblist, 20

typedef vlentry, 20

typedef vlheader, 20

typedef volEntries, 58

var QI GlobalWriteTrans, 50

VLDB, 45

Index iv August 29, 1991 15:02

