2 * Copyright 2000, International Business Machines Corporation and others.
5 * This software has been released under the terms of the IBM Public
6 * License. For details, see the LICENSE file in the top-level source
7 * directory or online at http://www.openafs.org/dl/license10.html
10 /* RX: Extended Remote Procedure Call */
12 #include <afsconfig.h>
13 #include <afs/param.h>
16 # include "afs/sysincludes.h"
17 # include "afsincludes.h"
22 # ifdef AFS_LINUX20_ENV
23 # include "h/socket.h"
25 # include "netinet/in.h"
27 # include "netinet/ip6.h"
28 # include "inet/common.h"
30 # include "inet/ip_ire.h"
32 # include "afs/afs_args.h"
33 # include "afs/afs_osi.h"
34 # ifdef RX_KERNEL_TRACE
35 # include "rx_kcommon.h"
37 # if defined(AFS_AIX_ENV)
41 # undef RXDEBUG /* turn off debugging */
43 # if defined(AFS_SGI_ENV)
44 # include "sys/debug.h"
47 # include "afs/sysincludes.h"
48 # include "afsincludes.h"
49 # endif /* !UKERNEL */
50 # include "afs/lock.h"
51 # include "rx_kmutex.h"
52 # include "rx_kernel.h"
53 # define AFSOP_STOP_RXCALLBACK 210 /* Stop CALLBACK process */
54 # define AFSOP_STOP_AFS 211 /* Stop AFS process */
55 # define AFSOP_STOP_BKG 212 /* Stop BKG process */
56 extern afs_int32 afs_termState;
58 # include "sys/lockl.h"
59 # include "sys/lock_def.h"
60 # endif /* AFS_AIX41_ENV */
61 # include "afs/rxgen_consts.h"
66 # include <afs/afsutil.h>
67 # include <WINNT\afsreg.h>
78 #include "rx_atomic.h"
79 #include "rx_globals.h"
81 #include "rx_internal.h"
88 #include "rx_packet.h"
90 #include <afs/rxgen_consts.h>
93 #ifdef AFS_PTHREAD_ENV
95 int (*registerProgram) (pid_t, char *) = 0;
96 int (*swapNameProgram) (pid_t, const char *, char *) = 0;
99 int (*registerProgram) (PROCESS, char *) = 0;
100 int (*swapNameProgram) (PROCESS, const char *, char *) = 0;
104 /* Local static routines */
105 static void rxi_DestroyConnectionNoLock(struct rx_connection *conn);
106 static void rxi_ComputeRoundTripTime(struct rx_packet *, struct rx_ackPacket *,
107 struct rx_call *, struct rx_peer *,
109 static void rxi_Resend(struct rxevent *event, void *arg0, void *arg1,
111 static void rxi_SendDelayedAck(struct rxevent *event, void *call,
112 void *dummy, int dummy2);
113 static void rxi_SendDelayedCallAbort(struct rxevent *event, void *arg1,
114 void *dummy, int dummy2);
115 static void rxi_SendDelayedConnAbort(struct rxevent *event, void *arg1,
116 void *unused, int unused2);
117 static void rxi_ReapConnections(struct rxevent *unused, void *unused1,
118 void *unused2, int unused3);
119 static struct rx_packet *rxi_SendCallAbort(struct rx_call *call,
120 struct rx_packet *packet,
121 int istack, int force);
122 static void rxi_AckAll(struct rx_call *call);
123 static struct rx_connection
124 *rxi_FindConnection(osi_socket socket, afs_uint32 host, u_short port,
125 u_short serviceId, afs_uint32 cid,
126 afs_uint32 epoch, int type, u_int securityIndex);
127 static struct rx_packet
128 *rxi_ReceiveDataPacket(struct rx_call *call, struct rx_packet *np,
129 int istack, osi_socket socket,
130 afs_uint32 host, u_short port, int *tnop,
131 struct rx_call **newcallp);
132 static struct rx_packet
133 *rxi_ReceiveAckPacket(struct rx_call *call, struct rx_packet *np,
135 static struct rx_packet
136 *rxi_ReceiveResponsePacket(struct rx_connection *conn,
137 struct rx_packet *np, int istack);
138 static struct rx_packet
139 *rxi_ReceiveChallengePacket(struct rx_connection *conn,
140 struct rx_packet *np, int istack);
141 static void rxi_AttachServerProc(struct rx_call *call, osi_socket socket,
142 int *tnop, struct rx_call **newcallp);
143 static void rxi_ClearTransmitQueue(struct rx_call *call, int force);
144 static void rxi_ClearReceiveQueue(struct rx_call *call);
145 static void rxi_ResetCall(struct rx_call *call, int newcall);
146 static void rxi_ScheduleKeepAliveEvent(struct rx_call *call);
147 static void rxi_ScheduleNatKeepAliveEvent(struct rx_connection *conn);
148 static void rxi_ScheduleGrowMTUEvent(struct rx_call *call, int secs);
149 static void rxi_KeepAliveOn(struct rx_call *call);
150 static void rxi_GrowMTUOn(struct rx_call *call);
151 static void rxi_ChallengeOn(struct rx_connection *conn);
153 #ifdef RX_ENABLE_LOCKS
154 static int rxi_CheckCall(struct rx_call *call, int haveCTLock);
155 static void rxi_SetAcksInTransmitQueue(struct rx_call *call);
157 static int rxi_CheckCall(struct rx_call *call);
160 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
162 rx_atomic_t rxi_start_aborted; /* rxi_start awoke after rxi_Send in error.*/
163 rx_atomic_t rxi_start_in_error;
165 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
167 /* Constant delay time before sending an acknowledge of the last packet
168 * received. This is to avoid sending an extra acknowledge when the
169 * client is about to make another call, anyway, or the server is
172 * The lastAckDelay may not exceeed 400ms without causing peers to
173 * unecessarily timeout.
175 struct clock rx_lastAckDelay = {0, 400000};
177 /* Constant delay time before sending a soft ack when none was requested.
178 * This is to make sure we send soft acks before the sender times out,
179 * Normally we wait and send a hard ack when the receiver consumes the packet
181 * This value has been 100ms in all shipping versions of OpenAFS. Changing it
182 * will require changes to the peer's RTT calculations.
184 struct clock rx_softAckDelay = {0, 100000};
187 * rxi_rpc_peer_stat_cnt counts the total number of peer stat structures
188 * currently allocated within rx. This number is used to allocate the
189 * memory required to return the statistics when queried.
190 * Protected by the rx_rpc_stats mutex.
193 static unsigned int rxi_rpc_peer_stat_cnt;
196 * rxi_rpc_process_stat_cnt counts the total number of local process stat
197 * structures currently allocated within rx. The number is used to allocate
198 * the memory required to return the statistics when queried.
199 * Protected by the rx_rpc_stats mutex.
202 static unsigned int rxi_rpc_process_stat_cnt;
205 * rxi_busyChannelError is a boolean. It indicates whether or not RX_CALL_BUSY
206 * errors should be reported to the application when a call channel appears busy
207 * (inferred from the receipt of RX_PACKET_TYPE_BUSY packets on the channel),
208 * and there are other call channels in the connection that are not busy.
209 * If 0, we do not return errors upon receiving busy packets; we just keep
210 * trying on the same call channel until we hit a timeout.
212 static afs_int32 rxi_busyChannelError = 0;
214 rx_atomic_t rx_nWaiting = RX_ATOMIC_INIT(0);
215 rx_atomic_t rx_nWaited = RX_ATOMIC_INIT(0);
217 #if !defined(offsetof)
218 #include <stddef.h> /* for definition of offsetof() */
221 #ifdef RX_ENABLE_LOCKS
222 afs_kmutex_t rx_atomic_mutex;
225 /* Forward prototypes */
226 static struct rx_call * rxi_NewCall(struct rx_connection *, int);
229 putConnection (struct rx_connection *conn) {
230 MUTEX_ENTER(&rx_refcnt_mutex);
232 MUTEX_EXIT(&rx_refcnt_mutex);
235 #ifdef AFS_PTHREAD_ENV
238 * Use procedural initialization of mutexes/condition variables
242 extern afs_kmutex_t rx_quota_mutex;
243 extern afs_kmutex_t rx_pthread_mutex;
244 extern afs_kmutex_t rx_packets_mutex;
245 extern afs_kmutex_t rx_refcnt_mutex;
246 extern afs_kmutex_t des_init_mutex;
247 extern afs_kmutex_t des_random_mutex;
248 extern afs_kmutex_t rx_clock_mutex;
249 extern afs_kmutex_t rxi_connCacheMutex;
250 extern afs_kmutex_t event_handler_mutex;
251 extern afs_kmutex_t listener_mutex;
252 extern afs_kmutex_t rx_if_init_mutex;
253 extern afs_kmutex_t rx_if_mutex;
255 extern afs_kcondvar_t rx_event_handler_cond;
256 extern afs_kcondvar_t rx_listener_cond;
258 static afs_kmutex_t epoch_mutex;
259 static afs_kmutex_t rx_init_mutex;
260 static afs_kmutex_t rx_debug_mutex;
261 static afs_kmutex_t rx_rpc_stats;
264 rxi_InitPthread(void)
266 MUTEX_INIT(&rx_clock_mutex, "clock", MUTEX_DEFAULT, 0);
267 MUTEX_INIT(&rx_stats_mutex, "stats", MUTEX_DEFAULT, 0);
268 MUTEX_INIT(&rx_atomic_mutex, "atomic", MUTEX_DEFAULT, 0);
269 MUTEX_INIT(&rx_quota_mutex, "quota", MUTEX_DEFAULT, 0);
270 MUTEX_INIT(&rx_pthread_mutex, "pthread", MUTEX_DEFAULT, 0);
271 MUTEX_INIT(&rx_packets_mutex, "packets", MUTEX_DEFAULT, 0);
272 MUTEX_INIT(&rx_refcnt_mutex, "refcnts", MUTEX_DEFAULT, 0);
273 MUTEX_INIT(&epoch_mutex, "epoch", MUTEX_DEFAULT, 0);
274 MUTEX_INIT(&rx_init_mutex, "init", MUTEX_DEFAULT, 0);
275 MUTEX_INIT(&event_handler_mutex, "event handler", MUTEX_DEFAULT, 0);
276 MUTEX_INIT(&rxi_connCacheMutex, "conn cache", MUTEX_DEFAULT, 0);
277 MUTEX_INIT(&listener_mutex, "listener", MUTEX_DEFAULT, 0);
278 MUTEX_INIT(&rx_if_init_mutex, "if init", MUTEX_DEFAULT, 0);
279 MUTEX_INIT(&rx_if_mutex, "if", MUTEX_DEFAULT, 0);
280 MUTEX_INIT(&rx_debug_mutex, "debug", MUTEX_DEFAULT, 0);
282 CV_INIT(&rx_event_handler_cond, "evhand", CV_DEFAULT, 0);
283 CV_INIT(&rx_listener_cond, "rxlisten", CV_DEFAULT, 0);
285 osi_Assert(pthread_key_create(&rx_thread_id_key, NULL) == 0);
286 osi_Assert(pthread_key_create(&rx_ts_info_key, NULL) == 0);
288 MUTEX_INIT(&rx_rpc_stats, "rx_rpc_stats", MUTEX_DEFAULT, 0);
289 MUTEX_INIT(&rx_freePktQ_lock, "rx_freePktQ_lock", MUTEX_DEFAULT, 0);
290 #ifdef RX_ENABLE_LOCKS
293 #endif /* RX_LOCKS_DB */
294 MUTEX_INIT(&freeSQEList_lock, "freeSQEList lock", MUTEX_DEFAULT, 0);
295 MUTEX_INIT(&rx_freeCallQueue_lock, "rx_freeCallQueue_lock", MUTEX_DEFAULT,
297 CV_INIT(&rx_waitingForPackets_cv, "rx_waitingForPackets_cv", CV_DEFAULT,
299 MUTEX_INIT(&rx_peerHashTable_lock, "rx_peerHashTable_lock", MUTEX_DEFAULT,
301 MUTEX_INIT(&rx_connHashTable_lock, "rx_connHashTable_lock", MUTEX_DEFAULT,
303 MUTEX_INIT(&rx_serverPool_lock, "rx_serverPool_lock", MUTEX_DEFAULT, 0);
304 MUTEX_INIT(&rxi_keyCreate_lock, "rxi_keyCreate_lock", MUTEX_DEFAULT, 0);
305 #endif /* RX_ENABLE_LOCKS */
308 pthread_once_t rx_once_init = PTHREAD_ONCE_INIT;
309 #define INIT_PTHREAD_LOCKS osi_Assert(pthread_once(&rx_once_init, rxi_InitPthread)==0)
311 * The rx_stats_mutex mutex protects the following global variables:
312 * rxi_lowConnRefCount
313 * rxi_lowPeerRefCount
322 * The rx_quota_mutex mutex protects the following global variables:
330 * The rx_freePktQ_lock protects the following global variables:
335 * The rx_packets_mutex mutex protects the following global variables:
343 * The rx_pthread_mutex mutex protects the following global variables:
344 * rxi_fcfs_thread_num
347 #define INIT_PTHREAD_LOCKS
351 /* Variables for handling the minProcs implementation. availProcs gives the
352 * number of threads available in the pool at this moment (not counting dudes
353 * executing right now). totalMin gives the total number of procs required
354 * for handling all minProcs requests. minDeficit is a dynamic variable
355 * tracking the # of procs required to satisfy all of the remaining minProcs
357 * For fine grain locking to work, the quota check and the reservation of
358 * a server thread has to come while rxi_availProcs and rxi_minDeficit
359 * are locked. To this end, the code has been modified under #ifdef
360 * RX_ENABLE_LOCKS so that quota checks and reservation occur at the
361 * same time. A new function, ReturnToServerPool() returns the allocation.
363 * A call can be on several queue's (but only one at a time). When
364 * rxi_ResetCall wants to remove the call from a queue, it has to ensure
365 * that no one else is touching the queue. To this end, we store the address
366 * of the queue lock in the call structure (under the call lock) when we
367 * put the call on a queue, and we clear the call_queue_lock when the
368 * call is removed from a queue (once the call lock has been obtained).
369 * This allows rxi_ResetCall to safely synchronize with others wishing
370 * to manipulate the queue.
373 #if defined(RX_ENABLE_LOCKS)
374 static afs_kmutex_t rx_rpc_stats;
377 /* We keep a "last conn pointer" in rxi_FindConnection. The odds are
378 ** pretty good that the next packet coming in is from the same connection
379 ** as the last packet, since we're send multiple packets in a transmit window.
381 struct rx_connection *rxLastConn = 0;
383 #ifdef RX_ENABLE_LOCKS
384 /* The locking hierarchy for rx fine grain locking is composed of these
387 * rx_connHashTable_lock - synchronizes conn creation, rx_connHashTable access
388 * conn_call_lock - used to synchonize rx_EndCall and rx_NewCall
389 * call->lock - locks call data fields.
390 * These are independent of each other:
391 * rx_freeCallQueue_lock
396 * serverQueueEntry->lock
397 * rx_peerHashTable_lock - locked under rx_connHashTable_lock
399 * peer->lock - locks peer data fields.
400 * conn_data_lock - that more than one thread is not updating a conn data
401 * field at the same time.
412 * Do we need a lock to protect the peer field in the conn structure?
413 * conn->peer was previously a constant for all intents and so has no
414 * lock protecting this field. The multihomed client delta introduced
415 * a RX code change : change the peer field in the connection structure
416 * to that remote interface from which the last packet for this
417 * connection was sent out. This may become an issue if further changes
420 #define SET_CALL_QUEUE_LOCK(C, L) (C)->call_queue_lock = (L)
421 #define CLEAR_CALL_QUEUE_LOCK(C) (C)->call_queue_lock = NULL
423 /* rxdb_fileID is used to identify the lock location, along with line#. */
424 static int rxdb_fileID = RXDB_FILE_RX;
425 #endif /* RX_LOCKS_DB */
426 #else /* RX_ENABLE_LOCKS */
427 #define SET_CALL_QUEUE_LOCK(C, L)
428 #define CLEAR_CALL_QUEUE_LOCK(C)
429 #endif /* RX_ENABLE_LOCKS */
430 struct rx_serverQueueEntry *rx_waitForPacket = 0;
431 struct rx_serverQueueEntry *rx_waitingForPacket = 0;
433 /* ------------Exported Interfaces------------- */
435 /* This function allows rxkad to set the epoch to a suitably random number
436 * which rx_NewConnection will use in the future. The principle purpose is to
437 * get rxnull connections to use the same epoch as the rxkad connections do, at
438 * least once the first rxkad connection is established. This is important now
439 * that the host/port addresses aren't used in FindConnection: the uniqueness
440 * of epoch/cid matters and the start time won't do. */
442 #ifdef AFS_PTHREAD_ENV
444 * This mutex protects the following global variables:
448 #define LOCK_EPOCH MUTEX_ENTER(&epoch_mutex)
449 #define UNLOCK_EPOCH MUTEX_EXIT(&epoch_mutex)
453 #endif /* AFS_PTHREAD_ENV */
456 rx_SetEpoch(afs_uint32 epoch)
463 /* Initialize rx. A port number may be mentioned, in which case this
464 * becomes the default port number for any service installed later.
465 * If 0 is provided for the port number, a random port will be chosen
466 * by the kernel. Whether this will ever overlap anything in
467 * /etc/services is anybody's guess... Returns 0 on success, -1 on
472 int rxinit_status = 1;
473 #ifdef AFS_PTHREAD_ENV
475 * This mutex protects the following global variables:
479 #define LOCK_RX_INIT MUTEX_ENTER(&rx_init_mutex)
480 #define UNLOCK_RX_INIT MUTEX_EXIT(&rx_init_mutex)
483 #define UNLOCK_RX_INIT
487 rx_InitHost(u_int host, u_int port)
494 char *htable, *ptable;
501 if (rxinit_status == 0) {
502 tmp_status = rxinit_status;
504 return tmp_status; /* Already started; return previous error code. */
510 if (afs_winsockInit() < 0)
516 * Initialize anything necessary to provide a non-premptive threading
519 rxi_InitializeThreadSupport();
522 /* Allocate and initialize a socket for client and perhaps server
525 rx_socket = rxi_GetHostUDPSocket(host, (u_short) port);
526 if (rx_socket == OSI_NULLSOCKET) {
530 #if defined(RX_ENABLE_LOCKS) && defined(KERNEL)
533 #endif /* RX_LOCKS_DB */
534 MUTEX_INIT(&rx_stats_mutex, "rx_stats_mutex", MUTEX_DEFAULT, 0);
535 MUTEX_INIT(&rx_quota_mutex, "rx_quota_mutex", MUTEX_DEFAULT, 0);
536 MUTEX_INIT(&rx_atomic_mutex, "rx_atomic_mutex", MUTEX_DEFAULT, 0);
537 MUTEX_INIT(&rx_pthread_mutex, "rx_pthread_mutex", MUTEX_DEFAULT, 0);
538 MUTEX_INIT(&rx_packets_mutex, "rx_packets_mutex", MUTEX_DEFAULT, 0);
539 MUTEX_INIT(&rx_refcnt_mutex, "rx_refcnt_mutex", MUTEX_DEFAULT, 0);
540 MUTEX_INIT(&rx_rpc_stats, "rx_rpc_stats", MUTEX_DEFAULT, 0);
541 MUTEX_INIT(&rx_freePktQ_lock, "rx_freePktQ_lock", MUTEX_DEFAULT, 0);
542 MUTEX_INIT(&freeSQEList_lock, "freeSQEList lock", MUTEX_DEFAULT, 0);
543 MUTEX_INIT(&rx_freeCallQueue_lock, "rx_freeCallQueue_lock", MUTEX_DEFAULT,
545 CV_INIT(&rx_waitingForPackets_cv, "rx_waitingForPackets_cv", CV_DEFAULT,
547 MUTEX_INIT(&rx_peerHashTable_lock, "rx_peerHashTable_lock", MUTEX_DEFAULT,
549 MUTEX_INIT(&rx_connHashTable_lock, "rx_connHashTable_lock", MUTEX_DEFAULT,
551 MUTEX_INIT(&rx_serverPool_lock, "rx_serverPool_lock", MUTEX_DEFAULT, 0);
552 #if defined(AFS_HPUX110_ENV)
554 rx_sleepLock = alloc_spinlock(LAST_HELD_ORDER - 10, "rx_sleepLock");
555 #endif /* AFS_HPUX110_ENV */
556 #endif /* RX_ENABLE_LOCKS && KERNEL */
559 rx_connDeadTime = 12;
560 rx_tranquil = 0; /* reset flag */
561 rxi_ResetStatistics();
562 htable = osi_Alloc(rx_hashTableSize * sizeof(struct rx_connection *));
563 PIN(htable, rx_hashTableSize * sizeof(struct rx_connection *)); /* XXXXX */
564 memset(htable, 0, rx_hashTableSize * sizeof(struct rx_connection *));
565 ptable = osi_Alloc(rx_hashTableSize * sizeof(struct rx_peer *));
566 PIN(ptable, rx_hashTableSize * sizeof(struct rx_peer *)); /* XXXXX */
567 memset(ptable, 0, rx_hashTableSize * sizeof(struct rx_peer *));
569 /* Malloc up a bunch of packets & buffers */
571 queue_Init(&rx_freePacketQueue);
572 rxi_NeedMorePackets = FALSE;
573 rx_nPackets = 0; /* rx_nPackets is managed by rxi_MorePackets* */
575 /* enforce a minimum number of allocated packets */
576 if (rx_extraPackets < rxi_nSendFrags * rx_maxSendWindow)
577 rx_extraPackets = rxi_nSendFrags * rx_maxSendWindow;
579 /* allocate the initial free packet pool */
580 #ifdef RX_ENABLE_TSFPQ
581 rxi_MorePacketsTSFPQ(rx_extraPackets + RX_MAX_QUOTA + 2, RX_TS_FPQ_FLUSH_GLOBAL, 0);
582 #else /* RX_ENABLE_TSFPQ */
583 rxi_MorePackets(rx_extraPackets + RX_MAX_QUOTA + 2); /* fudge */
584 #endif /* RX_ENABLE_TSFPQ */
591 #if defined(AFS_NT40_ENV) && !defined(AFS_PTHREAD_ENV)
592 tv.tv_sec = clock_now.sec;
593 tv.tv_usec = clock_now.usec;
594 srand((unsigned int)tv.tv_usec);
601 #if defined(KERNEL) && !defined(UKERNEL)
602 /* Really, this should never happen in a real kernel */
605 struct sockaddr_in addr;
607 int addrlen = sizeof(addr);
609 socklen_t addrlen = sizeof(addr);
611 if (getsockname((intptr_t)rx_socket, (struct sockaddr *)&addr, &addrlen)) {
613 osi_Free(htable, rx_hashTableSize * sizeof(struct rx_connection *));
616 rx_port = addr.sin_port;
619 rx_stats.minRtt.sec = 9999999;
621 rx_SetEpoch(tv.tv_sec | 0x80000000);
623 rx_SetEpoch(tv.tv_sec); /* Start time of this package, rxkad
624 * will provide a randomer value. */
626 MUTEX_ENTER(&rx_quota_mutex);
627 rxi_dataQuota += rx_extraQuota; /* + extra pkts caller asked to rsrv */
628 MUTEX_EXIT(&rx_quota_mutex);
629 /* *Slightly* random start time for the cid. This is just to help
630 * out with the hashing function at the peer */
631 rx_nextCid = ((tv.tv_sec ^ tv.tv_usec) << RX_CIDSHIFT);
632 rx_connHashTable = (struct rx_connection **)htable;
633 rx_peerHashTable = (struct rx_peer **)ptable;
635 rx_hardAckDelay.sec = 0;
636 rx_hardAckDelay.usec = 100000; /* 100 milliseconds */
638 rxevent_Init(20, rxi_ReScheduleEvents);
640 /* Initialize various global queues */
641 queue_Init(&rx_idleServerQueue);
642 queue_Init(&rx_incomingCallQueue);
643 queue_Init(&rx_freeCallQueue);
645 #if defined(AFS_NT40_ENV) && !defined(KERNEL)
646 /* Initialize our list of usable IP addresses. */
650 #if defined(RXK_LISTENER_ENV) || !defined(KERNEL)
651 /* Start listener process (exact function is dependent on the
652 * implementation environment--kernel or user space) */
657 tmp_status = rxinit_status = 0;
665 return rx_InitHost(htonl(INADDR_ANY), port);
671 * The rxi_rto functions implement a TCP (RFC2988) style algorithm for
672 * maintaing the round trip timer.
677 * Start a new RTT timer for a given call and packet.
679 * There must be no resendEvent already listed for this call, otherwise this
680 * will leak events - intended for internal use within the RTO code only
683 * the RX call to start the timer for
684 * @param[in] lastPacket
685 * a flag indicating whether the last packet has been sent or not
687 * @pre call must be locked before calling this function
691 rxi_rto_startTimer(struct rx_call *call, int lastPacket, int istack)
693 struct clock now, retryTime;
698 clock_Add(&retryTime, &call->rto);
700 /* If we're sending the last packet, and we're the client, then the server
701 * may wait for an additional 400ms before returning the ACK, wait for it
702 * rather than hitting a timeout */
703 if (lastPacket && call->conn->type == RX_CLIENT_CONNECTION)
704 clock_Addmsec(&retryTime, 400);
706 CALL_HOLD(call, RX_CALL_REFCOUNT_RESEND);
707 call->resendEvent = rxevent_Post(&retryTime, &now, rxi_Resend,
712 * Cancel an RTT timer for a given call.
716 * the RX call to cancel the timer for
718 * @pre call must be locked before calling this function
723 rxi_rto_cancel(struct rx_call *call)
725 rxevent_Cancel(&call->resendEvent, call, RX_CALL_REFCOUNT_RESEND);
729 * Tell the RTO timer that we have sent a packet.
731 * If the timer isn't already running, then start it. If the timer is running,
735 * the RX call that the packet has been sent on
736 * @param[in] lastPacket
737 * A flag which is true if this is the last packet for the call
739 * @pre The call must be locked before calling this function
744 rxi_rto_packet_sent(struct rx_call *call, int lastPacket, int istack)
746 if (call->resendEvent)
749 rxi_rto_startTimer(call, lastPacket, istack);
753 * Tell the RTO timer that we have received an new ACK message
755 * This function should be called whenever a call receives an ACK that
756 * acknowledges new packets. Whatever happens, we stop the current timer.
757 * If there are unacked packets in the queue which have been sent, then
758 * we restart the timer from now. Otherwise, we leave it stopped.
761 * the RX call that the ACK has been received on
765 rxi_rto_packet_acked(struct rx_call *call, int istack)
767 struct rx_packet *p, *nxp;
769 rxi_rto_cancel(call);
771 if (queue_IsEmpty(&call->tq))
774 for (queue_Scan(&call->tq, p, nxp, rx_packet)) {
775 if (p->header.seq > call->tfirst + call->twind)
778 if (!(p->flags & RX_PKTFLAG_ACKED) && p->flags & RX_PKTFLAG_SENT) {
779 rxi_rto_startTimer(call, p->header.flags & RX_LAST_PACKET, istack);
787 * Set an initial round trip timeout for a peer connection
789 * @param[in] secs The timeout to set in seconds
793 rx_rto_setPeerTimeoutSecs(struct rx_peer *peer, int secs) {
794 peer->rtt = secs * 8000;
798 * Enables or disables the busy call channel error (RX_CALL_BUSY).
800 * @param[in] onoff Non-zero to enable busy call channel errors.
802 * @pre Neither rx_Init nor rx_InitHost have been called yet
805 rx_SetBusyChannelError(afs_int32 onoff)
807 osi_Assert(rxinit_status != 0);
808 rxi_busyChannelError = onoff ? 1 : 0;
812 * Set a delayed ack event on the specified call for the given time
814 * @param[in] call - the call on which to set the event
815 * @param[in] offset - the delay from now after which the event fires
818 rxi_PostDelayedAckEvent(struct rx_call *call, struct clock *offset)
820 struct clock now, when;
824 clock_Add(&when, offset);
826 if (!call->delayedAckEvent
827 || clock_Gt(&call->delayedAckTime, &when)) {
829 rxevent_Cancel(&call->delayedAckEvent, call,
830 RX_CALL_REFCOUNT_DELAY);
831 CALL_HOLD(call, RX_CALL_REFCOUNT_DELAY);
833 call->delayedAckEvent = rxevent_Post(&when, &now,
836 call->delayedAckTime = when;
840 /* called with unincremented nRequestsRunning to see if it is OK to start
841 * a new thread in this service. Could be "no" for two reasons: over the
842 * max quota, or would prevent others from reaching their min quota.
844 #ifdef RX_ENABLE_LOCKS
845 /* This verion of QuotaOK reserves quota if it's ok while the
846 * rx_serverPool_lock is held. Return quota using ReturnToServerPool().
849 QuotaOK(struct rx_service *aservice)
851 /* check if over max quota */
852 if (aservice->nRequestsRunning >= aservice->maxProcs) {
856 /* under min quota, we're OK */
857 /* otherwise, can use only if there are enough to allow everyone
858 * to go to their min quota after this guy starts.
861 MUTEX_ENTER(&rx_quota_mutex);
862 if ((aservice->nRequestsRunning < aservice->minProcs)
863 || (rxi_availProcs > rxi_minDeficit)) {
864 aservice->nRequestsRunning++;
865 /* just started call in minProcs pool, need fewer to maintain
867 if (aservice->nRequestsRunning <= aservice->minProcs)
870 MUTEX_EXIT(&rx_quota_mutex);
873 MUTEX_EXIT(&rx_quota_mutex);
879 ReturnToServerPool(struct rx_service *aservice)
881 aservice->nRequestsRunning--;
882 MUTEX_ENTER(&rx_quota_mutex);
883 if (aservice->nRequestsRunning < aservice->minProcs)
886 MUTEX_EXIT(&rx_quota_mutex);
889 #else /* RX_ENABLE_LOCKS */
891 QuotaOK(struct rx_service *aservice)
894 /* under min quota, we're OK */
895 if (aservice->nRequestsRunning < aservice->minProcs)
898 /* check if over max quota */
899 if (aservice->nRequestsRunning >= aservice->maxProcs)
902 /* otherwise, can use only if there are enough to allow everyone
903 * to go to their min quota after this guy starts.
905 MUTEX_ENTER(&rx_quota_mutex);
906 if (rxi_availProcs > rxi_minDeficit)
908 MUTEX_EXIT(&rx_quota_mutex);
911 #endif /* RX_ENABLE_LOCKS */
914 /* Called by rx_StartServer to start up lwp's to service calls.
915 NExistingProcs gives the number of procs already existing, and which
916 therefore needn't be created. */
918 rxi_StartServerProcs(int nExistingProcs)
920 struct rx_service *service;
925 /* For each service, reserve N processes, where N is the "minimum"
926 * number of processes that MUST be able to execute a request in parallel,
927 * at any time, for that process. Also compute the maximum difference
928 * between any service's maximum number of processes that can run
929 * (i.e. the maximum number that ever will be run, and a guarantee
930 * that this number will run if other services aren't running), and its
931 * minimum number. The result is the extra number of processes that
932 * we need in order to provide the latter guarantee */
933 for (i = 0; i < RX_MAX_SERVICES; i++) {
935 service = rx_services[i];
936 if (service == (struct rx_service *)0)
938 nProcs += service->minProcs;
939 diff = service->maxProcs - service->minProcs;
943 nProcs += maxdiff; /* Extra processes needed to allow max number requested to run in any given service, under good conditions */
944 nProcs -= nExistingProcs; /* Subtract the number of procs that were previously created for use as server procs */
945 for (i = 0; i < nProcs; i++) {
946 rxi_StartServerProc(rx_ServerProc, rx_stackSize);
952 /* This routine is only required on Windows */
954 rx_StartClientThread(void)
956 #ifdef AFS_PTHREAD_ENV
958 pid = pthread_self();
959 #endif /* AFS_PTHREAD_ENV */
961 #endif /* AFS_NT40_ENV */
963 /* This routine must be called if any services are exported. If the
964 * donateMe flag is set, the calling process is donated to the server
967 rx_StartServer(int donateMe)
969 struct rx_service *service;
975 /* Start server processes, if necessary (exact function is dependent
976 * on the implementation environment--kernel or user space). DonateMe
977 * will be 1 if there is 1 pre-existing proc, i.e. this one. In this
978 * case, one less new proc will be created rx_StartServerProcs.
980 rxi_StartServerProcs(donateMe);
982 /* count up the # of threads in minProcs, and add set the min deficit to
983 * be that value, too.
985 for (i = 0; i < RX_MAX_SERVICES; i++) {
986 service = rx_services[i];
987 if (service == (struct rx_service *)0)
989 MUTEX_ENTER(&rx_quota_mutex);
990 rxi_totalMin += service->minProcs;
991 /* below works even if a thread is running, since minDeficit would
992 * still have been decremented and later re-incremented.
994 rxi_minDeficit += service->minProcs;
995 MUTEX_EXIT(&rx_quota_mutex);
998 /* Turn on reaping of idle server connections */
999 rxi_ReapConnections(NULL, NULL, NULL, 0);
1004 #ifndef AFS_NT40_ENV
1008 #ifdef AFS_PTHREAD_ENV
1010 pid = afs_pointer_to_int(pthread_self());
1011 #else /* AFS_PTHREAD_ENV */
1013 LWP_CurrentProcess(&pid);
1014 #endif /* AFS_PTHREAD_ENV */
1016 sprintf(name, "srv_%d", ++nProcs);
1017 if (registerProgram)
1018 (*registerProgram) (pid, name);
1020 #endif /* AFS_NT40_ENV */
1021 rx_ServerProc(NULL); /* Never returns */
1023 #ifdef RX_ENABLE_TSFPQ
1024 /* no use leaving packets around in this thread's local queue if
1025 * it isn't getting donated to the server thread pool.
1027 rxi_FlushLocalPacketsTSFPQ();
1028 #endif /* RX_ENABLE_TSFPQ */
1032 /* Create a new client connection to the specified service, using the
1033 * specified security object to implement the security model for this
1035 struct rx_connection *
1036 rx_NewConnection(afs_uint32 shost, u_short sport, u_short sservice,
1037 struct rx_securityClass *securityObject,
1038 int serviceSecurityIndex)
1042 struct rx_connection *conn;
1047 dpf(("rx_NewConnection(host %x, port %u, service %u, securityObject %p, "
1048 "serviceSecurityIndex %d)\n",
1049 ntohl(shost), ntohs(sport), sservice, securityObject,
1050 serviceSecurityIndex));
1052 /* Vasilsi said: "NETPRI protects Cid and Alloc", but can this be true in
1053 * the case of kmem_alloc? */
1054 conn = rxi_AllocConnection();
1055 #ifdef RX_ENABLE_LOCKS
1056 MUTEX_INIT(&conn->conn_call_lock, "conn call lock", MUTEX_DEFAULT, 0);
1057 MUTEX_INIT(&conn->conn_data_lock, "conn data lock", MUTEX_DEFAULT, 0);
1058 CV_INIT(&conn->conn_call_cv, "conn call cv", CV_DEFAULT, 0);
1061 MUTEX_ENTER(&rx_connHashTable_lock);
1062 cid = (rx_nextCid += RX_MAXCALLS);
1063 conn->type = RX_CLIENT_CONNECTION;
1065 conn->epoch = rx_epoch;
1066 conn->peer = rxi_FindPeer(shost, sport, 0, 1);
1067 conn->serviceId = sservice;
1068 conn->securityObject = securityObject;
1069 conn->securityData = (void *) 0;
1070 conn->securityIndex = serviceSecurityIndex;
1071 rx_SetConnDeadTime(conn, rx_connDeadTime);
1072 rx_SetConnSecondsUntilNatPing(conn, 0);
1073 conn->ackRate = RX_FAST_ACK_RATE;
1074 conn->nSpecific = 0;
1075 conn->specific = NULL;
1076 conn->challengeEvent = NULL;
1077 conn->delayedAbortEvent = NULL;
1078 conn->abortCount = 0;
1080 for (i = 0; i < RX_MAXCALLS; i++) {
1081 conn->twind[i] = rx_initSendWindow;
1082 conn->rwind[i] = rx_initReceiveWindow;
1083 conn->lastBusy[i] = 0;
1086 RXS_NewConnection(securityObject, conn);
1088 CONN_HASH(shost, sport, conn->cid, conn->epoch, RX_CLIENT_CONNECTION);
1090 conn->refCount++; /* no lock required since only this thread knows... */
1091 conn->next = rx_connHashTable[hashindex];
1092 rx_connHashTable[hashindex] = conn;
1093 if (rx_stats_active)
1094 rx_atomic_inc(&rx_stats.nClientConns);
1095 MUTEX_EXIT(&rx_connHashTable_lock);
1101 * Ensure a connection's timeout values are valid.
1103 * @param[in] conn The connection to check
1105 * @post conn->secondUntilDead <= conn->idleDeadTime <= conn->hardDeadTime,
1106 * unless idleDeadTime and/or hardDeadTime are not set
1110 rxi_CheckConnTimeouts(struct rx_connection *conn)
1112 /* a connection's timeouts must have the relationship
1113 * deadTime <= idleDeadTime <= hardDeadTime. Otherwise, for example, a
1114 * total loss of network to a peer may cause an idle timeout instead of a
1115 * dead timeout, simply because the idle timeout gets hit first. Also set
1116 * a minimum deadTime of 6, just to ensure it doesn't get set too low. */
1117 /* this logic is slightly complicated by the fact that
1118 * idleDeadTime/hardDeadTime may not be set at all, but it's not too bad.
1120 conn->secondsUntilDead = MAX(conn->secondsUntilDead, 6);
1121 if (conn->idleDeadTime) {
1122 conn->idleDeadTime = MAX(conn->idleDeadTime, conn->secondsUntilDead);
1124 if (conn->hardDeadTime) {
1125 if (conn->idleDeadTime) {
1126 conn->hardDeadTime = MAX(conn->idleDeadTime, conn->hardDeadTime);
1128 conn->hardDeadTime = MAX(conn->secondsUntilDead, conn->hardDeadTime);
1134 rx_SetConnDeadTime(struct rx_connection *conn, int seconds)
1136 /* The idea is to set the dead time to a value that allows several
1137 * keepalives to be dropped without timing out the connection. */
1138 conn->secondsUntilDead = seconds;
1139 rxi_CheckConnTimeouts(conn);
1140 conn->secondsUntilPing = conn->secondsUntilDead / 6;
1144 rx_SetConnHardDeadTime(struct rx_connection *conn, int seconds)
1146 conn->hardDeadTime = seconds;
1147 rxi_CheckConnTimeouts(conn);
1151 rx_SetConnIdleDeadTime(struct rx_connection *conn, int seconds)
1153 conn->idleDeadTime = seconds;
1154 conn->idleDeadDetection = (seconds ? 1 : 0);
1155 rxi_CheckConnTimeouts(conn);
1158 int rxi_lowPeerRefCount = 0;
1159 int rxi_lowConnRefCount = 0;
1162 * Cleanup a connection that was destroyed in rxi_DestroyConnectioNoLock.
1163 * NOTE: must not be called with rx_connHashTable_lock held.
1166 rxi_CleanupConnection(struct rx_connection *conn)
1168 /* Notify the service exporter, if requested, that this connection
1169 * is being destroyed */
1170 if (conn->type == RX_SERVER_CONNECTION && conn->service->destroyConnProc)
1171 (*conn->service->destroyConnProc) (conn);
1173 /* Notify the security module that this connection is being destroyed */
1174 RXS_DestroyConnection(conn->securityObject, conn);
1176 /* If this is the last connection using the rx_peer struct, set its
1177 * idle time to now. rxi_ReapConnections will reap it if it's still
1178 * idle (refCount == 0) after rx_idlePeerTime (60 seconds) have passed.
1180 MUTEX_ENTER(&rx_peerHashTable_lock);
1181 if (conn->peer->refCount < 2) {
1182 conn->peer->idleWhen = clock_Sec();
1183 if (conn->peer->refCount < 1) {
1184 conn->peer->refCount = 1;
1185 if (rx_stats_active) {
1186 MUTEX_ENTER(&rx_stats_mutex);
1187 rxi_lowPeerRefCount++;
1188 MUTEX_EXIT(&rx_stats_mutex);
1192 conn->peer->refCount--;
1193 MUTEX_EXIT(&rx_peerHashTable_lock);
1195 if (rx_stats_active)
1197 if (conn->type == RX_SERVER_CONNECTION)
1198 rx_atomic_dec(&rx_stats.nServerConns);
1200 rx_atomic_dec(&rx_stats.nClientConns);
1203 if (conn->specific) {
1205 for (i = 0; i < conn->nSpecific; i++) {
1206 if (conn->specific[i] && rxi_keyCreate_destructor[i])
1207 (*rxi_keyCreate_destructor[i]) (conn->specific[i]);
1208 conn->specific[i] = NULL;
1210 free(conn->specific);
1212 conn->specific = NULL;
1213 conn->nSpecific = 0;
1214 #endif /* !KERNEL */
1216 MUTEX_DESTROY(&conn->conn_call_lock);
1217 MUTEX_DESTROY(&conn->conn_data_lock);
1218 CV_DESTROY(&conn->conn_call_cv);
1220 rxi_FreeConnection(conn);
1223 /* Destroy the specified connection */
1225 rxi_DestroyConnection(struct rx_connection *conn)
1227 MUTEX_ENTER(&rx_connHashTable_lock);
1228 rxi_DestroyConnectionNoLock(conn);
1229 /* conn should be at the head of the cleanup list */
1230 if (conn == rx_connCleanup_list) {
1231 rx_connCleanup_list = rx_connCleanup_list->next;
1232 MUTEX_EXIT(&rx_connHashTable_lock);
1233 rxi_CleanupConnection(conn);
1235 #ifdef RX_ENABLE_LOCKS
1237 MUTEX_EXIT(&rx_connHashTable_lock);
1239 #endif /* RX_ENABLE_LOCKS */
1243 rxi_DestroyConnectionNoLock(struct rx_connection *conn)
1245 struct rx_connection **conn_ptr;
1247 struct rx_packet *packet;
1254 MUTEX_ENTER(&conn->conn_data_lock);
1255 MUTEX_ENTER(&rx_refcnt_mutex);
1256 if (conn->refCount > 0)
1259 if (rx_stats_active) {
1260 MUTEX_ENTER(&rx_stats_mutex);
1261 rxi_lowConnRefCount++;
1262 MUTEX_EXIT(&rx_stats_mutex);
1266 if ((conn->refCount > 0) || (conn->flags & RX_CONN_BUSY)) {
1267 /* Busy; wait till the last guy before proceeding */
1268 MUTEX_EXIT(&rx_refcnt_mutex);
1269 MUTEX_EXIT(&conn->conn_data_lock);
1274 /* If the client previously called rx_NewCall, but it is still
1275 * waiting, treat this as a running call, and wait to destroy the
1276 * connection later when the call completes. */
1277 if ((conn->type == RX_CLIENT_CONNECTION)
1278 && (conn->flags & (RX_CONN_MAKECALL_WAITING|RX_CONN_MAKECALL_ACTIVE))) {
1279 conn->flags |= RX_CONN_DESTROY_ME;
1280 MUTEX_EXIT(&conn->conn_data_lock);
1284 MUTEX_EXIT(&rx_refcnt_mutex);
1285 MUTEX_EXIT(&conn->conn_data_lock);
1287 /* Check for extant references to this connection */
1288 MUTEX_ENTER(&conn->conn_call_lock);
1289 for (i = 0; i < RX_MAXCALLS; i++) {
1290 struct rx_call *call = conn->call[i];
1293 if (conn->type == RX_CLIENT_CONNECTION) {
1294 MUTEX_ENTER(&call->lock);
1295 if (call->delayedAckEvent) {
1296 /* Push the final acknowledgment out now--there
1297 * won't be a subsequent call to acknowledge the
1298 * last reply packets */
1299 rxevent_Cancel(&call->delayedAckEvent, call,
1300 RX_CALL_REFCOUNT_DELAY);
1301 if (call->state == RX_STATE_PRECALL
1302 || call->state == RX_STATE_ACTIVE) {
1303 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
1308 MUTEX_EXIT(&call->lock);
1312 MUTEX_EXIT(&conn->conn_call_lock);
1314 #ifdef RX_ENABLE_LOCKS
1316 if (MUTEX_TRYENTER(&conn->conn_data_lock)) {
1317 MUTEX_EXIT(&conn->conn_data_lock);
1319 /* Someone is accessing a packet right now. */
1323 #endif /* RX_ENABLE_LOCKS */
1326 /* Don't destroy the connection if there are any call
1327 * structures still in use */
1328 MUTEX_ENTER(&conn->conn_data_lock);
1329 conn->flags |= RX_CONN_DESTROY_ME;
1330 MUTEX_EXIT(&conn->conn_data_lock);
1335 if (conn->natKeepAliveEvent) {
1336 rxi_NatKeepAliveOff(conn);
1339 if (conn->delayedAbortEvent) {
1340 rxevent_Cancel(&conn->delayedAbortEvent, NULL, 0);
1341 packet = rxi_AllocPacket(RX_PACKET_CLASS_SPECIAL);
1343 MUTEX_ENTER(&conn->conn_data_lock);
1344 rxi_SendConnectionAbort(conn, packet, 0, 1);
1345 MUTEX_EXIT(&conn->conn_data_lock);
1346 rxi_FreePacket(packet);
1350 /* Remove from connection hash table before proceeding */
1352 &rx_connHashTable[CONN_HASH
1353 (peer->host, peer->port, conn->cid, conn->epoch,
1355 for (; *conn_ptr; conn_ptr = &(*conn_ptr)->next) {
1356 if (*conn_ptr == conn) {
1357 *conn_ptr = conn->next;
1361 /* if the conn that we are destroying was the last connection, then we
1362 * clear rxLastConn as well */
1363 if (rxLastConn == conn)
1366 /* Make sure the connection is completely reset before deleting it. */
1367 /* get rid of pending events that could zap us later */
1368 rxevent_Cancel(&conn->challengeEvent, NULL, 0);
1369 rxevent_Cancel(&conn->checkReachEvent, NULL, 0);
1370 rxevent_Cancel(&conn->natKeepAliveEvent, NULL, 0);
1372 /* Add the connection to the list of destroyed connections that
1373 * need to be cleaned up. This is necessary to avoid deadlocks
1374 * in the routines we call to inform others that this connection is
1375 * being destroyed. */
1376 conn->next = rx_connCleanup_list;
1377 rx_connCleanup_list = conn;
1380 /* Externally available version */
1382 rx_DestroyConnection(struct rx_connection *conn)
1387 rxi_DestroyConnection(conn);
1392 rx_GetConnection(struct rx_connection *conn)
1397 MUTEX_ENTER(&rx_refcnt_mutex);
1399 MUTEX_EXIT(&rx_refcnt_mutex);
1403 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
1404 /* Wait for the transmit queue to no longer be busy.
1405 * requires the call->lock to be held */
1407 rxi_WaitforTQBusy(struct rx_call *call) {
1408 while (!call->error && (call->flags & RX_CALL_TQ_BUSY)) {
1409 call->flags |= RX_CALL_TQ_WAIT;
1411 #ifdef RX_ENABLE_LOCKS
1412 osirx_AssertMine(&call->lock, "rxi_WaitforTQ lock");
1413 CV_WAIT(&call->cv_tq, &call->lock);
1414 #else /* RX_ENABLE_LOCKS */
1415 osi_rxSleep(&call->tq);
1416 #endif /* RX_ENABLE_LOCKS */
1418 if (call->tqWaiters == 0) {
1419 call->flags &= ~RX_CALL_TQ_WAIT;
1426 rxi_WakeUpTransmitQueue(struct rx_call *call)
1428 if (call->tqWaiters || (call->flags & RX_CALL_TQ_WAIT)) {
1429 dpf(("call %"AFS_PTR_FMT" has %d waiters and flags %d\n",
1430 call, call->tqWaiters, call->flags));
1431 #ifdef RX_ENABLE_LOCKS
1432 osirx_AssertMine(&call->lock, "rxi_Start start");
1433 CV_BROADCAST(&call->cv_tq);
1434 #else /* RX_ENABLE_LOCKS */
1435 osi_rxWakeup(&call->tq);
1436 #endif /* RX_ENABLE_LOCKS */
1440 /* Start a new rx remote procedure call, on the specified connection.
1441 * If wait is set to 1, wait for a free call channel; otherwise return
1442 * 0. Maxtime gives the maximum number of seconds this call may take,
1443 * after rx_NewCall returns. After this time interval, a call to any
1444 * of rx_SendData, rx_ReadData, etc. will fail with RX_CALL_TIMEOUT.
1445 * For fine grain locking, we hold the conn_call_lock in order to
1446 * to ensure that we don't get signalle after we found a call in an active
1447 * state and before we go to sleep.
1450 rx_NewCall(struct rx_connection *conn)
1452 int i, wait, ignoreBusy = 1;
1453 struct rx_call *call;
1454 struct clock queueTime;
1455 afs_uint32 leastBusy = 0;
1459 dpf(("rx_NewCall(conn %"AFS_PTR_FMT")\n", conn));
1462 clock_GetTime(&queueTime);
1464 * Check if there are others waiting for a new call.
1465 * If so, let them go first to avoid starving them.
1466 * This is a fairly simple scheme, and might not be
1467 * a complete solution for large numbers of waiters.
1469 * makeCallWaiters keeps track of the number of
1470 * threads waiting to make calls and the
1471 * RX_CONN_MAKECALL_WAITING flag bit is used to
1472 * indicate that there are indeed calls waiting.
1473 * The flag is set when the waiter is incremented.
1474 * It is only cleared when makeCallWaiters is 0.
1475 * This prevents us from accidently destroying the
1476 * connection while it is potentially about to be used.
1478 MUTEX_ENTER(&conn->conn_call_lock);
1479 MUTEX_ENTER(&conn->conn_data_lock);
1480 while (conn->flags & RX_CONN_MAKECALL_ACTIVE) {
1481 conn->flags |= RX_CONN_MAKECALL_WAITING;
1482 conn->makeCallWaiters++;
1483 MUTEX_EXIT(&conn->conn_data_lock);
1485 #ifdef RX_ENABLE_LOCKS
1486 CV_WAIT(&conn->conn_call_cv, &conn->conn_call_lock);
1490 MUTEX_ENTER(&conn->conn_data_lock);
1491 conn->makeCallWaiters--;
1492 if (conn->makeCallWaiters == 0)
1493 conn->flags &= ~RX_CONN_MAKECALL_WAITING;
1496 /* We are now the active thread in rx_NewCall */
1497 conn->flags |= RX_CONN_MAKECALL_ACTIVE;
1498 MUTEX_EXIT(&conn->conn_data_lock);
1503 for (i = 0; i < RX_MAXCALLS; i++) {
1504 call = conn->call[i];
1506 if (!ignoreBusy && conn->lastBusy[i] != leastBusy) {
1507 /* we're not ignoring busy call slots; only look at the
1508 * call slot that is the "least" busy */
1512 if (call->state == RX_STATE_DALLY) {
1513 MUTEX_ENTER(&call->lock);
1514 if (call->state == RX_STATE_DALLY) {
1515 if (ignoreBusy && conn->lastBusy[i]) {
1516 /* if we're ignoring busy call slots, skip any ones that
1517 * have lastBusy set */
1518 if (leastBusy == 0 || conn->lastBusy[i] < leastBusy) {
1519 leastBusy = conn->lastBusy[i];
1521 MUTEX_EXIT(&call->lock);
1526 * We are setting the state to RX_STATE_RESET to
1527 * ensure that no one else will attempt to use this
1528 * call once we drop the conn->conn_call_lock and
1529 * call->lock. We must drop the conn->conn_call_lock
1530 * before calling rxi_ResetCall because the process
1531 * of clearing the transmit queue can block for an
1532 * extended period of time. If we block while holding
1533 * the conn->conn_call_lock, then all rx_EndCall
1534 * processing will block as well. This has a detrimental
1535 * effect on overall system performance.
1537 call->state = RX_STATE_RESET;
1538 (*call->callNumber)++;
1539 MUTEX_EXIT(&conn->conn_call_lock);
1540 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
1541 rxi_ResetCall(call, 0);
1542 if (MUTEX_TRYENTER(&conn->conn_call_lock))
1546 * If we failed to be able to safely obtain the
1547 * conn->conn_call_lock we will have to drop the
1548 * call->lock to avoid a deadlock. When the call->lock
1549 * is released the state of the call can change. If it
1550 * is no longer RX_STATE_RESET then some other thread is
1553 MUTEX_EXIT(&call->lock);
1554 MUTEX_ENTER(&conn->conn_call_lock);
1555 MUTEX_ENTER(&call->lock);
1557 if (call->state == RX_STATE_RESET)
1561 * If we get here it means that after dropping
1562 * the conn->conn_call_lock and call->lock that
1563 * the call is no longer ours. If we can't find
1564 * a free call in the remaining slots we should
1565 * not go immediately to RX_CONN_MAKECALL_WAITING
1566 * because by dropping the conn->conn_call_lock
1567 * we have given up synchronization with rx_EndCall.
1568 * Instead, cycle through one more time to see if
1569 * we can find a call that can call our own.
1571 CALL_RELE(call, RX_CALL_REFCOUNT_BEGIN);
1574 MUTEX_EXIT(&call->lock);
1577 if (ignoreBusy && conn->lastBusy[i]) {
1578 /* if we're ignoring busy call slots, skip any ones that
1579 * have lastBusy set */
1580 if (leastBusy == 0 || conn->lastBusy[i] < leastBusy) {
1581 leastBusy = conn->lastBusy[i];
1586 /* rxi_NewCall returns with mutex locked */
1587 call = rxi_NewCall(conn, i);
1588 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
1592 if (i < RX_MAXCALLS) {
1593 conn->lastBusy[i] = 0;
1594 call->flags &= ~RX_CALL_PEER_BUSY;
1599 if (leastBusy && ignoreBusy) {
1600 /* we didn't find a useable call slot, but we did see at least one
1601 * 'busy' slot; look again and only use a slot with the 'least
1607 MUTEX_ENTER(&conn->conn_data_lock);
1608 conn->flags |= RX_CONN_MAKECALL_WAITING;
1609 conn->makeCallWaiters++;
1610 MUTEX_EXIT(&conn->conn_data_lock);
1612 #ifdef RX_ENABLE_LOCKS
1613 CV_WAIT(&conn->conn_call_cv, &conn->conn_call_lock);
1617 MUTEX_ENTER(&conn->conn_data_lock);
1618 conn->makeCallWaiters--;
1619 if (conn->makeCallWaiters == 0)
1620 conn->flags &= ~RX_CONN_MAKECALL_WAITING;
1621 MUTEX_EXIT(&conn->conn_data_lock);
1623 /* Client is initially in send mode */
1624 call->state = RX_STATE_ACTIVE;
1625 call->error = conn->error;
1627 call->mode = RX_MODE_ERROR;
1629 call->mode = RX_MODE_SENDING;
1631 #ifdef AFS_RXERRQ_ENV
1632 /* remember how many network errors the peer has when we started, so if
1633 * more errors are encountered after the call starts, we know the other endpoint won't be
1634 * responding to us */
1635 call->neterr_gen = rx_atomic_read(&conn->peer->neterrs);
1638 /* remember start time for call in case we have hard dead time limit */
1639 call->queueTime = queueTime;
1640 clock_GetTime(&call->startTime);
1641 call->bytesSent = 0;
1642 call->bytesRcvd = 0;
1644 /* Turn on busy protocol. */
1645 rxi_KeepAliveOn(call);
1647 /* Attempt MTU discovery */
1648 rxi_GrowMTUOn(call);
1651 * We are no longer the active thread in rx_NewCall
1653 MUTEX_ENTER(&conn->conn_data_lock);
1654 conn->flags &= ~RX_CONN_MAKECALL_ACTIVE;
1655 MUTEX_EXIT(&conn->conn_data_lock);
1658 * Wake up anyone else who might be giving us a chance to
1659 * run (see code above that avoids resource starvation).
1661 #ifdef RX_ENABLE_LOCKS
1662 CV_BROADCAST(&conn->conn_call_cv);
1666 MUTEX_EXIT(&conn->conn_call_lock);
1668 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
1669 if (call->flags & (RX_CALL_TQ_BUSY | RX_CALL_TQ_CLEARME)) {
1670 osi_Panic("rx_NewCall call about to be used without an empty tq");
1672 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
1674 MUTEX_EXIT(&call->lock);
1677 dpf(("rx_NewCall(call %"AFS_PTR_FMT")\n", call));
1682 rxi_HasActiveCalls(struct rx_connection *aconn)
1685 struct rx_call *tcall;
1689 for (i = 0; i < RX_MAXCALLS; i++) {
1690 if ((tcall = aconn->call[i])) {
1691 if ((tcall->state == RX_STATE_ACTIVE)
1692 || (tcall->state == RX_STATE_PRECALL)) {
1703 rxi_GetCallNumberVector(struct rx_connection *aconn,
1704 afs_int32 * aint32s)
1707 struct rx_call *tcall;
1711 MUTEX_ENTER(&aconn->conn_call_lock);
1712 for (i = 0; i < RX_MAXCALLS; i++) {
1713 if ((tcall = aconn->call[i]) && (tcall->state == RX_STATE_DALLY))
1714 aint32s[i] = aconn->callNumber[i] + 1;
1716 aint32s[i] = aconn->callNumber[i];
1718 MUTEX_EXIT(&aconn->conn_call_lock);
1724 rxi_SetCallNumberVector(struct rx_connection *aconn,
1725 afs_int32 * aint32s)
1728 struct rx_call *tcall;
1732 MUTEX_ENTER(&aconn->conn_call_lock);
1733 for (i = 0; i < RX_MAXCALLS; i++) {
1734 if ((tcall = aconn->call[i]) && (tcall->state == RX_STATE_DALLY))
1735 aconn->callNumber[i] = aint32s[i] - 1;
1737 aconn->callNumber[i] = aint32s[i];
1739 MUTEX_EXIT(&aconn->conn_call_lock);
1744 /* Advertise a new service. A service is named locally by a UDP port
1745 * number plus a 16-bit service id. Returns (struct rx_service *) 0
1748 char *serviceName; Name for identification purposes (e.g. the
1749 service name might be used for probing for
1752 rx_NewServiceHost(afs_uint32 host, u_short port, u_short serviceId,
1753 char *serviceName, struct rx_securityClass **securityObjects,
1754 int nSecurityObjects,
1755 afs_int32(*serviceProc) (struct rx_call * acall))
1757 osi_socket socket = OSI_NULLSOCKET;
1758 struct rx_service *tservice;
1764 if (serviceId == 0) {
1766 "rx_NewService: service id for service %s is not non-zero.\n",
1773 "rx_NewService: A non-zero port must be specified on this call if a non-zero port was not provided at Rx initialization (service %s).\n",
1781 tservice = rxi_AllocService();
1784 #ifdef RX_ENABLE_LOCKS
1785 MUTEX_INIT(&tservice->svc_data_lock, "svc data lock", MUTEX_DEFAULT, 0);
1788 for (i = 0; i < RX_MAX_SERVICES; i++) {
1789 struct rx_service *service = rx_services[i];
1791 if (port == service->servicePort && host == service->serviceHost) {
1792 if (service->serviceId == serviceId) {
1793 /* The identical service has already been
1794 * installed; if the caller was intending to
1795 * change the security classes used by this
1796 * service, he/she loses. */
1798 "rx_NewService: tried to install service %s with service id %d, which is already in use for service %s\n",
1799 serviceName, serviceId, service->serviceName);
1801 rxi_FreeService(tservice);
1804 /* Different service, same port: re-use the socket
1805 * which is bound to the same port */
1806 socket = service->socket;
1809 if (socket == OSI_NULLSOCKET) {
1810 /* If we don't already have a socket (from another
1811 * service on same port) get a new one */
1812 socket = rxi_GetHostUDPSocket(host, port);
1813 if (socket == OSI_NULLSOCKET) {
1815 rxi_FreeService(tservice);
1820 service->socket = socket;
1821 service->serviceHost = host;
1822 service->servicePort = port;
1823 service->serviceId = serviceId;
1824 service->serviceName = serviceName;
1825 service->nSecurityObjects = nSecurityObjects;
1826 service->securityObjects = securityObjects;
1827 service->minProcs = 0;
1828 service->maxProcs = 1;
1829 service->idleDeadTime = 60;
1830 service->idleDeadErr = 0;
1831 service->connDeadTime = rx_connDeadTime;
1832 service->executeRequestProc = serviceProc;
1833 service->checkReach = 0;
1834 service->nSpecific = 0;
1835 service->specific = NULL;
1836 rx_services[i] = service; /* not visible until now */
1842 rxi_FreeService(tservice);
1843 (osi_Msg "rx_NewService: cannot support > %d services\n",
1848 /* Set configuration options for all of a service's security objects */
1851 rx_SetSecurityConfiguration(struct rx_service *service,
1852 rx_securityConfigVariables type,
1856 for (i = 0; i<service->nSecurityObjects; i++) {
1857 if (service->securityObjects[i]) {
1858 RXS_SetConfiguration(service->securityObjects[i], NULL, type,
1866 rx_NewService(u_short port, u_short serviceId, char *serviceName,
1867 struct rx_securityClass **securityObjects, int nSecurityObjects,
1868 afs_int32(*serviceProc) (struct rx_call * acall))
1870 return rx_NewServiceHost(htonl(INADDR_ANY), port, serviceId, serviceName, securityObjects, nSecurityObjects, serviceProc);
1873 /* Generic request processing loop. This routine should be called
1874 * by the implementation dependent rx_ServerProc. If socketp is
1875 * non-null, it will be set to the file descriptor that this thread
1876 * is now listening on. If socketp is null, this routine will never
1879 rxi_ServerProc(int threadID, struct rx_call *newcall, osi_socket * socketp)
1881 struct rx_call *call;
1883 struct rx_service *tservice = NULL;
1890 call = rx_GetCall(threadID, tservice, socketp);
1891 if (socketp && *socketp != OSI_NULLSOCKET) {
1892 /* We are now a listener thread */
1898 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
1899 #ifdef RX_ENABLE_LOCKS
1901 #endif /* RX_ENABLE_LOCKS */
1902 afs_termState = AFSOP_STOP_AFS;
1903 afs_osi_Wakeup(&afs_termState);
1904 #ifdef RX_ENABLE_LOCKS
1906 #endif /* RX_ENABLE_LOCKS */
1911 /* if server is restarting( typically smooth shutdown) then do not
1912 * allow any new calls.
1915 if (rx_tranquil && (call != NULL)) {
1919 MUTEX_ENTER(&call->lock);
1921 rxi_CallError(call, RX_RESTARTING);
1922 rxi_SendCallAbort(call, (struct rx_packet *)0, 0, 0);
1924 MUTEX_EXIT(&call->lock);
1929 tservice = call->conn->service;
1931 if (tservice->beforeProc)
1932 (*tservice->beforeProc) (call);
1934 code = tservice->executeRequestProc(call);
1936 if (tservice->afterProc)
1937 (*tservice->afterProc) (call, code);
1939 rx_EndCall(call, code);
1941 if (tservice->postProc)
1942 (*tservice->postProc) (code);
1944 if (rx_stats_active) {
1945 MUTEX_ENTER(&rx_stats_mutex);
1947 MUTEX_EXIT(&rx_stats_mutex);
1954 rx_WakeupServerProcs(void)
1956 struct rx_serverQueueEntry *np, *tqp;
1960 MUTEX_ENTER(&rx_serverPool_lock);
1962 #ifdef RX_ENABLE_LOCKS
1963 if (rx_waitForPacket)
1964 CV_BROADCAST(&rx_waitForPacket->cv);
1965 #else /* RX_ENABLE_LOCKS */
1966 if (rx_waitForPacket)
1967 osi_rxWakeup(rx_waitForPacket);
1968 #endif /* RX_ENABLE_LOCKS */
1969 MUTEX_ENTER(&freeSQEList_lock);
1970 for (np = rx_FreeSQEList; np; np = tqp) {
1971 tqp = *(struct rx_serverQueueEntry **)np;
1972 #ifdef RX_ENABLE_LOCKS
1973 CV_BROADCAST(&np->cv);
1974 #else /* RX_ENABLE_LOCKS */
1976 #endif /* RX_ENABLE_LOCKS */
1978 MUTEX_EXIT(&freeSQEList_lock);
1979 for (queue_Scan(&rx_idleServerQueue, np, tqp, rx_serverQueueEntry)) {
1980 #ifdef RX_ENABLE_LOCKS
1981 CV_BROADCAST(&np->cv);
1982 #else /* RX_ENABLE_LOCKS */
1984 #endif /* RX_ENABLE_LOCKS */
1986 MUTEX_EXIT(&rx_serverPool_lock);
1991 * One thing that seems to happen is that all the server threads get
1992 * tied up on some empty or slow call, and then a whole bunch of calls
1993 * arrive at once, using up the packet pool, so now there are more
1994 * empty calls. The most critical resources here are server threads
1995 * and the free packet pool. The "doreclaim" code seems to help in
1996 * general. I think that eventually we arrive in this state: there
1997 * are lots of pending calls which do have all their packets present,
1998 * so they won't be reclaimed, are multi-packet calls, so they won't
1999 * be scheduled until later, and thus are tying up most of the free
2000 * packet pool for a very long time.
2002 * 1. schedule multi-packet calls if all the packets are present.
2003 * Probably CPU-bound operation, useful to return packets to pool.
2004 * Do what if there is a full window, but the last packet isn't here?
2005 * 3. preserve one thread which *only* runs "best" calls, otherwise
2006 * it sleeps and waits for that type of call.
2007 * 4. Don't necessarily reserve a whole window for each thread. In fact,
2008 * the current dataquota business is badly broken. The quota isn't adjusted
2009 * to reflect how many packets are presently queued for a running call.
2010 * So, when we schedule a queued call with a full window of packets queued
2011 * up for it, that *should* free up a window full of packets for other 2d-class
2012 * calls to be able to use from the packet pool. But it doesn't.
2014 * NB. Most of the time, this code doesn't run -- since idle server threads
2015 * sit on the idle server queue and are assigned by "...ReceivePacket" as soon
2016 * as a new call arrives.
2018 /* Sleep until a call arrives. Returns a pointer to the call, ready
2019 * for an rx_Read. */
2020 #ifdef RX_ENABLE_LOCKS
2022 rx_GetCall(int tno, struct rx_service *cur_service, osi_socket * socketp)
2024 struct rx_serverQueueEntry *sq;
2025 struct rx_call *call = (struct rx_call *)0;
2026 struct rx_service *service = NULL;
2028 MUTEX_ENTER(&freeSQEList_lock);
2030 if ((sq = rx_FreeSQEList)) {
2031 rx_FreeSQEList = *(struct rx_serverQueueEntry **)sq;
2032 MUTEX_EXIT(&freeSQEList_lock);
2033 } else { /* otherwise allocate a new one and return that */
2034 MUTEX_EXIT(&freeSQEList_lock);
2035 sq = rxi_Alloc(sizeof(struct rx_serverQueueEntry));
2036 MUTEX_INIT(&sq->lock, "server Queue lock", MUTEX_DEFAULT, 0);
2037 CV_INIT(&sq->cv, "server Queue lock", CV_DEFAULT, 0);
2040 MUTEX_ENTER(&rx_serverPool_lock);
2041 if (cur_service != NULL) {
2042 ReturnToServerPool(cur_service);
2045 if (queue_IsNotEmpty(&rx_incomingCallQueue)) {
2046 struct rx_call *tcall, *ncall, *choice2 = NULL;
2048 /* Scan for eligible incoming calls. A call is not eligible
2049 * if the maximum number of calls for its service type are
2050 * already executing */
2051 /* One thread will process calls FCFS (to prevent starvation),
2052 * while the other threads may run ahead looking for calls which
2053 * have all their input data available immediately. This helps
2054 * keep threads from blocking, waiting for data from the client. */
2055 for (queue_Scan(&rx_incomingCallQueue, tcall, ncall, rx_call)) {
2056 service = tcall->conn->service;
2057 if (!QuotaOK(service)) {
2060 MUTEX_ENTER(&rx_pthread_mutex);
2061 if (tno == rxi_fcfs_thread_num
2062 || queue_IsLast(&rx_incomingCallQueue, tcall)) {
2063 MUTEX_EXIT(&rx_pthread_mutex);
2064 /* If we're the fcfs thread , then we'll just use
2065 * this call. If we haven't been able to find an optimal
2066 * choice, and we're at the end of the list, then use a
2067 * 2d choice if one has been identified. Otherwise... */
2068 call = (choice2 ? choice2 : tcall);
2069 service = call->conn->service;
2071 MUTEX_EXIT(&rx_pthread_mutex);
2072 if (!queue_IsEmpty(&tcall->rq)) {
2073 struct rx_packet *rp;
2074 rp = queue_First(&tcall->rq, rx_packet);
2075 if (rp->header.seq == 1) {
2077 || (rp->header.flags & RX_LAST_PACKET)) {
2079 } else if (rxi_2dchoice && !choice2
2080 && !(tcall->flags & RX_CALL_CLEARED)
2081 && (tcall->rprev > rxi_HardAckRate)) {
2091 ReturnToServerPool(service);
2098 MUTEX_EXIT(&rx_serverPool_lock);
2099 MUTEX_ENTER(&call->lock);
2101 if (call->flags & RX_CALL_WAIT_PROC) {
2102 call->flags &= ~RX_CALL_WAIT_PROC;
2103 rx_atomic_dec(&rx_nWaiting);
2106 if (call->state != RX_STATE_PRECALL || call->error) {
2107 MUTEX_EXIT(&call->lock);
2108 MUTEX_ENTER(&rx_serverPool_lock);
2109 ReturnToServerPool(service);
2114 if (queue_IsEmpty(&call->rq)
2115 || queue_First(&call->rq, rx_packet)->header.seq != 1)
2116 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
2118 CLEAR_CALL_QUEUE_LOCK(call);
2121 /* If there are no eligible incoming calls, add this process
2122 * to the idle server queue, to wait for one */
2126 *socketp = OSI_NULLSOCKET;
2128 sq->socketp = socketp;
2129 queue_Append(&rx_idleServerQueue, sq);
2130 #ifndef AFS_AIX41_ENV
2131 rx_waitForPacket = sq;
2133 rx_waitingForPacket = sq;
2134 #endif /* AFS_AIX41_ENV */
2136 CV_WAIT(&sq->cv, &rx_serverPool_lock);
2138 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
2139 MUTEX_EXIT(&rx_serverPool_lock);
2140 return (struct rx_call *)0;
2143 } while (!(call = sq->newcall)
2144 && !(socketp && *socketp != OSI_NULLSOCKET));
2145 MUTEX_EXIT(&rx_serverPool_lock);
2147 MUTEX_ENTER(&call->lock);
2153 MUTEX_ENTER(&freeSQEList_lock);
2154 *(struct rx_serverQueueEntry **)sq = rx_FreeSQEList;
2155 rx_FreeSQEList = sq;
2156 MUTEX_EXIT(&freeSQEList_lock);
2159 clock_GetTime(&call->startTime);
2160 call->state = RX_STATE_ACTIVE;
2161 call->mode = RX_MODE_RECEIVING;
2162 #ifdef RX_KERNEL_TRACE
2163 if (ICL_SETACTIVE(afs_iclSetp)) {
2164 int glockOwner = ISAFS_GLOCK();
2167 afs_Trace3(afs_iclSetp, CM_TRACE_WASHERE, ICL_TYPE_STRING,
2168 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
2175 rxi_calltrace(RX_CALL_START, call);
2176 dpf(("rx_GetCall(port=%d, service=%d) ==> call %"AFS_PTR_FMT"\n",
2177 call->conn->service->servicePort, call->conn->service->serviceId,
2180 MUTEX_EXIT(&call->lock);
2181 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
2183 dpf(("rx_GetCall(socketp=%p, *socketp=0x%x)\n", socketp, *socketp));
2188 #else /* RX_ENABLE_LOCKS */
2190 rx_GetCall(int tno, struct rx_service *cur_service, osi_socket * socketp)
2192 struct rx_serverQueueEntry *sq;
2193 struct rx_call *call = (struct rx_call *)0, *choice2;
2194 struct rx_service *service = NULL;
2198 MUTEX_ENTER(&freeSQEList_lock);
2200 if ((sq = rx_FreeSQEList)) {
2201 rx_FreeSQEList = *(struct rx_serverQueueEntry **)sq;
2202 MUTEX_EXIT(&freeSQEList_lock);
2203 } else { /* otherwise allocate a new one and return that */
2204 MUTEX_EXIT(&freeSQEList_lock);
2205 sq = rxi_Alloc(sizeof(struct rx_serverQueueEntry));
2206 MUTEX_INIT(&sq->lock, "server Queue lock", MUTEX_DEFAULT, 0);
2207 CV_INIT(&sq->cv, "server Queue lock", CV_DEFAULT, 0);
2209 MUTEX_ENTER(&sq->lock);
2211 if (cur_service != NULL) {
2212 cur_service->nRequestsRunning--;
2213 MUTEX_ENTER(&rx_quota_mutex);
2214 if (cur_service->nRequestsRunning < cur_service->minProcs)
2217 MUTEX_EXIT(&rx_quota_mutex);
2219 if (queue_IsNotEmpty(&rx_incomingCallQueue)) {
2220 struct rx_call *tcall, *ncall;
2221 /* Scan for eligible incoming calls. A call is not eligible
2222 * if the maximum number of calls for its service type are
2223 * already executing */
2224 /* One thread will process calls FCFS (to prevent starvation),
2225 * while the other threads may run ahead looking for calls which
2226 * have all their input data available immediately. This helps
2227 * keep threads from blocking, waiting for data from the client. */
2228 choice2 = (struct rx_call *)0;
2229 for (queue_Scan(&rx_incomingCallQueue, tcall, ncall, rx_call)) {
2230 service = tcall->conn->service;
2231 if (QuotaOK(service)) {
2232 MUTEX_ENTER(&rx_pthread_mutex);
2233 if (tno == rxi_fcfs_thread_num
2234 || !tcall->queue_item_header.next) {
2235 MUTEX_EXIT(&rx_pthread_mutex);
2236 /* If we're the fcfs thread, then we'll just use
2237 * this call. If we haven't been able to find an optimal
2238 * choice, and we're at the end of the list, then use a
2239 * 2d choice if one has been identified. Otherwise... */
2240 call = (choice2 ? choice2 : tcall);
2241 service = call->conn->service;
2243 MUTEX_EXIT(&rx_pthread_mutex);
2244 if (!queue_IsEmpty(&tcall->rq)) {
2245 struct rx_packet *rp;
2246 rp = queue_First(&tcall->rq, rx_packet);
2247 if (rp->header.seq == 1
2249 || (rp->header.flags & RX_LAST_PACKET))) {
2251 } else if (rxi_2dchoice && !choice2
2252 && !(tcall->flags & RX_CALL_CLEARED)
2253 && (tcall->rprev > rxi_HardAckRate)) {
2267 /* we can't schedule a call if there's no data!!! */
2268 /* send an ack if there's no data, if we're missing the
2269 * first packet, or we're missing something between first
2270 * and last -- there's a "hole" in the incoming data. */
2271 if (queue_IsEmpty(&call->rq)
2272 || queue_First(&call->rq, rx_packet)->header.seq != 1
2273 || call->rprev != queue_Last(&call->rq, rx_packet)->header.seq)
2274 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
2276 call->flags &= (~RX_CALL_WAIT_PROC);
2277 service->nRequestsRunning++;
2278 /* just started call in minProcs pool, need fewer to maintain
2280 MUTEX_ENTER(&rx_quota_mutex);
2281 if (service->nRequestsRunning <= service->minProcs)
2284 MUTEX_EXIT(&rx_quota_mutex);
2285 rx_atomic_dec(&rx_nWaiting);
2286 /* MUTEX_EXIT(&call->lock); */
2288 /* If there are no eligible incoming calls, add this process
2289 * to the idle server queue, to wait for one */
2292 *socketp = OSI_NULLSOCKET;
2294 sq->socketp = socketp;
2295 queue_Append(&rx_idleServerQueue, sq);
2299 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
2301 rxi_Free(sq, sizeof(struct rx_serverQueueEntry));
2302 return (struct rx_call *)0;
2305 } while (!(call = sq->newcall)
2306 && !(socketp && *socketp != OSI_NULLSOCKET));
2308 MUTEX_EXIT(&sq->lock);
2310 MUTEX_ENTER(&freeSQEList_lock);
2311 *(struct rx_serverQueueEntry **)sq = rx_FreeSQEList;
2312 rx_FreeSQEList = sq;
2313 MUTEX_EXIT(&freeSQEList_lock);
2316 clock_GetTime(&call->startTime);
2317 call->state = RX_STATE_ACTIVE;
2318 call->mode = RX_MODE_RECEIVING;
2319 #ifdef RX_KERNEL_TRACE
2320 if (ICL_SETACTIVE(afs_iclSetp)) {
2321 int glockOwner = ISAFS_GLOCK();
2324 afs_Trace3(afs_iclSetp, CM_TRACE_WASHERE, ICL_TYPE_STRING,
2325 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
2332 rxi_calltrace(RX_CALL_START, call);
2333 dpf(("rx_GetCall(port=%d, service=%d) ==> call %p\n",
2334 call->conn->service->servicePort, call->conn->service->serviceId,
2337 dpf(("rx_GetCall(socketp=%p, *socketp=0x%x)\n", socketp, *socketp));
2344 #endif /* RX_ENABLE_LOCKS */
2348 /* Establish a procedure to be called when a packet arrives for a
2349 * call. This routine will be called at most once after each call,
2350 * and will also be called if there is an error condition on the or
2351 * the call is complete. Used by multi rx to build a selection
2352 * function which determines which of several calls is likely to be a
2353 * good one to read from.
2354 * NOTE: the way this is currently implemented it is probably only a
2355 * good idea to (1) use it immediately after a newcall (clients only)
2356 * and (2) only use it once. Other uses currently void your warranty
2359 rx_SetArrivalProc(struct rx_call *call,
2360 void (*proc) (struct rx_call * call,
2363 void * handle, int arg)
2365 call->arrivalProc = proc;
2366 call->arrivalProcHandle = handle;
2367 call->arrivalProcArg = arg;
2370 /* Call is finished (possibly prematurely). Return rc to the peer, if
2371 * appropriate, and return the final error code from the conversation
2375 rx_EndCall(struct rx_call *call, afs_int32 rc)
2377 struct rx_connection *conn = call->conn;
2381 dpf(("rx_EndCall(call %"AFS_PTR_FMT" rc %d error %d abortCode %d)\n",
2382 call, rc, call->error, call->abortCode));
2385 MUTEX_ENTER(&call->lock);
2387 if (rc == 0 && call->error == 0) {
2388 call->abortCode = 0;
2389 call->abortCount = 0;
2392 call->arrivalProc = (void (*)())0;
2393 if (rc && call->error == 0) {
2394 rxi_CallError(call, rc);
2395 call->mode = RX_MODE_ERROR;
2396 /* Send an abort message to the peer if this error code has
2397 * only just been set. If it was set previously, assume the
2398 * peer has already been sent the error code or will request it
2400 rxi_SendCallAbort(call, (struct rx_packet *)0, 0, 0);
2402 if (conn->type == RX_SERVER_CONNECTION) {
2403 /* Make sure reply or at least dummy reply is sent */
2404 if (call->mode == RX_MODE_RECEIVING) {
2405 MUTEX_EXIT(&call->lock);
2406 rxi_WriteProc(call, 0, 0);
2407 MUTEX_ENTER(&call->lock);
2409 if (call->mode == RX_MODE_SENDING) {
2410 MUTEX_EXIT(&call->lock);
2411 rxi_FlushWrite(call);
2412 MUTEX_ENTER(&call->lock);
2414 rxi_calltrace(RX_CALL_END, call);
2415 /* Call goes to hold state until reply packets are acknowledged */
2416 if (call->tfirst + call->nSoftAcked < call->tnext) {
2417 call->state = RX_STATE_HOLD;
2419 call->state = RX_STATE_DALLY;
2420 rxi_ClearTransmitQueue(call, 0);
2421 rxi_rto_cancel(call);
2422 rxevent_Cancel(&call->keepAliveEvent, call,
2423 RX_CALL_REFCOUNT_ALIVE);
2425 } else { /* Client connection */
2427 /* Make sure server receives input packets, in the case where
2428 * no reply arguments are expected */
2429 if ((call->mode == RX_MODE_SENDING)
2430 || (call->mode == RX_MODE_RECEIVING && call->rnext == 1)) {
2431 MUTEX_EXIT(&call->lock);
2432 (void)rxi_ReadProc(call, &dummy, 1);
2433 MUTEX_ENTER(&call->lock);
2436 /* If we had an outstanding delayed ack, be nice to the server
2437 * and force-send it now.
2439 if (call->delayedAckEvent) {
2440 rxevent_Cancel(&call->delayedAckEvent, call,
2441 RX_CALL_REFCOUNT_DELAY);
2442 rxi_SendDelayedAck(NULL, call, NULL, 0);
2445 /* We need to release the call lock since it's lower than the
2446 * conn_call_lock and we don't want to hold the conn_call_lock
2447 * over the rx_ReadProc call. The conn_call_lock needs to be held
2448 * here for the case where rx_NewCall is perusing the calls on
2449 * the connection structure. We don't want to signal until
2450 * rx_NewCall is in a stable state. Otherwise, rx_NewCall may
2451 * have checked this call, found it active and by the time it
2452 * goes to sleep, will have missed the signal.
2454 MUTEX_EXIT(&call->lock);
2455 MUTEX_ENTER(&conn->conn_call_lock);
2456 MUTEX_ENTER(&call->lock);
2458 if (!(call->flags & RX_CALL_PEER_BUSY)) {
2459 conn->lastBusy[call->channel] = 0;
2462 MUTEX_ENTER(&conn->conn_data_lock);
2463 conn->flags |= RX_CONN_BUSY;
2464 if (conn->flags & RX_CONN_MAKECALL_WAITING) {
2465 MUTEX_EXIT(&conn->conn_data_lock);
2466 #ifdef RX_ENABLE_LOCKS
2467 CV_BROADCAST(&conn->conn_call_cv);
2472 #ifdef RX_ENABLE_LOCKS
2474 MUTEX_EXIT(&conn->conn_data_lock);
2476 #endif /* RX_ENABLE_LOCKS */
2477 call->state = RX_STATE_DALLY;
2479 error = call->error;
2481 /* currentPacket, nLeft, and NFree must be zeroed here, because
2482 * ResetCall cannot: ResetCall may be called at splnet(), in the
2483 * kernel version, and may interrupt the macros rx_Read or
2484 * rx_Write, which run at normal priority for efficiency. */
2485 if (call->currentPacket) {
2486 #ifdef RX_TRACK_PACKETS
2487 call->currentPacket->flags &= ~RX_PKTFLAG_CP;
2489 rxi_FreePacket(call->currentPacket);
2490 call->currentPacket = (struct rx_packet *)0;
2493 call->nLeft = call->nFree = call->curlen = 0;
2495 /* Free any packets from the last call to ReadvProc/WritevProc */
2496 #ifdef RXDEBUG_PACKET
2498 #endif /* RXDEBUG_PACKET */
2499 rxi_FreePackets(0, &call->iovq);
2500 MUTEX_EXIT(&call->lock);
2502 CALL_RELE(call, RX_CALL_REFCOUNT_BEGIN);
2503 if (conn->type == RX_CLIENT_CONNECTION) {
2504 MUTEX_ENTER(&conn->conn_data_lock);
2505 conn->flags &= ~RX_CONN_BUSY;
2506 MUTEX_EXIT(&conn->conn_data_lock);
2507 MUTEX_EXIT(&conn->conn_call_lock);
2511 * Map errors to the local host's errno.h format.
2513 error = ntoh_syserr_conv(error);
2517 #if !defined(KERNEL)
2519 /* Call this routine when shutting down a server or client (especially
2520 * clients). This will allow Rx to gracefully garbage collect server
2521 * connections, and reduce the number of retries that a server might
2522 * make to a dead client.
2523 * This is not quite right, since some calls may still be ongoing and
2524 * we can't lock them to destroy them. */
2528 struct rx_connection **conn_ptr, **conn_end;
2532 if (rxinit_status == 1) {
2534 return; /* Already shutdown. */
2536 rxi_DeleteCachedConnections();
2537 if (rx_connHashTable) {
2538 MUTEX_ENTER(&rx_connHashTable_lock);
2539 for (conn_ptr = &rx_connHashTable[0], conn_end =
2540 &rx_connHashTable[rx_hashTableSize]; conn_ptr < conn_end;
2542 struct rx_connection *conn, *next;
2543 for (conn = *conn_ptr; conn; conn = next) {
2545 if (conn->type == RX_CLIENT_CONNECTION) {
2546 MUTEX_ENTER(&rx_refcnt_mutex);
2548 MUTEX_EXIT(&rx_refcnt_mutex);
2549 #ifdef RX_ENABLE_LOCKS
2550 rxi_DestroyConnectionNoLock(conn);
2551 #else /* RX_ENABLE_LOCKS */
2552 rxi_DestroyConnection(conn);
2553 #endif /* RX_ENABLE_LOCKS */
2557 #ifdef RX_ENABLE_LOCKS
2558 while (rx_connCleanup_list) {
2559 struct rx_connection *conn;
2560 conn = rx_connCleanup_list;
2561 rx_connCleanup_list = rx_connCleanup_list->next;
2562 MUTEX_EXIT(&rx_connHashTable_lock);
2563 rxi_CleanupConnection(conn);
2564 MUTEX_ENTER(&rx_connHashTable_lock);
2566 MUTEX_EXIT(&rx_connHashTable_lock);
2567 #endif /* RX_ENABLE_LOCKS */
2572 afs_winsockCleanup();
2580 /* if we wakeup packet waiter too often, can get in loop with two
2581 AllocSendPackets each waking each other up (from ReclaimPacket calls) */
2583 rxi_PacketsUnWait(void)
2585 if (!rx_waitingForPackets) {
2589 if (rxi_OverQuota(RX_PACKET_CLASS_SEND)) {
2590 return; /* still over quota */
2593 rx_waitingForPackets = 0;
2594 #ifdef RX_ENABLE_LOCKS
2595 CV_BROADCAST(&rx_waitingForPackets_cv);
2597 osi_rxWakeup(&rx_waitingForPackets);
2603 /* ------------------Internal interfaces------------------------- */
2605 /* Return this process's service structure for the
2606 * specified socket and service */
2607 static struct rx_service *
2608 rxi_FindService(osi_socket socket, u_short serviceId)
2610 struct rx_service **sp;
2611 for (sp = &rx_services[0]; *sp; sp++) {
2612 if ((*sp)->serviceId == serviceId && (*sp)->socket == socket)
2618 #ifdef RXDEBUG_PACKET
2619 #ifdef KDUMP_RX_LOCK
2620 static struct rx_call_rx_lock *rx_allCallsp = 0;
2622 static struct rx_call *rx_allCallsp = 0;
2624 #endif /* RXDEBUG_PACKET */
2626 /* Allocate a call structure, for the indicated channel of the
2627 * supplied connection. The mode and state of the call must be set by
2628 * the caller. Returns the call with mutex locked. */
2629 static struct rx_call *
2630 rxi_NewCall(struct rx_connection *conn, int channel)
2632 struct rx_call *call;
2633 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2634 struct rx_call *cp; /* Call pointer temp */
2635 struct rx_call *nxp; /* Next call pointer, for queue_Scan */
2636 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2638 dpf(("rxi_NewCall(conn %"AFS_PTR_FMT", channel %d)\n", conn, channel));
2640 /* Grab an existing call structure, or allocate a new one.
2641 * Existing call structures are assumed to have been left reset by
2643 MUTEX_ENTER(&rx_freeCallQueue_lock);
2645 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2647 * EXCEPT that the TQ might not yet be cleared out.
2648 * Skip over those with in-use TQs.
2651 for (queue_Scan(&rx_freeCallQueue, cp, nxp, rx_call)) {
2652 if (!(cp->flags & RX_CALL_TQ_BUSY)) {
2658 #else /* AFS_GLOBAL_RXLOCK_KERNEL */
2659 if (queue_IsNotEmpty(&rx_freeCallQueue)) {
2660 call = queue_First(&rx_freeCallQueue, rx_call);
2661 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2663 if (rx_stats_active)
2664 rx_atomic_dec(&rx_stats.nFreeCallStructs);
2665 MUTEX_EXIT(&rx_freeCallQueue_lock);
2666 MUTEX_ENTER(&call->lock);
2667 CLEAR_CALL_QUEUE_LOCK(call);
2668 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2669 /* Now, if TQ wasn't cleared earlier, do it now. */
2670 rxi_WaitforTQBusy(call);
2671 if (call->flags & RX_CALL_TQ_CLEARME) {
2672 rxi_ClearTransmitQueue(call, 1);
2673 /*queue_Init(&call->tq);*/
2675 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2676 /* Bind the call to its connection structure */
2678 rxi_ResetCall(call, 1);
2681 call = rxi_Alloc(sizeof(struct rx_call));
2682 #ifdef RXDEBUG_PACKET
2683 call->allNextp = rx_allCallsp;
2684 rx_allCallsp = call;
2686 rx_atomic_inc_and_read(&rx_stats.nCallStructs);
2687 #else /* RXDEBUG_PACKET */
2688 rx_atomic_inc(&rx_stats.nCallStructs);
2689 #endif /* RXDEBUG_PACKET */
2691 MUTEX_EXIT(&rx_freeCallQueue_lock);
2692 MUTEX_INIT(&call->lock, "call lock", MUTEX_DEFAULT, NULL);
2693 MUTEX_ENTER(&call->lock);
2694 CV_INIT(&call->cv_twind, "call twind", CV_DEFAULT, 0);
2695 CV_INIT(&call->cv_rq, "call rq", CV_DEFAULT, 0);
2696 CV_INIT(&call->cv_tq, "call tq", CV_DEFAULT, 0);
2698 /* Initialize once-only items */
2699 queue_Init(&call->tq);
2700 queue_Init(&call->rq);
2701 queue_Init(&call->iovq);
2702 #ifdef RXDEBUG_PACKET
2703 call->rqc = call->tqc = call->iovqc = 0;
2704 #endif /* RXDEBUG_PACKET */
2705 /* Bind the call to its connection structure (prereq for reset) */
2707 rxi_ResetCall(call, 1);
2709 call->channel = channel;
2710 call->callNumber = &conn->callNumber[channel];
2711 call->rwind = conn->rwind[channel];
2712 call->twind = conn->twind[channel];
2713 /* Note that the next expected call number is retained (in
2714 * conn->callNumber[i]), even if we reallocate the call structure
2716 conn->call[channel] = call;
2717 /* if the channel's never been used (== 0), we should start at 1, otherwise
2718 * the call number is valid from the last time this channel was used */
2719 if (*call->callNumber == 0)
2720 *call->callNumber = 1;
2725 /* A call has been inactive long enough that so we can throw away
2726 * state, including the call structure, which is placed on the call
2729 * call->lock amd rx_refcnt_mutex are held upon entry.
2730 * haveCTLock is set when called from rxi_ReapConnections.
2732 * return 1 if the call is freed, 0 if not.
2735 rxi_FreeCall(struct rx_call *call, int haveCTLock)
2737 int channel = call->channel;
2738 struct rx_connection *conn = call->conn;
2739 u_char state = call->state;
2742 * We are setting the state to RX_STATE_RESET to
2743 * ensure that no one else will attempt to use this
2744 * call once we drop the refcnt lock. We must drop
2745 * the refcnt lock before calling rxi_ResetCall
2746 * because it cannot be held across acquiring the
2747 * freepktQ lock. NewCall does the same.
2749 call->state = RX_STATE_RESET;
2750 MUTEX_EXIT(&rx_refcnt_mutex);
2751 rxi_ResetCall(call, 0);
2753 if (MUTEX_TRYENTER(&conn->conn_call_lock))
2755 if (state == RX_STATE_DALLY || state == RX_STATE_HOLD)
2756 (*call->callNumber)++;
2758 if (call->conn->call[channel] == call)
2759 call->conn->call[channel] = 0;
2760 MUTEX_EXIT(&conn->conn_call_lock);
2763 * We couldn't obtain the conn_call_lock so we can't
2764 * disconnect the call from the connection. Set the
2765 * call state to dally so that the call can be reused.
2767 MUTEX_ENTER(&rx_refcnt_mutex);
2768 call->state = RX_STATE_DALLY;
2772 MUTEX_ENTER(&rx_freeCallQueue_lock);
2773 SET_CALL_QUEUE_LOCK(call, &rx_freeCallQueue_lock);
2774 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2775 /* A call may be free even though its transmit queue is still in use.
2776 * Since we search the call list from head to tail, put busy calls at
2777 * the head of the list, and idle calls at the tail.
2779 if (call->flags & RX_CALL_TQ_BUSY)
2780 queue_Prepend(&rx_freeCallQueue, call);
2782 queue_Append(&rx_freeCallQueue, call);
2783 #else /* AFS_GLOBAL_RXLOCK_KERNEL */
2784 queue_Append(&rx_freeCallQueue, call);
2785 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2786 if (rx_stats_active)
2787 rx_atomic_inc(&rx_stats.nFreeCallStructs);
2788 MUTEX_EXIT(&rx_freeCallQueue_lock);
2790 /* Destroy the connection if it was previously slated for
2791 * destruction, i.e. the Rx client code previously called
2792 * rx_DestroyConnection (client connections), or
2793 * rxi_ReapConnections called the same routine (server
2794 * connections). Only do this, however, if there are no
2795 * outstanding calls. Note that for fine grain locking, there appears
2796 * to be a deadlock in that rxi_FreeCall has a call locked and
2797 * DestroyConnectionNoLock locks each call in the conn. But note a
2798 * few lines up where we have removed this call from the conn.
2799 * If someone else destroys a connection, they either have no
2800 * call lock held or are going through this section of code.
2802 MUTEX_ENTER(&conn->conn_data_lock);
2803 if (conn->flags & RX_CONN_DESTROY_ME && !(conn->flags & RX_CONN_MAKECALL_WAITING)) {
2804 MUTEX_ENTER(&rx_refcnt_mutex);
2806 MUTEX_EXIT(&rx_refcnt_mutex);
2807 MUTEX_EXIT(&conn->conn_data_lock);
2808 #ifdef RX_ENABLE_LOCKS
2810 rxi_DestroyConnectionNoLock(conn);
2812 rxi_DestroyConnection(conn);
2813 #else /* RX_ENABLE_LOCKS */
2814 rxi_DestroyConnection(conn);
2815 #endif /* RX_ENABLE_LOCKS */
2817 MUTEX_EXIT(&conn->conn_data_lock);
2819 MUTEX_ENTER(&rx_refcnt_mutex);
2823 rx_atomic_t rxi_Allocsize = RX_ATOMIC_INIT(0);
2824 rx_atomic_t rxi_Alloccnt = RX_ATOMIC_INIT(0);
2827 rxi_Alloc(size_t size)
2831 if (rx_stats_active) {
2832 rx_atomic_add(&rxi_Allocsize, (int) size);
2833 rx_atomic_inc(&rxi_Alloccnt);
2837 #if defined(KERNEL) && !defined(UKERNEL) && defined(AFS_FBSD80_ENV)
2838 afs_osi_Alloc_NoSleep(size);
2843 osi_Panic("rxi_Alloc error");
2849 rxi_Free(void *addr, size_t size)
2851 if (rx_stats_active) {
2852 rx_atomic_sub(&rxi_Allocsize, (int) size);
2853 rx_atomic_dec(&rxi_Alloccnt);
2855 osi_Free(addr, size);
2859 rxi_SetPeerMtu(struct rx_peer *peer, afs_uint32 host, afs_uint32 port, int mtu)
2861 struct rx_peer **peer_ptr = NULL, **peer_end = NULL;
2862 struct rx_peer *next = NULL;
2866 MUTEX_ENTER(&rx_peerHashTable_lock);
2868 peer_ptr = &rx_peerHashTable[0];
2869 peer_end = &rx_peerHashTable[rx_hashTableSize];
2872 for ( ; peer_ptr < peer_end; peer_ptr++) {
2875 for ( ; peer; peer = next) {
2877 if (host == peer->host)
2882 hashIndex = PEER_HASH(host, port);
2883 for (peer = rx_peerHashTable[hashIndex]; peer; peer = peer->next) {
2884 if ((peer->host == host) && (peer->port == port))
2889 MUTEX_ENTER(&rx_peerHashTable_lock);
2894 MUTEX_EXIT(&rx_peerHashTable_lock);
2896 MUTEX_ENTER(&peer->peer_lock);
2897 /* We don't handle dropping below min, so don't */
2898 mtu = MAX(mtu, RX_MIN_PACKET_SIZE);
2899 peer->ifMTU=MIN(mtu, peer->ifMTU);
2900 peer->natMTU = rxi_AdjustIfMTU(peer->ifMTU);
2901 /* if we tweaked this down, need to tune our peer MTU too */
2902 peer->MTU = MIN(peer->MTU, peer->natMTU);
2903 /* if we discovered a sub-1500 mtu, degrade */
2904 if (peer->ifMTU < OLD_MAX_PACKET_SIZE)
2905 peer->maxDgramPackets = 1;
2906 /* We no longer have valid peer packet information */
2907 if (peer->maxPacketSize-RX_IPUDP_SIZE > peer->ifMTU)
2908 peer->maxPacketSize = 0;
2909 MUTEX_EXIT(&peer->peer_lock);
2911 MUTEX_ENTER(&rx_peerHashTable_lock);
2913 if (host && !port) {
2915 /* pick up where we left off */
2919 MUTEX_EXIT(&rx_peerHashTable_lock);
2922 #ifdef AFS_RXERRQ_ENV
2924 rxi_SetPeerDead(afs_uint32 host, afs_uint16 port)
2926 int hashIndex = PEER_HASH(host, port);
2927 struct rx_peer *peer;
2929 MUTEX_ENTER(&rx_peerHashTable_lock);
2931 for (peer = rx_peerHashTable[hashIndex]; peer; peer = peer->next) {
2932 if (peer->host == host && peer->port == port) {
2938 rx_atomic_inc(&peer->neterrs);
2941 MUTEX_EXIT(&rx_peerHashTable_lock);
2945 rxi_ProcessNetError(struct sock_extended_err *err, afs_uint32 addr, afs_uint16 port)
2947 # ifdef AFS_ADAPT_PMTU
2948 if (err->ee_errno == EMSGSIZE && err->ee_info >= 68) {
2949 rxi_SetPeerMtu(NULL, addr, port, err->ee_info - RX_IPUDP_SIZE);
2953 if (err->ee_origin == SO_EE_ORIGIN_ICMP && err->ee_type == ICMP_DEST_UNREACH) {
2954 switch (err->ee_code) {
2955 case ICMP_NET_UNREACH:
2956 case ICMP_HOST_UNREACH:
2957 case ICMP_PORT_UNREACH:
2960 rxi_SetPeerDead(addr, port);
2965 #endif /* AFS_RXERRQ_ENV */
2967 /* Find the peer process represented by the supplied (host,port)
2968 * combination. If there is no appropriate active peer structure, a
2969 * new one will be allocated and initialized
2970 * The origPeer, if set, is a pointer to a peer structure on which the
2971 * refcount will be be decremented. This is used to replace the peer
2972 * structure hanging off a connection structure */
2974 rxi_FindPeer(afs_uint32 host, u_short port,
2975 struct rx_peer *origPeer, int create)
2979 hashIndex = PEER_HASH(host, port);
2980 MUTEX_ENTER(&rx_peerHashTable_lock);
2981 for (pp = rx_peerHashTable[hashIndex]; pp; pp = pp->next) {
2982 if ((pp->host == host) && (pp->port == port))
2987 pp = rxi_AllocPeer(); /* This bzero's *pp */
2988 pp->host = host; /* set here or in InitPeerParams is zero */
2990 #ifdef AFS_RXERRQ_ENV
2991 rx_atomic_set(&pp->neterrs, 0);
2993 MUTEX_INIT(&pp->peer_lock, "peer_lock", MUTEX_DEFAULT, 0);
2994 queue_Init(&pp->rpcStats);
2995 pp->next = rx_peerHashTable[hashIndex];
2996 rx_peerHashTable[hashIndex] = pp;
2997 rxi_InitPeerParams(pp);
2998 if (rx_stats_active)
2999 rx_atomic_inc(&rx_stats.nPeerStructs);
3006 origPeer->refCount--;
3007 MUTEX_EXIT(&rx_peerHashTable_lock);
3012 /* Find the connection at (host, port) started at epoch, and with the
3013 * given connection id. Creates the server connection if necessary.
3014 * The type specifies whether a client connection or a server
3015 * connection is desired. In both cases, (host, port) specify the
3016 * peer's (host, pair) pair. Client connections are not made
3017 * automatically by this routine. The parameter socket gives the
3018 * socket descriptor on which the packet was received. This is used,
3019 * in the case of server connections, to check that *new* connections
3020 * come via a valid (port, serviceId). Finally, the securityIndex
3021 * parameter must match the existing index for the connection. If a
3022 * server connection is created, it will be created using the supplied
3023 * index, if the index is valid for this service */
3024 static struct rx_connection *
3025 rxi_FindConnection(osi_socket socket, afs_uint32 host,
3026 u_short port, u_short serviceId, afs_uint32 cid,
3027 afs_uint32 epoch, int type, u_int securityIndex)
3029 int hashindex, flag, i;
3030 struct rx_connection *conn;
3031 hashindex = CONN_HASH(host, port, cid, epoch, type);
3032 MUTEX_ENTER(&rx_connHashTable_lock);
3033 rxLastConn ? (conn = rxLastConn, flag = 0) : (conn =
3034 rx_connHashTable[hashindex],
3037 if ((conn->type == type) && ((cid & RX_CIDMASK) == conn->cid)
3038 && (epoch == conn->epoch)) {
3039 struct rx_peer *pp = conn->peer;
3040 if (securityIndex != conn->securityIndex) {
3041 /* this isn't supposed to happen, but someone could forge a packet
3042 * like this, and there seems to be some CM bug that makes this
3043 * happen from time to time -- in which case, the fileserver
3045 MUTEX_EXIT(&rx_connHashTable_lock);
3046 return (struct rx_connection *)0;
3048 if (pp->host == host && pp->port == port)
3050 if (type == RX_CLIENT_CONNECTION && pp->port == port)
3052 /* So what happens when it's a callback connection? */
3053 if ( /*type == RX_CLIENT_CONNECTION && */
3054 (conn->epoch & 0x80000000))
3058 /* the connection rxLastConn that was used the last time is not the
3059 ** one we are looking for now. Hence, start searching in the hash */
3061 conn = rx_connHashTable[hashindex];
3066 struct rx_service *service;
3067 if (type == RX_CLIENT_CONNECTION) {
3068 MUTEX_EXIT(&rx_connHashTable_lock);
3069 return (struct rx_connection *)0;
3071 service = rxi_FindService(socket, serviceId);
3072 if (!service || (securityIndex >= service->nSecurityObjects)
3073 || (service->securityObjects[securityIndex] == 0)) {
3074 MUTEX_EXIT(&rx_connHashTable_lock);
3075 return (struct rx_connection *)0;
3077 conn = rxi_AllocConnection(); /* This bzero's the connection */
3078 MUTEX_INIT(&conn->conn_call_lock, "conn call lock", MUTEX_DEFAULT, 0);
3079 MUTEX_INIT(&conn->conn_data_lock, "conn data lock", MUTEX_DEFAULT, 0);
3080 CV_INIT(&conn->conn_call_cv, "conn call cv", CV_DEFAULT, 0);
3081 conn->next = rx_connHashTable[hashindex];
3082 rx_connHashTable[hashindex] = conn;
3083 conn->peer = rxi_FindPeer(host, port, 0, 1);
3084 conn->type = RX_SERVER_CONNECTION;
3085 conn->lastSendTime = clock_Sec(); /* don't GC immediately */
3086 conn->epoch = epoch;
3087 conn->cid = cid & RX_CIDMASK;
3088 conn->ackRate = RX_FAST_ACK_RATE;
3089 conn->service = service;
3090 conn->serviceId = serviceId;
3091 conn->securityIndex = securityIndex;
3092 conn->securityObject = service->securityObjects[securityIndex];
3093 conn->nSpecific = 0;
3094 conn->specific = NULL;
3095 rx_SetConnDeadTime(conn, service->connDeadTime);
3096 conn->idleDeadTime = service->idleDeadTime;
3097 conn->idleDeadDetection = service->idleDeadErr ? 1 : 0;
3098 for (i = 0; i < RX_MAXCALLS; i++) {
3099 conn->twind[i] = rx_initSendWindow;
3100 conn->rwind[i] = rx_initReceiveWindow;
3102 /* Notify security object of the new connection */
3103 RXS_NewConnection(conn->securityObject, conn);
3104 /* XXXX Connection timeout? */
3105 if (service->newConnProc)
3106 (*service->newConnProc) (conn);
3107 if (rx_stats_active)
3108 rx_atomic_inc(&rx_stats.nServerConns);
3111 MUTEX_ENTER(&rx_refcnt_mutex);
3113 MUTEX_EXIT(&rx_refcnt_mutex);
3115 rxLastConn = conn; /* store this connection as the last conn used */
3116 MUTEX_EXIT(&rx_connHashTable_lock);
3121 * Timeout a call on a busy call channel if appropriate.
3123 * @param[in] call The busy call.
3125 * @pre 'call' is marked as busy (namely,
3126 * call->conn->lastBusy[call->channel] != 0)
3128 * @pre call->lock is held
3129 * @pre rxi_busyChannelError is nonzero
3131 * @note call->lock is dropped and reacquired
3134 rxi_CheckBusy(struct rx_call *call)
3136 struct rx_connection *conn = call->conn;
3137 int channel = call->channel;
3138 int freechannel = 0;
3140 afs_uint32 callNumber;
3142 MUTEX_EXIT(&call->lock);
3144 MUTEX_ENTER(&conn->conn_call_lock);
3145 callNumber = *call->callNumber;
3147 /* Are there any other call slots on this conn that we should try? Look for
3148 * slots that are empty and are either non-busy, or were marked as busy
3149 * longer than conn->secondsUntilDead seconds before this call started. */
3151 for (i = 0; i < RX_MAXCALLS && !freechannel; i++) {
3153 /* only look at channels that aren't us */
3157 if (conn->lastBusy[i]) {
3158 /* if this channel looked busy too recently, don't look at it */
3159 if (conn->lastBusy[i] >= call->startTime.sec) {
3162 if (call->startTime.sec - conn->lastBusy[i] < conn->secondsUntilDead) {
3167 if (conn->call[i]) {
3168 struct rx_call *tcall = conn->call[i];
3169 MUTEX_ENTER(&tcall->lock);
3170 if (tcall->state == RX_STATE_DALLY) {
3173 MUTEX_EXIT(&tcall->lock);
3179 MUTEX_ENTER(&call->lock);
3181 /* Since the call->lock and conn->conn_call_lock have been released it is
3182 * possible that (1) the call may no longer be busy and/or (2) the call may
3183 * have been reused by another waiting thread. Therefore, we must confirm
3184 * that the call state has not changed when deciding whether or not to
3185 * force this application thread to retry by forcing a Timeout error. */
3187 if (freechannel && *call->callNumber == callNumber &&
3188 (call->flags & RX_CALL_PEER_BUSY)) {
3189 /* Since 'freechannel' is set, there exists another channel in this
3190 * rx_conn that the application thread might be able to use. We know
3191 * that we have the correct call since callNumber is unchanged, and we
3192 * know that the call is still busy. So, set the call error state to
3193 * rxi_busyChannelError so the application can retry the request,
3194 * presumably on a less-busy call channel. */
3196 rxi_CallError(call, RX_CALL_BUSY);
3198 MUTEX_EXIT(&conn->conn_call_lock);
3201 /* There are two packet tracing routines available for testing and monitoring
3202 * Rx. One is called just after every packet is received and the other is
3203 * called just before every packet is sent. Received packets, have had their
3204 * headers decoded, and packets to be sent have not yet had their headers
3205 * encoded. Both take two parameters: a pointer to the packet and a sockaddr
3206 * containing the network address. Both can be modified. The return value, if
3207 * non-zero, indicates that the packet should be dropped. */
3209 int (*rx_justReceived) (struct rx_packet *, struct sockaddr_in *) = 0;
3210 int (*rx_almostSent) (struct rx_packet *, struct sockaddr_in *) = 0;
3212 /* A packet has been received off the interface. Np is the packet, socket is
3213 * the socket number it was received from (useful in determining which service
3214 * this packet corresponds to), and (host, port) reflect the host,port of the
3215 * sender. This call returns the packet to the caller if it is finished with
3216 * it, rather than de-allocating it, just as a small performance hack */
3219 rxi_ReceivePacket(struct rx_packet *np, osi_socket socket,
3220 afs_uint32 host, u_short port, int *tnop,
3221 struct rx_call **newcallp)
3223 struct rx_call *call;
3224 struct rx_connection *conn;
3226 afs_uint32 currentCallNumber;
3231 struct rx_packet *tnp;
3234 /* We don't print out the packet until now because (1) the time may not be
3235 * accurate enough until now in the lwp implementation (rx_Listener only gets
3236 * the time after the packet is read) and (2) from a protocol point of view,
3237 * this is the first time the packet has been seen */
3238 packetType = (np->header.type > 0 && np->header.type < RX_N_PACKET_TYPES)
3239 ? rx_packetTypes[np->header.type - 1] : "*UNKNOWN*";
3240 dpf(("R %d %s: %x.%d.%d.%d.%d.%d.%d flags %d, packet %"AFS_PTR_FMT"\n",
3241 np->header.serial, packetType, ntohl(host), ntohs(port), np->header.serviceId,
3242 np->header.epoch, np->header.cid, np->header.callNumber,
3243 np->header.seq, np->header.flags, np));
3246 /* Account for connectionless packets */
3247 if (rx_stats_active &&
3248 ((np->header.type == RX_PACKET_TYPE_VERSION) ||
3249 (np->header.type == RX_PACKET_TYPE_DEBUG))) {
3250 struct rx_peer *peer;
3252 /* Try to look up the peer structure, but don't create one */
3253 peer = rxi_FindPeer(host, port, 0, 0);
3255 /* Since this may not be associated with a connection, it may have
3256 * no refCount, meaning we could race with ReapConnections
3259 if (peer && (peer->refCount > 0)) {
3260 #ifdef AFS_RXERRQ_ENV
3261 if (rx_atomic_read(&peer->neterrs)) {
3262 rx_atomic_set(&peer->neterrs, 0);
3265 MUTEX_ENTER(&peer->peer_lock);
3266 peer->bytesReceived += np->length;
3267 MUTEX_EXIT(&peer->peer_lock);
3271 if (np->header.type == RX_PACKET_TYPE_VERSION) {
3272 return rxi_ReceiveVersionPacket(np, socket, host, port, 1);
3275 if (np->header.type == RX_PACKET_TYPE_DEBUG) {
3276 return rxi_ReceiveDebugPacket(np, socket, host, port, 1);
3279 /* If an input tracer function is defined, call it with the packet and
3280 * network address. Note this function may modify its arguments. */
3281 if (rx_justReceived) {
3282 struct sockaddr_in addr;
3284 addr.sin_family = AF_INET;
3285 addr.sin_port = port;
3286 addr.sin_addr.s_addr = host;
3287 #ifdef STRUCT_SOCKADDR_HAS_SA_LEN
3288 addr.sin_len = sizeof(addr);
3289 #endif /* AFS_OSF_ENV */
3290 drop = (*rx_justReceived) (np, &addr);
3291 /* drop packet if return value is non-zero */
3294 port = addr.sin_port; /* in case fcn changed addr */
3295 host = addr.sin_addr.s_addr;
3299 /* If packet was not sent by the client, then *we* must be the client */
3300 type = ((np->header.flags & RX_CLIENT_INITIATED) != RX_CLIENT_INITIATED)
3301 ? RX_CLIENT_CONNECTION : RX_SERVER_CONNECTION;
3303 /* Find the connection (or fabricate one, if we're the server & if
3304 * necessary) associated with this packet */
3306 rxi_FindConnection(socket, host, port, np->header.serviceId,
3307 np->header.cid, np->header.epoch, type,
3308 np->header.securityIndex);
3310 /* To avoid having 2 connections just abort at each other,
3311 don't abort an abort. */
3313 if (np->header.type != RX_PACKET_TYPE_ABORT)
3314 rxi_SendRawAbort(socket, host, port, RX_INVALID_OPERATION,
3319 #ifdef AFS_RXERRQ_ENV
3320 if (rx_atomic_read(&conn->peer->neterrs)) {
3321 rx_atomic_set(&conn->peer->neterrs, 0);
3325 /* If we're doing statistics, then account for the incoming packet */
3326 if (rx_stats_active) {
3327 MUTEX_ENTER(&conn->peer->peer_lock);
3328 conn->peer->bytesReceived += np->length;
3329 MUTEX_EXIT(&conn->peer->peer_lock);
3332 /* If the connection is in an error state, send an abort packet and ignore
3333 * the incoming packet */
3335 /* Don't respond to an abort packet--we don't want loops! */
3336 MUTEX_ENTER(&conn->conn_data_lock);
3337 if (np->header.type != RX_PACKET_TYPE_ABORT)
3338 np = rxi_SendConnectionAbort(conn, np, 1, 0);
3339 putConnection(conn);
3340 MUTEX_EXIT(&conn->conn_data_lock);
3344 /* Check for connection-only requests (i.e. not call specific). */
3345 if (np->header.callNumber == 0) {
3346 switch (np->header.type) {
3347 case RX_PACKET_TYPE_ABORT: {
3348 /* What if the supplied error is zero? */
3349 afs_int32 errcode = ntohl(rx_GetInt32(np, 0));
3350 dpf(("rxi_ReceivePacket ABORT rx_GetInt32 = %d\n", errcode));
3351 rxi_ConnectionError(conn, errcode);
3352 putConnection(conn);
3355 case RX_PACKET_TYPE_CHALLENGE:
3356 tnp = rxi_ReceiveChallengePacket(conn, np, 1);
3357 putConnection(conn);
3359 case RX_PACKET_TYPE_RESPONSE:
3360 tnp = rxi_ReceiveResponsePacket(conn, np, 1);
3361 putConnection(conn);
3363 case RX_PACKET_TYPE_PARAMS:
3364 case RX_PACKET_TYPE_PARAMS + 1:
3365 case RX_PACKET_TYPE_PARAMS + 2:
3366 /* ignore these packet types for now */
3367 putConnection(conn);
3371 /* Should not reach here, unless the peer is broken: send an
3373 rxi_ConnectionError(conn, RX_PROTOCOL_ERROR);
3374 MUTEX_ENTER(&conn->conn_data_lock);
3375 tnp = rxi_SendConnectionAbort(conn, np, 1, 0);
3376 putConnection(conn);
3377 MUTEX_EXIT(&conn->conn_data_lock);
3382 channel = np->header.cid & RX_CHANNELMASK;
3383 MUTEX_ENTER(&conn->conn_call_lock);
3384 call = conn->call[channel];
3387 MUTEX_ENTER(&call->lock);
3388 currentCallNumber = conn->callNumber[channel];
3389 MUTEX_EXIT(&conn->conn_call_lock);
3390 } else if (type == RX_SERVER_CONNECTION) { /* No call allocated */
3391 call = conn->call[channel];
3393 MUTEX_ENTER(&call->lock);
3394 currentCallNumber = conn->callNumber[channel];
3395 MUTEX_EXIT(&conn->conn_call_lock);
3397 call = rxi_NewCall(conn, channel); /* returns locked call */
3398 *call->callNumber = currentCallNumber = np->header.callNumber;
3399 MUTEX_EXIT(&conn->conn_call_lock);
3401 if (np->header.callNumber == 0)
3402 dpf(("RecPacket call 0 %d %s: %x.%u.%u.%u.%u.%u.%u flags %d, packet %"AFS_PTR_FMT" len %d\n",
3403 np->header.serial, rx_packetTypes[np->header.type - 1], ntohl(conn->peer->host), ntohs(conn->peer->port),
3404 np->header.serial, np->header.epoch, np->header.cid, np->header.callNumber, np->header.seq,
3405 np->header.flags, np, np->length));
3407 call->state = RX_STATE_PRECALL;
3408 clock_GetTime(&call->queueTime);
3409 call->bytesSent = 0;
3410 call->bytesRcvd = 0;
3412 * If the number of queued calls exceeds the overload
3413 * threshold then abort this call.
3415 if ((rx_BusyThreshold > 0) &&
3416 (rx_atomic_read(&rx_nWaiting) > rx_BusyThreshold)) {
3417 struct rx_packet *tp;
3419 rxi_CallError(call, rx_BusyError);
3420 tp = rxi_SendCallAbort(call, np, 1, 0);
3421 MUTEX_EXIT(&call->lock);
3422 putConnection(conn);
3423 if (rx_stats_active)
3424 rx_atomic_inc(&rx_stats.nBusies);
3427 rxi_KeepAliveOn(call);
3429 } else { /* RX_CLIENT_CONNECTION and No call allocated */
3430 /* This packet can't be for this call. If the new call address is
3431 * 0 then no call is running on this channel. If there is a call
3432 * then, since this is a client connection we're getting data for
3433 * it must be for the previous call.
3435 MUTEX_EXIT(&conn->conn_call_lock);
3436 if (rx_stats_active)
3437 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3438 putConnection(conn);
3442 /* There is a non-NULL locked call at this point */
3443 if (type == RX_SERVER_CONNECTION) { /* We're the server */
3444 if (np->header.callNumber < currentCallNumber) {
3445 MUTEX_EXIT(&call->lock);
3446 if (rx_stats_active)
3447 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3448 putConnection(conn);
3450 } else if (np->header.callNumber != currentCallNumber) {
3451 /* Wait until the transmit queue is idle before deciding
3452 * whether to reset the current call. Chances are that the
3453 * call will be in ether DALLY or HOLD state once the TQ_BUSY
3456 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
3457 if (call->state == RX_STATE_ACTIVE) {
3458 rxi_WaitforTQBusy(call);
3460 * If we entered error state while waiting,
3461 * must call rxi_CallError to permit rxi_ResetCall
3462 * to processed when the tqWaiter count hits zero.
3465 rxi_CallError(call, call->error);
3466 MUTEX_EXIT(&call->lock);
3467 putConnection(conn);
3471 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
3472 /* If the new call cannot be taken right now send a busy and set
3473 * the error condition in this call, so that it terminates as
3474 * quickly as possible */
3475 if (call->state == RX_STATE_ACTIVE) {
3476 struct rx_packet *tp;
3478 rxi_CallError(call, RX_CALL_DEAD);
3479 tp = rxi_SendSpecial(call, conn, np, RX_PACKET_TYPE_BUSY,
3481 MUTEX_EXIT(&call->lock);
3482 putConnection(conn);
3485 rxi_ResetCall(call, 0);
3487 * The conn_call_lock is not held but no one else should be
3488 * using this call channel while we are processing this incoming
3489 * packet. This assignment should be safe.
3491 *call->callNumber = np->header.callNumber;
3493 if (np->header.callNumber == 0)
3494 dpf(("RecPacket call 0 %d %s: %x.%u.%u.%u.%u.%u.%u flags %d, packet %"AFS_PTR_FMT" len %d\n",
3495 np->header.serial, rx_packetTypes[np->header.type - 1], ntohl(conn->peer->host), ntohs(conn->peer->port),
3496 np->header.serial, np->header.epoch, np->header.cid, np->header.callNumber, np->header.seq,
3497 np->header.flags, np, np->length));
3499 call->state = RX_STATE_PRECALL;
3500 clock_GetTime(&call->queueTime);
3501 call->bytesSent = 0;
3502 call->bytesRcvd = 0;
3504 * If the number of queued calls exceeds the overload
3505 * threshold then abort this call.
3507 if ((rx_BusyThreshold > 0) &&
3508 (rx_atomic_read(&rx_nWaiting) > rx_BusyThreshold)) {
3509 struct rx_packet *tp;
3511 rxi_CallError(call, rx_BusyError);
3512 tp = rxi_SendCallAbort(call, np, 1, 0);
3513 MUTEX_EXIT(&call->lock);
3514 putConnection(conn);
3515 if (rx_stats_active)
3516 rx_atomic_inc(&rx_stats.nBusies);
3519 rxi_KeepAliveOn(call);
3521 /* Continuing call; do nothing here. */
3523 } else { /* we're the client */
3524 /* Ignore all incoming acknowledgements for calls in DALLY state */
3525 if ((call->state == RX_STATE_DALLY)
3526 && (np->header.type == RX_PACKET_TYPE_ACK)) {
3527 if (rx_stats_active)
3528 rx_atomic_inc(&rx_stats.ignorePacketDally);
3529 MUTEX_EXIT(&call->lock);
3530 putConnection(conn);
3534 /* Ignore anything that's not relevant to the current call. If there
3535 * isn't a current call, then no packet is relevant. */
3536 if (np->header.callNumber != currentCallNumber) {
3537 if (rx_stats_active)
3538 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3539 MUTEX_EXIT(&call->lock);
3540 putConnection(conn);
3543 /* If the service security object index stamped in the packet does not
3544 * match the connection's security index, ignore the packet */
3545 if (np->header.securityIndex != conn->securityIndex) {
3546 MUTEX_EXIT(&call->lock);
3547 putConnection(conn);
3551 /* If we're receiving the response, then all transmit packets are
3552 * implicitly acknowledged. Get rid of them. */
3553 if (np->header.type == RX_PACKET_TYPE_DATA) {
3554 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
3555 /* XXX Hack. Because we must release the global rx lock when
3556 * sending packets (osi_NetSend) we drop all acks while we're
3557 * traversing the tq in rxi_Start sending packets out because
3558 * packets may move to the freePacketQueue as result of being here!
3559 * So we drop these packets until we're safely out of the
3560 * traversing. Really ugly!
3561 * For fine grain RX locking, we set the acked field in the
3562 * packets and let rxi_Start remove them from the transmit queue.
3564 if (call->flags & RX_CALL_TQ_BUSY) {
3565 #ifdef RX_ENABLE_LOCKS
3566 rxi_SetAcksInTransmitQueue(call);
3568 putConnection(conn);
3569 return np; /* xmitting; drop packet */
3572 rxi_ClearTransmitQueue(call, 0);
3574 #else /* AFS_GLOBAL_RXLOCK_KERNEL */
3575 rxi_ClearTransmitQueue(call, 0);
3576 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
3578 if (np->header.type == RX_PACKET_TYPE_ACK) {
3579 /* now check to see if this is an ack packet acknowledging that the
3580 * server actually *lost* some hard-acked data. If this happens we
3581 * ignore this packet, as it may indicate that the server restarted in
3582 * the middle of a call. It is also possible that this is an old ack
3583 * packet. We don't abort the connection in this case, because this
3584 * *might* just be an old ack packet. The right way to detect a server
3585 * restart in the midst of a call is to notice that the server epoch
3587 /* XXX I'm not sure this is exactly right, since tfirst **IS**
3588 * XXX unacknowledged. I think that this is off-by-one, but
3589 * XXX I don't dare change it just yet, since it will
3590 * XXX interact badly with the server-restart detection
3591 * XXX code in receiveackpacket. */
3592 if (ntohl(rx_GetInt32(np, FIRSTACKOFFSET)) < call->tfirst) {
3593 if (rx_stats_active)
3594 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3595 MUTEX_EXIT(&call->lock);
3596 putConnection(conn);
3600 } /* else not a data packet */
3603 osirx_AssertMine(&call->lock, "rxi_ReceivePacket middle");
3604 /* Set remote user defined status from packet */
3605 call->remoteStatus = np->header.userStatus;
3607 /* Now do packet type-specific processing */
3608 switch (np->header.type) {
3609 case RX_PACKET_TYPE_DATA:
3610 np = rxi_ReceiveDataPacket(call, np, 1, socket, host, port, tnop,
3613 case RX_PACKET_TYPE_ACK:
3614 /* Respond immediately to ack packets requesting acknowledgement
3616 if (np->header.flags & RX_REQUEST_ACK) {
3618 (void)rxi_SendCallAbort(call, 0, 1, 0);
3620 (void)rxi_SendAck(call, 0, np->header.serial,
3621 RX_ACK_PING_RESPONSE, 1);
3623 np = rxi_ReceiveAckPacket(call, np, 1);
3625 case RX_PACKET_TYPE_ABORT: {
3626 /* An abort packet: reset the call, passing the error up to the user. */
3627 /* What if error is zero? */
3628 /* What if the error is -1? the application will treat it as a timeout. */
3629 afs_int32 errdata = ntohl(*(afs_int32 *) rx_DataOf(np));
3630 dpf(("rxi_ReceivePacket ABORT rx_DataOf = %d\n", errdata));
3631 rxi_CallError(call, errdata);
3632 MUTEX_EXIT(&call->lock);
3633 putConnection(conn);
3634 return np; /* xmitting; drop packet */
3636 case RX_PACKET_TYPE_BUSY: {
3637 struct clock busyTime;
3639 clock_GetTime(&busyTime);
3641 MUTEX_EXIT(&call->lock);
3643 MUTEX_ENTER(&conn->conn_call_lock);
3644 MUTEX_ENTER(&call->lock);
3645 conn->lastBusy[call->channel] = busyTime.sec;
3646 call->flags |= RX_CALL_PEER_BUSY;
3647 MUTEX_EXIT(&call->lock);
3648 MUTEX_EXIT(&conn->conn_call_lock);
3650 putConnection(conn);
3654 case RX_PACKET_TYPE_ACKALL:
3655 /* All packets acknowledged, so we can drop all packets previously
3656 * readied for sending */
3657 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
3658 /* XXX Hack. We because we can't release the global rx lock when
3659 * sending packets (osi_NetSend) we drop all ack pkts while we're
3660 * traversing the tq in rxi_Start sending packets out because
3661 * packets may move to the freePacketQueue as result of being
3662 * here! So we drop these packets until we're safely out of the
3663 * traversing. Really ugly!
3664 * For fine grain RX locking, we set the acked field in the packets
3665 * and let rxi_Start remove the packets from the transmit queue.
3667 if (call->flags & RX_CALL_TQ_BUSY) {
3668 #ifdef RX_ENABLE_LOCKS
3669 rxi_SetAcksInTransmitQueue(call);
3671 #else /* RX_ENABLE_LOCKS */
3672 MUTEX_EXIT(&call->lock);
3673 putConnection(conn);
3674 return np; /* xmitting; drop packet */
3675 #endif /* RX_ENABLE_LOCKS */
3677 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
3678 rxi_ClearTransmitQueue(call, 0);
3681 /* Should not reach here, unless the peer is broken: send an abort
3683 rxi_CallError(call, RX_PROTOCOL_ERROR);
3684 np = rxi_SendCallAbort(call, np, 1, 0);
3687 /* Note when this last legitimate packet was received, for keep-alive
3688 * processing. Note, we delay getting the time until now in the hope that
3689 * the packet will be delivered to the user before any get time is required
3690 * (if not, then the time won't actually be re-evaluated here). */
3691 call->lastReceiveTime = clock_Sec();
3692 /* we've received a legit packet, so the channel is not busy */
3693 call->flags &= ~RX_CALL_PEER_BUSY;
3694 MUTEX_EXIT(&call->lock);
3695 putConnection(conn);
3699 /* return true if this is an "interesting" connection from the point of view
3700 of someone trying to debug the system */
3702 rxi_IsConnInteresting(struct rx_connection *aconn)
3705 struct rx_call *tcall;
3707 if (aconn->flags & (RX_CONN_MAKECALL_WAITING | RX_CONN_DESTROY_ME))
3710 for (i = 0; i < RX_MAXCALLS; i++) {
3711 tcall = aconn->call[i];
3713 if ((tcall->state == RX_STATE_PRECALL)
3714 || (tcall->state == RX_STATE_ACTIVE))
3716 if ((tcall->mode == RX_MODE_SENDING)
3717 || (tcall->mode == RX_MODE_RECEIVING))
3725 /* if this is one of the last few packets AND it wouldn't be used by the
3726 receiving call to immediately satisfy a read request, then drop it on
3727 the floor, since accepting it might prevent a lock-holding thread from
3728 making progress in its reading. If a call has been cleared while in
3729 the precall state then ignore all subsequent packets until the call
3730 is assigned to a thread. */
3733 TooLow(struct rx_packet *ap, struct rx_call *acall)
3737 MUTEX_ENTER(&rx_quota_mutex);
3738 if (((ap->header.seq != 1) && (acall->flags & RX_CALL_CLEARED)
3739 && (acall->state == RX_STATE_PRECALL))
<