2 * Copyright 2000, International Business Machines Corporation and others.
5 * This software has been released under the terms of the IBM Public
6 * License. For details, see the LICENSE file in the top-level source
7 * directory or online at http://www.openafs.org/dl/license10.html
10 /* RX: Extended Remote Procedure Call */
12 #include <afsconfig.h>
13 #include <afs/param.h>
16 # include "afs/sysincludes.h"
17 # include "afsincludes.h"
22 # ifdef AFS_LINUX20_ENV
23 # include "h/socket.h"
25 # include "netinet/in.h"
27 # include "netinet/ip6.h"
28 # include "inet/common.h"
30 # include "inet/ip_ire.h"
32 # include "afs/afs_args.h"
33 # include "afs/afs_osi.h"
34 # ifdef RX_KERNEL_TRACE
35 # include "rx_kcommon.h"
37 # if defined(AFS_AIX_ENV)
41 # undef RXDEBUG /* turn off debugging */
43 # if defined(AFS_SGI_ENV)
44 # include "sys/debug.h"
47 # include "afs/sysincludes.h"
48 # include "afsincludes.h"
49 # endif /* !UKERNEL */
50 # include "afs/lock.h"
51 # include "rx_kmutex.h"
52 # include "rx_kernel.h"
53 # define AFSOP_STOP_RXCALLBACK 210 /* Stop CALLBACK process */
54 # define AFSOP_STOP_AFS 211 /* Stop AFS process */
55 # define AFSOP_STOP_BKG 212 /* Stop BKG process */
56 extern afs_int32 afs_termState;
58 # include "sys/lockl.h"
59 # include "sys/lock_def.h"
60 # endif /* AFS_AIX41_ENV */
61 # include "afs/rxgen_consts.h"
66 # include <afs/afsutil.h>
67 # include <WINNT\afsreg.h>
76 #include "rx_atomic.h"
77 #include "rx_globals.h"
79 #include "rx_internal.h"
82 #include <afs/rxgen_consts.h>
85 #ifdef AFS_PTHREAD_ENV
87 int (*registerProgram) (pid_t, char *) = 0;
88 int (*swapNameProgram) (pid_t, const char *, char *) = 0;
91 int (*registerProgram) (PROCESS, char *) = 0;
92 int (*swapNameProgram) (PROCESS, const char *, char *) = 0;
96 /* Local static routines */
97 static void rxi_DestroyConnectionNoLock(struct rx_connection *conn);
98 static void rxi_ComputeRoundTripTime(struct rx_packet *, struct rx_ackPacket *,
99 struct rx_call *, struct rx_peer *,
101 static void rxi_Resend(struct rxevent *event, void *arg0, void *arg1,
104 #ifdef RX_ENABLE_LOCKS
105 static void rxi_SetAcksInTransmitQueue(struct rx_call *call);
108 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
110 rx_atomic_t rxi_start_aborted; /* rxi_start awoke after rxi_Send in error.*/
111 rx_atomic_t rxi_start_in_error;
113 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
115 /* Constant delay time before sending an acknowledge of the last packet
116 * received. This is to avoid sending an extra acknowledge when the
117 * client is about to make another call, anyway, or the server is
120 * The lastAckDelay may not exceeed 400ms without causing peers to
121 * unecessarily timeout.
123 struct clock rx_lastAckDelay = {0, 400000};
125 /* Constant delay time before sending a soft ack when none was requested.
126 * This is to make sure we send soft acks before the sender times out,
127 * Normally we wait and send a hard ack when the receiver consumes the packet
129 * This value has been 100ms in all shipping versions of OpenAFS. Changing it
130 * will require changes to the peer's RTT calculations.
132 struct clock rx_softAckDelay = {0, 100000};
135 * rxi_rpc_peer_stat_cnt counts the total number of peer stat structures
136 * currently allocated within rx. This number is used to allocate the
137 * memory required to return the statistics when queried.
138 * Protected by the rx_rpc_stats mutex.
141 static unsigned int rxi_rpc_peer_stat_cnt;
144 * rxi_rpc_process_stat_cnt counts the total number of local process stat
145 * structures currently allocated within rx. The number is used to allocate
146 * the memory required to return the statistics when queried.
147 * Protected by the rx_rpc_stats mutex.
150 static unsigned int rxi_rpc_process_stat_cnt;
153 * rxi_busyChannelError is the error to return to the application when a call
154 * channel appears busy (inferred from the receipt of RX_PACKET_TYPE_BUSY
155 * packets on the channel), and there are other call channels in the
156 * connection that are not busy. If 0, we do not return errors upon receiving
157 * busy packets; we just keep trying on the same call channel until we hit a
160 static afs_int32 rxi_busyChannelError = 0;
162 rx_atomic_t rx_nWaiting = RX_ATOMIC_INIT(0);
163 rx_atomic_t rx_nWaited = RX_ATOMIC_INIT(0);
165 #if !defined(offsetof)
166 #include <stddef.h> /* for definition of offsetof() */
169 #ifdef RX_ENABLE_LOCKS
170 afs_kmutex_t rx_atomic_mutex;
173 /* Forward prototypes */
174 static struct rx_call * rxi_NewCall(struct rx_connection *, int);
176 #ifdef AFS_PTHREAD_ENV
179 * Use procedural initialization of mutexes/condition variables
183 extern afs_kmutex_t rx_quota_mutex;
184 extern afs_kmutex_t rx_pthread_mutex;
185 extern afs_kmutex_t rx_packets_mutex;
186 extern afs_kmutex_t rx_refcnt_mutex;
187 extern afs_kmutex_t des_init_mutex;
188 extern afs_kmutex_t des_random_mutex;
189 extern afs_kmutex_t rx_clock_mutex;
190 extern afs_kmutex_t rxi_connCacheMutex;
191 extern afs_kmutex_t rx_event_mutex;
192 extern afs_kmutex_t event_handler_mutex;
193 extern afs_kmutex_t listener_mutex;
194 extern afs_kmutex_t rx_if_init_mutex;
195 extern afs_kmutex_t rx_if_mutex;
196 extern afs_kmutex_t rxkad_client_uid_mutex;
197 extern afs_kmutex_t rxkad_random_mutex;
199 extern afs_kcondvar_t rx_event_handler_cond;
200 extern afs_kcondvar_t rx_listener_cond;
202 static afs_kmutex_t epoch_mutex;
203 static afs_kmutex_t rx_init_mutex;
204 static afs_kmutex_t rx_debug_mutex;
205 static afs_kmutex_t rx_rpc_stats;
208 rxi_InitPthread(void)
210 MUTEX_INIT(&rx_clock_mutex, "clock", MUTEX_DEFAULT, 0);
211 MUTEX_INIT(&rx_stats_mutex, "stats", MUTEX_DEFAULT, 0);
212 MUTEX_INIT(&rx_atomic_mutex, "atomic", MUTEX_DEFAULT, 0);
213 MUTEX_INIT(&rx_quota_mutex, "quota", MUTEX_DEFAULT, 0);
214 MUTEX_INIT(&rx_pthread_mutex, "pthread", MUTEX_DEFAULT, 0);
215 MUTEX_INIT(&rx_packets_mutex, "packets", MUTEX_DEFAULT, 0);
216 MUTEX_INIT(&rx_refcnt_mutex, "refcnts", MUTEX_DEFAULT, 0);
217 MUTEX_INIT(&epoch_mutex, "epoch", MUTEX_DEFAULT, 0);
218 MUTEX_INIT(&rx_init_mutex, "init", MUTEX_DEFAULT, 0);
219 MUTEX_INIT(&rx_event_mutex, "event", MUTEX_DEFAULT, 0);
220 MUTEX_INIT(&event_handler_mutex, "event handler", MUTEX_DEFAULT, 0);
221 MUTEX_INIT(&rxi_connCacheMutex, "conn cache", MUTEX_DEFAULT, 0);
222 MUTEX_INIT(&listener_mutex, "listener", MUTEX_DEFAULT, 0);
223 MUTEX_INIT(&rx_if_init_mutex, "if init", MUTEX_DEFAULT, 0);
224 MUTEX_INIT(&rx_if_mutex, "if", MUTEX_DEFAULT, 0);
225 MUTEX_INIT(&rxkad_client_uid_mutex, "uid", MUTEX_DEFAULT, 0);
226 MUTEX_INIT(&rxkad_random_mutex, "rxkad random", MUTEX_DEFAULT, 0);
227 MUTEX_INIT(&rx_debug_mutex, "debug", MUTEX_DEFAULT, 0);
229 CV_INIT(&rx_event_handler_cond, "evhand", CV_DEFAULT, 0);
230 CV_INIT(&rx_listener_cond, "rxlisten", CV_DEFAULT, 0);
232 osi_Assert(pthread_key_create(&rx_thread_id_key, NULL) == 0);
233 osi_Assert(pthread_key_create(&rx_ts_info_key, NULL) == 0);
235 rxkad_global_stats_init();
237 MUTEX_INIT(&rx_rpc_stats, "rx_rpc_stats", MUTEX_DEFAULT, 0);
238 MUTEX_INIT(&rx_freePktQ_lock, "rx_freePktQ_lock", MUTEX_DEFAULT, 0);
239 #ifdef RX_ENABLE_LOCKS
242 #endif /* RX_LOCKS_DB */
243 MUTEX_INIT(&freeSQEList_lock, "freeSQEList lock", MUTEX_DEFAULT, 0);
244 MUTEX_INIT(&rx_freeCallQueue_lock, "rx_freeCallQueue_lock", MUTEX_DEFAULT,
246 CV_INIT(&rx_waitingForPackets_cv, "rx_waitingForPackets_cv", CV_DEFAULT,
248 MUTEX_INIT(&rx_peerHashTable_lock, "rx_peerHashTable_lock", MUTEX_DEFAULT,
250 MUTEX_INIT(&rx_connHashTable_lock, "rx_connHashTable_lock", MUTEX_DEFAULT,
252 MUTEX_INIT(&rx_serverPool_lock, "rx_serverPool_lock", MUTEX_DEFAULT, 0);
253 MUTEX_INIT(&rxi_keyCreate_lock, "rxi_keyCreate_lock", MUTEX_DEFAULT, 0);
254 #endif /* RX_ENABLE_LOCKS */
257 pthread_once_t rx_once_init = PTHREAD_ONCE_INIT;
258 #define INIT_PTHREAD_LOCKS osi_Assert(pthread_once(&rx_once_init, rxi_InitPthread)==0)
260 * The rx_stats_mutex mutex protects the following global variables:
261 * rxi_lowConnRefCount
262 * rxi_lowPeerRefCount
271 * The rx_quota_mutex mutex protects the following global variables:
279 * The rx_freePktQ_lock protects the following global variables:
284 * The rx_packets_mutex mutex protects the following global variables:
292 * The rx_pthread_mutex mutex protects the following global variables:
293 * rxi_fcfs_thread_num
296 #define INIT_PTHREAD_LOCKS
300 /* Variables for handling the minProcs implementation. availProcs gives the
301 * number of threads available in the pool at this moment (not counting dudes
302 * executing right now). totalMin gives the total number of procs required
303 * for handling all minProcs requests. minDeficit is a dynamic variable
304 * tracking the # of procs required to satisfy all of the remaining minProcs
306 * For fine grain locking to work, the quota check and the reservation of
307 * a server thread has to come while rxi_availProcs and rxi_minDeficit
308 * are locked. To this end, the code has been modified under #ifdef
309 * RX_ENABLE_LOCKS so that quota checks and reservation occur at the
310 * same time. A new function, ReturnToServerPool() returns the allocation.
312 * A call can be on several queue's (but only one at a time). When
313 * rxi_ResetCall wants to remove the call from a queue, it has to ensure
314 * that no one else is touching the queue. To this end, we store the address
315 * of the queue lock in the call structure (under the call lock) when we
316 * put the call on a queue, and we clear the call_queue_lock when the
317 * call is removed from a queue (once the call lock has been obtained).
318 * This allows rxi_ResetCall to safely synchronize with others wishing
319 * to manipulate the queue.
322 #if defined(RX_ENABLE_LOCKS)
323 static afs_kmutex_t rx_rpc_stats;
326 /* We keep a "last conn pointer" in rxi_FindConnection. The odds are
327 ** pretty good that the next packet coming in is from the same connection
328 ** as the last packet, since we're send multiple packets in a transmit window.
330 struct rx_connection *rxLastConn = 0;
332 #ifdef RX_ENABLE_LOCKS
333 /* The locking hierarchy for rx fine grain locking is composed of these
336 * rx_connHashTable_lock - synchronizes conn creation, rx_connHashTable access
337 * conn_call_lock - used to synchonize rx_EndCall and rx_NewCall
338 * call->lock - locks call data fields.
339 * These are independent of each other:
340 * rx_freeCallQueue_lock
345 * serverQueueEntry->lock
346 * rx_peerHashTable_lock - locked under rx_connHashTable_lock
348 * peer->lock - locks peer data fields.
349 * conn_data_lock - that more than one thread is not updating a conn data
350 * field at the same time.
361 * Do we need a lock to protect the peer field in the conn structure?
362 * conn->peer was previously a constant for all intents and so has no
363 * lock protecting this field. The multihomed client delta introduced
364 * a RX code change : change the peer field in the connection structure
365 * to that remote interface from which the last packet for this
366 * connection was sent out. This may become an issue if further changes
369 #define SET_CALL_QUEUE_LOCK(C, L) (C)->call_queue_lock = (L)
370 #define CLEAR_CALL_QUEUE_LOCK(C) (C)->call_queue_lock = NULL
372 /* rxdb_fileID is used to identify the lock location, along with line#. */
373 static int rxdb_fileID = RXDB_FILE_RX;
374 #endif /* RX_LOCKS_DB */
375 #else /* RX_ENABLE_LOCKS */
376 #define SET_CALL_QUEUE_LOCK(C, L)
377 #define CLEAR_CALL_QUEUE_LOCK(C)
378 #endif /* RX_ENABLE_LOCKS */
379 struct rx_serverQueueEntry *rx_waitForPacket = 0;
380 struct rx_serverQueueEntry *rx_waitingForPacket = 0;
382 /* ------------Exported Interfaces------------- */
384 /* This function allows rxkad to set the epoch to a suitably random number
385 * which rx_NewConnection will use in the future. The principle purpose is to
386 * get rxnull connections to use the same epoch as the rxkad connections do, at
387 * least once the first rxkad connection is established. This is important now
388 * that the host/port addresses aren't used in FindConnection: the uniqueness
389 * of epoch/cid matters and the start time won't do. */
391 #ifdef AFS_PTHREAD_ENV
393 * This mutex protects the following global variables:
397 #define LOCK_EPOCH MUTEX_ENTER(&epoch_mutex)
398 #define UNLOCK_EPOCH MUTEX_EXIT(&epoch_mutex)
402 #endif /* AFS_PTHREAD_ENV */
405 rx_SetEpoch(afs_uint32 epoch)
412 /* Initialize rx. A port number may be mentioned, in which case this
413 * becomes the default port number for any service installed later.
414 * If 0 is provided for the port number, a random port will be chosen
415 * by the kernel. Whether this will ever overlap anything in
416 * /etc/services is anybody's guess... Returns 0 on success, -1 on
421 int rxinit_status = 1;
422 #ifdef AFS_PTHREAD_ENV
424 * This mutex protects the following global variables:
428 #define LOCK_RX_INIT MUTEX_ENTER(&rx_init_mutex)
429 #define UNLOCK_RX_INIT MUTEX_EXIT(&rx_init_mutex)
432 #define UNLOCK_RX_INIT
436 rx_InitHost(u_int host, u_int port)
443 char *htable, *ptable;
450 if (rxinit_status == 0) {
451 tmp_status = rxinit_status;
453 return tmp_status; /* Already started; return previous error code. */
459 if (afs_winsockInit() < 0)
465 * Initialize anything necessary to provide a non-premptive threading
468 rxi_InitializeThreadSupport();
471 /* Allocate and initialize a socket for client and perhaps server
474 rx_socket = rxi_GetHostUDPSocket(host, (u_short) port);
475 if (rx_socket == OSI_NULLSOCKET) {
479 #if defined(RX_ENABLE_LOCKS) && defined(KERNEL)
482 #endif /* RX_LOCKS_DB */
483 MUTEX_INIT(&rx_stats_mutex, "rx_stats_mutex", MUTEX_DEFAULT, 0);
484 MUTEX_INIT(&rx_quota_mutex, "rx_quota_mutex", MUTEX_DEFAULT, 0);
485 MUTEX_INIT(&rx_pthread_mutex, "rx_pthread_mutex", MUTEX_DEFAULT, 0);
486 MUTEX_INIT(&rx_packets_mutex, "rx_packets_mutex", MUTEX_DEFAULT, 0);
487 MUTEX_INIT(&rx_refcnt_mutex, "rx_refcnt_mutex", MUTEX_DEFAULT, 0);
488 MUTEX_INIT(&rx_rpc_stats, "rx_rpc_stats", MUTEX_DEFAULT, 0);
489 MUTEX_INIT(&rx_freePktQ_lock, "rx_freePktQ_lock", MUTEX_DEFAULT, 0);
490 MUTEX_INIT(&freeSQEList_lock, "freeSQEList lock", MUTEX_DEFAULT, 0);
491 MUTEX_INIT(&rx_freeCallQueue_lock, "rx_freeCallQueue_lock", MUTEX_DEFAULT,
493 CV_INIT(&rx_waitingForPackets_cv, "rx_waitingForPackets_cv", CV_DEFAULT,
495 MUTEX_INIT(&rx_peerHashTable_lock, "rx_peerHashTable_lock", MUTEX_DEFAULT,
497 MUTEX_INIT(&rx_connHashTable_lock, "rx_connHashTable_lock", MUTEX_DEFAULT,
499 MUTEX_INIT(&rx_serverPool_lock, "rx_serverPool_lock", MUTEX_DEFAULT, 0);
500 #if defined(AFS_HPUX110_ENV)
502 rx_sleepLock = alloc_spinlock(LAST_HELD_ORDER - 10, "rx_sleepLock");
503 #endif /* AFS_HPUX110_ENV */
504 #endif /* RX_ENABLE_LOCKS && KERNEL */
507 rx_connDeadTime = 12;
508 rx_tranquil = 0; /* reset flag */
509 rxi_ResetStatistics();
511 osi_Alloc(rx_hashTableSize * sizeof(struct rx_connection *));
512 PIN(htable, rx_hashTableSize * sizeof(struct rx_connection *)); /* XXXXX */
513 memset(htable, 0, rx_hashTableSize * sizeof(struct rx_connection *));
514 ptable = (char *)osi_Alloc(rx_hashTableSize * sizeof(struct rx_peer *));
515 PIN(ptable, rx_hashTableSize * sizeof(struct rx_peer *)); /* XXXXX */
516 memset(ptable, 0, rx_hashTableSize * sizeof(struct rx_peer *));
518 /* Malloc up a bunch of packets & buffers */
520 queue_Init(&rx_freePacketQueue);
521 rxi_NeedMorePackets = FALSE;
522 rx_nPackets = 0; /* rx_nPackets is managed by rxi_MorePackets* */
524 /* enforce a minimum number of allocated packets */
525 if (rx_extraPackets < rxi_nSendFrags * rx_maxSendWindow)
526 rx_extraPackets = rxi_nSendFrags * rx_maxSendWindow;
528 /* allocate the initial free packet pool */
529 #ifdef RX_ENABLE_TSFPQ
530 rxi_MorePacketsTSFPQ(rx_extraPackets + RX_MAX_QUOTA + 2, RX_TS_FPQ_FLUSH_GLOBAL, 0);
531 #else /* RX_ENABLE_TSFPQ */
532 rxi_MorePackets(rx_extraPackets + RX_MAX_QUOTA + 2); /* fudge */
533 #endif /* RX_ENABLE_TSFPQ */
540 #if defined(AFS_NT40_ENV) && !defined(AFS_PTHREAD_ENV)
541 tv.tv_sec = clock_now.sec;
542 tv.tv_usec = clock_now.usec;
543 srand((unsigned int)tv.tv_usec);
550 #if defined(KERNEL) && !defined(UKERNEL)
551 /* Really, this should never happen in a real kernel */
554 struct sockaddr_in addr;
556 int addrlen = sizeof(addr);
558 socklen_t addrlen = sizeof(addr);
560 if (getsockname((intptr_t)rx_socket, (struct sockaddr *)&addr, &addrlen)) {
564 rx_port = addr.sin_port;
567 rx_stats.minRtt.sec = 9999999;
569 rx_SetEpoch(tv.tv_sec | 0x80000000);
571 rx_SetEpoch(tv.tv_sec); /* Start time of this package, rxkad
572 * will provide a randomer value. */
574 MUTEX_ENTER(&rx_quota_mutex);
575 rxi_dataQuota += rx_extraQuota; /* + extra pkts caller asked to rsrv */
576 MUTEX_EXIT(&rx_quota_mutex);
577 /* *Slightly* random start time for the cid. This is just to help
578 * out with the hashing function at the peer */
579 rx_nextCid = ((tv.tv_sec ^ tv.tv_usec) << RX_CIDSHIFT);
580 rx_connHashTable = (struct rx_connection **)htable;
581 rx_peerHashTable = (struct rx_peer **)ptable;
583 rx_hardAckDelay.sec = 0;
584 rx_hardAckDelay.usec = 100000; /* 100 milliseconds */
586 rxevent_Init(20, rxi_ReScheduleEvents);
588 /* Initialize various global queues */
589 queue_Init(&rx_idleServerQueue);
590 queue_Init(&rx_incomingCallQueue);
591 queue_Init(&rx_freeCallQueue);
593 #if defined(AFS_NT40_ENV) && !defined(KERNEL)
594 /* Initialize our list of usable IP addresses. */
598 #if defined(RXK_LISTENER_ENV) || !defined(KERNEL)
599 /* Start listener process (exact function is dependent on the
600 * implementation environment--kernel or user space) */
605 tmp_status = rxinit_status = 0;
613 return rx_InitHost(htonl(INADDR_ANY), port);
619 * The rxi_rto functions implement a TCP (RFC2988) style algorithm for
620 * maintaing the round trip timer.
625 * Start a new RTT timer for a given call and packet.
627 * There must be no resendEvent already listed for this call, otherwise this
628 * will leak events - intended for internal use within the RTO code only
631 * the RX call to start the timer for
632 * @param[in] lastPacket
633 * a flag indicating whether the last packet has been sent or not
635 * @pre call must be locked before calling this function
639 rxi_rto_startTimer(struct rx_call *call, int lastPacket, int istack)
641 struct clock now, retryTime;
646 clock_Add(&retryTime, &call->rto);
648 /* If we're sending the last packet, and we're the client, then the server
649 * may wait for an additional 400ms before returning the ACK, wait for it
650 * rather than hitting a timeout */
651 if (lastPacket && call->conn->type == RX_CLIENT_CONNECTION)
652 clock_Addmsec(&retryTime, 400);
654 MUTEX_ENTER(&rx_refcnt_mutex);
655 CALL_HOLD(call, RX_CALL_REFCOUNT_RESEND);
656 MUTEX_EXIT(&rx_refcnt_mutex);
657 call->resendEvent = rxevent_PostNow2(&retryTime, &now, rxi_Resend,
662 * Cancel an RTT timer for a given call.
666 * the RX call to cancel the timer for
668 * @pre call must be locked before calling this function
673 rxi_rto_cancel(struct rx_call *call)
675 if (!call->resendEvent)
678 rxevent_Cancel(call->resendEvent, call, RX_CALL_REFCOUNT_RESEND);
682 * Tell the RTO timer that we have sent a packet.
684 * If the timer isn't already running, then start it. If the timer is running,
688 * the RX call that the packet has been sent on
689 * @param[in] lastPacket
690 * A flag which is true if this is the last packet for the call
692 * @pre The call must be locked before calling this function
697 rxi_rto_packet_sent(struct rx_call *call, int lastPacket, int istack)
699 if (call->resendEvent)
702 rxi_rto_startTimer(call, lastPacket, istack);
706 * Tell the RTO timer that we have received an new ACK message
708 * This function should be called whenever a call receives an ACK that
709 * acknowledges new packets. Whatever happens, we stop the current timer.
710 * If there are unacked packets in the queue which have been sent, then
711 * we restart the timer from now. Otherwise, we leave it stopped.
714 * the RX call that the ACK has been received on
718 rxi_rto_packet_acked(struct rx_call *call, int istack)
720 struct rx_packet *p, *nxp;
722 rxi_rto_cancel(call);
724 if (queue_IsEmpty(&call->tq))
727 for (queue_Scan(&call->tq, p, nxp, rx_packet)) {
728 if (p->header.seq > call->tfirst + call->twind)
731 if (!(p->flags & RX_PKTFLAG_ACKED) && p->flags & RX_PKTFLAG_SENT) {
732 rxi_rto_startTimer(call, p->header.flags & RX_LAST_PACKET, istack);
740 * Set an initial round trip timeout for a peer connection
742 * @param[in] secs The timeout to set in seconds
746 rx_rto_setPeerTimeoutSecs(struct rx_peer *peer, int secs) {
747 peer->rtt = secs * 8000;
751 * Sets the error generated when a busy call channel is detected.
753 * @param[in] error The error to return for a call on a busy channel.
755 * @pre Neither rx_Init nor rx_InitHost have been called yet
758 rx_SetBusyChannelError(afs_int32 error)
760 osi_Assert(rxinit_status != 0);
761 rxi_busyChannelError = error;
764 /* called with unincremented nRequestsRunning to see if it is OK to start
765 * a new thread in this service. Could be "no" for two reasons: over the
766 * max quota, or would prevent others from reaching their min quota.
768 #ifdef RX_ENABLE_LOCKS
769 /* This verion of QuotaOK reserves quota if it's ok while the
770 * rx_serverPool_lock is held. Return quota using ReturnToServerPool().
773 QuotaOK(struct rx_service *aservice)
775 /* check if over max quota */
776 if (aservice->nRequestsRunning >= aservice->maxProcs) {
780 /* under min quota, we're OK */
781 /* otherwise, can use only if there are enough to allow everyone
782 * to go to their min quota after this guy starts.
785 MUTEX_ENTER(&rx_quota_mutex);
786 if ((aservice->nRequestsRunning < aservice->minProcs)
787 || (rxi_availProcs > rxi_minDeficit)) {
788 aservice->nRequestsRunning++;
789 /* just started call in minProcs pool, need fewer to maintain
791 if (aservice->nRequestsRunning <= aservice->minProcs)
794 MUTEX_EXIT(&rx_quota_mutex);
797 MUTEX_EXIT(&rx_quota_mutex);
803 ReturnToServerPool(struct rx_service *aservice)
805 aservice->nRequestsRunning--;
806 MUTEX_ENTER(&rx_quota_mutex);
807 if (aservice->nRequestsRunning < aservice->minProcs)
810 MUTEX_EXIT(&rx_quota_mutex);
813 #else /* RX_ENABLE_LOCKS */
815 QuotaOK(struct rx_service *aservice)
818 /* under min quota, we're OK */
819 if (aservice->nRequestsRunning < aservice->minProcs)
822 /* check if over max quota */
823 if (aservice->nRequestsRunning >= aservice->maxProcs)
826 /* otherwise, can use only if there are enough to allow everyone
827 * to go to their min quota after this guy starts.
829 MUTEX_ENTER(&rx_quota_mutex);
830 if (rxi_availProcs > rxi_minDeficit)
832 MUTEX_EXIT(&rx_quota_mutex);
835 #endif /* RX_ENABLE_LOCKS */
838 /* Called by rx_StartServer to start up lwp's to service calls.
839 NExistingProcs gives the number of procs already existing, and which
840 therefore needn't be created. */
842 rxi_StartServerProcs(int nExistingProcs)
844 struct rx_service *service;
849 /* For each service, reserve N processes, where N is the "minimum"
850 * number of processes that MUST be able to execute a request in parallel,
851 * at any time, for that process. Also compute the maximum difference
852 * between any service's maximum number of processes that can run
853 * (i.e. the maximum number that ever will be run, and a guarantee
854 * that this number will run if other services aren't running), and its
855 * minimum number. The result is the extra number of processes that
856 * we need in order to provide the latter guarantee */
857 for (i = 0; i < RX_MAX_SERVICES; i++) {
859 service = rx_services[i];
860 if (service == (struct rx_service *)0)
862 nProcs += service->minProcs;
863 diff = service->maxProcs - service->minProcs;
867 nProcs += maxdiff; /* Extra processes needed to allow max number requested to run in any given service, under good conditions */
868 nProcs -= nExistingProcs; /* Subtract the number of procs that were previously created for use as server procs */
869 for (i = 0; i < nProcs; i++) {
870 rxi_StartServerProc(rx_ServerProc, rx_stackSize);
876 /* This routine is only required on Windows */
878 rx_StartClientThread(void)
880 #ifdef AFS_PTHREAD_ENV
882 pid = pthread_self();
883 #endif /* AFS_PTHREAD_ENV */
885 #endif /* AFS_NT40_ENV */
887 /* This routine must be called if any services are exported. If the
888 * donateMe flag is set, the calling process is donated to the server
891 rx_StartServer(int donateMe)
893 struct rx_service *service;
899 /* Start server processes, if necessary (exact function is dependent
900 * on the implementation environment--kernel or user space). DonateMe
901 * will be 1 if there is 1 pre-existing proc, i.e. this one. In this
902 * case, one less new proc will be created rx_StartServerProcs.
904 rxi_StartServerProcs(donateMe);
906 /* count up the # of threads in minProcs, and add set the min deficit to
907 * be that value, too.
909 for (i = 0; i < RX_MAX_SERVICES; i++) {
910 service = rx_services[i];
911 if (service == (struct rx_service *)0)
913 MUTEX_ENTER(&rx_quota_mutex);
914 rxi_totalMin += service->minProcs;
915 /* below works even if a thread is running, since minDeficit would
916 * still have been decremented and later re-incremented.
918 rxi_minDeficit += service->minProcs;
919 MUTEX_EXIT(&rx_quota_mutex);
922 /* Turn on reaping of idle server connections */
923 rxi_ReapConnections(NULL, NULL, NULL);
932 #ifdef AFS_PTHREAD_ENV
934 pid = afs_pointer_to_int(pthread_self());
935 #else /* AFS_PTHREAD_ENV */
937 LWP_CurrentProcess(&pid);
938 #endif /* AFS_PTHREAD_ENV */
940 sprintf(name, "srv_%d", ++nProcs);
942 (*registerProgram) (pid, name);
944 #endif /* AFS_NT40_ENV */
945 rx_ServerProc(NULL); /* Never returns */
947 #ifdef RX_ENABLE_TSFPQ
948 /* no use leaving packets around in this thread's local queue if
949 * it isn't getting donated to the server thread pool.
951 rxi_FlushLocalPacketsTSFPQ();
952 #endif /* RX_ENABLE_TSFPQ */
956 /* Create a new client connection to the specified service, using the
957 * specified security object to implement the security model for this
959 struct rx_connection *
960 rx_NewConnection(afs_uint32 shost, u_short sport, u_short sservice,
961 struct rx_securityClass *securityObject,
962 int serviceSecurityIndex)
966 struct rx_connection *conn;
971 dpf(("rx_NewConnection(host %x, port %u, service %u, securityObject %p, "
972 "serviceSecurityIndex %d)\n",
973 ntohl(shost), ntohs(sport), sservice, securityObject,
974 serviceSecurityIndex));
976 /* Vasilsi said: "NETPRI protects Cid and Alloc", but can this be true in
977 * the case of kmem_alloc? */
978 conn = rxi_AllocConnection();
979 #ifdef RX_ENABLE_LOCKS
980 MUTEX_INIT(&conn->conn_call_lock, "conn call lock", MUTEX_DEFAULT, 0);
981 MUTEX_INIT(&conn->conn_data_lock, "conn data lock", MUTEX_DEFAULT, 0);
982 CV_INIT(&conn->conn_call_cv, "conn call cv", CV_DEFAULT, 0);
985 MUTEX_ENTER(&rx_connHashTable_lock);
986 cid = (rx_nextCid += RX_MAXCALLS);
987 conn->type = RX_CLIENT_CONNECTION;
989 conn->epoch = rx_epoch;
990 conn->peer = rxi_FindPeer(shost, sport, 0, 1);
991 conn->serviceId = sservice;
992 conn->securityObject = securityObject;
993 conn->securityData = (void *) 0;
994 conn->securityIndex = serviceSecurityIndex;
995 rx_SetConnDeadTime(conn, rx_connDeadTime);
996 rx_SetConnSecondsUntilNatPing(conn, 0);
997 conn->ackRate = RX_FAST_ACK_RATE;
999 conn->specific = NULL;
1000 conn->challengeEvent = NULL;
1001 conn->delayedAbortEvent = NULL;
1002 conn->abortCount = 0;
1004 for (i = 0; i < RX_MAXCALLS; i++) {
1005 conn->twind[i] = rx_initSendWindow;
1006 conn->rwind[i] = rx_initReceiveWindow;
1007 conn->lastBusy[i] = 0;
1010 RXS_NewConnection(securityObject, conn);
1012 CONN_HASH(shost, sport, conn->cid, conn->epoch, RX_CLIENT_CONNECTION);
1014 conn->refCount++; /* no lock required since only this thread knows... */
1015 conn->next = rx_connHashTable[hashindex];
1016 rx_connHashTable[hashindex] = conn;
1017 if (rx_stats_active)
1018 rx_atomic_inc(&rx_stats.nClientConns);
1019 MUTEX_EXIT(&rx_connHashTable_lock);
1025 * Ensure a connection's timeout values are valid.
1027 * @param[in] conn The connection to check
1029 * @post conn->secondUntilDead <= conn->idleDeadTime <= conn->hardDeadTime,
1030 * unless idleDeadTime and/or hardDeadTime are not set
1034 rxi_CheckConnTimeouts(struct rx_connection *conn)
1036 /* a connection's timeouts must have the relationship
1037 * deadTime <= idleDeadTime <= hardDeadTime. Otherwise, for example, a
1038 * total loss of network to a peer may cause an idle timeout instead of a
1039 * dead timeout, simply because the idle timeout gets hit first. Also set
1040 * a minimum deadTime of 6, just to ensure it doesn't get set too low. */
1041 /* this logic is slightly complicated by the fact that
1042 * idleDeadTime/hardDeadTime may not be set at all, but it's not too bad.
1044 conn->secondsUntilDead = MAX(conn->secondsUntilDead, 6);
1045 if (conn->idleDeadTime) {
1046 conn->idleDeadTime = MAX(conn->idleDeadTime, conn->secondsUntilDead);
1048 if (conn->hardDeadTime) {
1049 if (conn->idleDeadTime) {
1050 conn->hardDeadTime = MAX(conn->idleDeadTime, conn->hardDeadTime);
1052 conn->hardDeadTime = MAX(conn->secondsUntilDead, conn->hardDeadTime);
1058 rx_SetConnDeadTime(struct rx_connection *conn, int seconds)
1060 /* The idea is to set the dead time to a value that allows several
1061 * keepalives to be dropped without timing out the connection. */
1062 conn->secondsUntilDead = seconds;
1063 rxi_CheckConnTimeouts(conn);
1064 conn->secondsUntilPing = conn->secondsUntilDead / 6;
1068 rx_SetConnHardDeadTime(struct rx_connection *conn, int seconds)
1070 conn->hardDeadTime = seconds;
1071 rxi_CheckConnTimeouts(conn);
1075 rx_SetConnIdleDeadTime(struct rx_connection *conn, int seconds)
1077 conn->idleDeadTime = seconds;
1078 rxi_CheckConnTimeouts(conn);
1081 int rxi_lowPeerRefCount = 0;
1082 int rxi_lowConnRefCount = 0;
1085 * Cleanup a connection that was destroyed in rxi_DestroyConnectioNoLock.
1086 * NOTE: must not be called with rx_connHashTable_lock held.
1089 rxi_CleanupConnection(struct rx_connection *conn)
1091 /* Notify the service exporter, if requested, that this connection
1092 * is being destroyed */
1093 if (conn->type == RX_SERVER_CONNECTION && conn->service->destroyConnProc)
1094 (*conn->service->destroyConnProc) (conn);
1096 /* Notify the security module that this connection is being destroyed */
1097 RXS_DestroyConnection(conn->securityObject, conn);
1099 /* If this is the last connection using the rx_peer struct, set its
1100 * idle time to now. rxi_ReapConnections will reap it if it's still
1101 * idle (refCount == 0) after rx_idlePeerTime (60 seconds) have passed.
1103 MUTEX_ENTER(&rx_peerHashTable_lock);
1104 if (conn->peer->refCount < 2) {
1105 conn->peer->idleWhen = clock_Sec();
1106 if (conn->peer->refCount < 1) {
1107 conn->peer->refCount = 1;
1108 if (rx_stats_active) {
1109 MUTEX_ENTER(&rx_stats_mutex);
1110 rxi_lowPeerRefCount++;
1111 MUTEX_EXIT(&rx_stats_mutex);
1115 conn->peer->refCount--;
1116 MUTEX_EXIT(&rx_peerHashTable_lock);
1118 if (rx_stats_active)
1120 if (conn->type == RX_SERVER_CONNECTION)
1121 rx_atomic_dec(&rx_stats.nServerConns);
1123 rx_atomic_dec(&rx_stats.nClientConns);
1126 if (conn->specific) {
1128 for (i = 0; i < conn->nSpecific; i++) {
1129 if (conn->specific[i] && rxi_keyCreate_destructor[i])
1130 (*rxi_keyCreate_destructor[i]) (conn->specific[i]);
1131 conn->specific[i] = NULL;
1133 free(conn->specific);
1135 conn->specific = NULL;
1136 conn->nSpecific = 0;
1137 #endif /* !KERNEL */
1139 MUTEX_DESTROY(&conn->conn_call_lock);
1140 MUTEX_DESTROY(&conn->conn_data_lock);
1141 CV_DESTROY(&conn->conn_call_cv);
1143 rxi_FreeConnection(conn);
1146 /* Destroy the specified connection */
1148 rxi_DestroyConnection(struct rx_connection *conn)
1150 MUTEX_ENTER(&rx_connHashTable_lock);
1151 rxi_DestroyConnectionNoLock(conn);
1152 /* conn should be at the head of the cleanup list */
1153 if (conn == rx_connCleanup_list) {
1154 rx_connCleanup_list = rx_connCleanup_list->next;
1155 MUTEX_EXIT(&rx_connHashTable_lock);
1156 rxi_CleanupConnection(conn);
1158 #ifdef RX_ENABLE_LOCKS
1160 MUTEX_EXIT(&rx_connHashTable_lock);
1162 #endif /* RX_ENABLE_LOCKS */
1166 rxi_DestroyConnectionNoLock(struct rx_connection *conn)
1168 struct rx_connection **conn_ptr;
1170 struct rx_packet *packet;
1177 MUTEX_ENTER(&conn->conn_data_lock);
1178 MUTEX_ENTER(&rx_refcnt_mutex);
1179 if (conn->refCount > 0)
1182 if (rx_stats_active) {
1183 MUTEX_ENTER(&rx_stats_mutex);
1184 rxi_lowConnRefCount++;
1185 MUTEX_EXIT(&rx_stats_mutex);
1189 if ((conn->refCount > 0) || (conn->flags & RX_CONN_BUSY)) {
1190 /* Busy; wait till the last guy before proceeding */
1191 MUTEX_EXIT(&rx_refcnt_mutex);
1192 MUTEX_EXIT(&conn->conn_data_lock);
1197 /* If the client previously called rx_NewCall, but it is still
1198 * waiting, treat this as a running call, and wait to destroy the
1199 * connection later when the call completes. */
1200 if ((conn->type == RX_CLIENT_CONNECTION)
1201 && (conn->flags & (RX_CONN_MAKECALL_WAITING|RX_CONN_MAKECALL_ACTIVE))) {
1202 conn->flags |= RX_CONN_DESTROY_ME;
1203 MUTEX_EXIT(&conn->conn_data_lock);
1207 MUTEX_EXIT(&rx_refcnt_mutex);
1208 MUTEX_EXIT(&conn->conn_data_lock);
1210 /* Check for extant references to this connection */
1211 MUTEX_ENTER(&conn->conn_call_lock);
1212 for (i = 0; i < RX_MAXCALLS; i++) {
1213 struct rx_call *call = conn->call[i];
1216 if (conn->type == RX_CLIENT_CONNECTION) {
1217 MUTEX_ENTER(&call->lock);
1218 if (call->delayedAckEvent) {
1219 /* Push the final acknowledgment out now--there
1220 * won't be a subsequent call to acknowledge the
1221 * last reply packets */
1222 rxevent_Cancel(call->delayedAckEvent, call,
1223 RX_CALL_REFCOUNT_DELAY);
1224 if (call->state == RX_STATE_PRECALL
1225 || call->state == RX_STATE_ACTIVE) {
1226 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
1228 rxi_AckAll(NULL, call, 0);
1231 MUTEX_EXIT(&call->lock);
1235 MUTEX_EXIT(&conn->conn_call_lock);
1237 #ifdef RX_ENABLE_LOCKS
1239 if (MUTEX_TRYENTER(&conn->conn_data_lock)) {
1240 MUTEX_EXIT(&conn->conn_data_lock);
1242 /* Someone is accessing a packet right now. */
1246 #endif /* RX_ENABLE_LOCKS */
1249 /* Don't destroy the connection if there are any call
1250 * structures still in use */
1251 MUTEX_ENTER(&conn->conn_data_lock);
1252 conn->flags |= RX_CONN_DESTROY_ME;
1253 MUTEX_EXIT(&conn->conn_data_lock);
1258 if (conn->natKeepAliveEvent) {
1259 rxi_NatKeepAliveOff(conn);
1262 if (conn->delayedAbortEvent) {
1263 rxevent_Cancel(conn->delayedAbortEvent, (struct rx_call *)0, 0);
1264 packet = rxi_AllocPacket(RX_PACKET_CLASS_SPECIAL);
1266 MUTEX_ENTER(&conn->conn_data_lock);
1267 rxi_SendConnectionAbort(conn, packet, 0, 1);
1268 MUTEX_EXIT(&conn->conn_data_lock);
1269 rxi_FreePacket(packet);
1273 /* Remove from connection hash table before proceeding */
1275 &rx_connHashTable[CONN_HASH
1276 (peer->host, peer->port, conn->cid, conn->epoch,
1278 for (; *conn_ptr; conn_ptr = &(*conn_ptr)->next) {
1279 if (*conn_ptr == conn) {
1280 *conn_ptr = conn->next;
1284 /* if the conn that we are destroying was the last connection, then we
1285 * clear rxLastConn as well */
1286 if (rxLastConn == conn)
1289 /* Make sure the connection is completely reset before deleting it. */
1290 /* get rid of pending events that could zap us later */
1291 if (conn->challengeEvent)
1292 rxevent_Cancel(conn->challengeEvent, (struct rx_call *)0, 0);
1293 if (conn->checkReachEvent)
1294 rxevent_Cancel(conn->checkReachEvent, (struct rx_call *)0, 0);
1295 if (conn->natKeepAliveEvent)
1296 rxevent_Cancel(conn->natKeepAliveEvent, (struct rx_call *)0, 0);
1298 /* Add the connection to the list of destroyed connections that
1299 * need to be cleaned up. This is necessary to avoid deadlocks
1300 * in the routines we call to inform others that this connection is
1301 * being destroyed. */
1302 conn->next = rx_connCleanup_list;
1303 rx_connCleanup_list = conn;
1306 /* Externally available version */
1308 rx_DestroyConnection(struct rx_connection *conn)
1313 rxi_DestroyConnection(conn);
1318 rx_GetConnection(struct rx_connection *conn)
1323 MUTEX_ENTER(&rx_refcnt_mutex);
1325 MUTEX_EXIT(&rx_refcnt_mutex);
1329 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
1330 /* Wait for the transmit queue to no longer be busy.
1331 * requires the call->lock to be held */
1333 rxi_WaitforTQBusy(struct rx_call *call) {
1334 while (!call->error && (call->flags & RX_CALL_TQ_BUSY)) {
1335 call->flags |= RX_CALL_TQ_WAIT;
1337 #ifdef RX_ENABLE_LOCKS
1338 osirx_AssertMine(&call->lock, "rxi_WaitforTQ lock");
1339 CV_WAIT(&call->cv_tq, &call->lock);
1340 #else /* RX_ENABLE_LOCKS */
1341 osi_rxSleep(&call->tq);
1342 #endif /* RX_ENABLE_LOCKS */
1344 if (call->tqWaiters == 0) {
1345 call->flags &= ~RX_CALL_TQ_WAIT;
1352 rxi_WakeUpTransmitQueue(struct rx_call *call)
1354 if (call->tqWaiters || (call->flags & RX_CALL_TQ_WAIT)) {
1355 dpf(("call %"AFS_PTR_FMT" has %d waiters and flags %d\n",
1356 call, call->tqWaiters, call->flags));
1357 #ifdef RX_ENABLE_LOCKS
1358 osirx_AssertMine(&call->lock, "rxi_Start start");
1359 CV_BROADCAST(&call->cv_tq);
1360 #else /* RX_ENABLE_LOCKS */
1361 osi_rxWakeup(&call->tq);
1362 #endif /* RX_ENABLE_LOCKS */
1366 /* Start a new rx remote procedure call, on the specified connection.
1367 * If wait is set to 1, wait for a free call channel; otherwise return
1368 * 0. Maxtime gives the maximum number of seconds this call may take,
1369 * after rx_NewCall returns. After this time interval, a call to any
1370 * of rx_SendData, rx_ReadData, etc. will fail with RX_CALL_TIMEOUT.
1371 * For fine grain locking, we hold the conn_call_lock in order to
1372 * to ensure that we don't get signalle after we found a call in an active
1373 * state and before we go to sleep.
1376 rx_NewCall(struct rx_connection *conn)
1378 int i, wait, ignoreBusy = 1;
1379 struct rx_call *call;
1380 struct clock queueTime;
1381 afs_uint32 leastBusy = 0;
1385 dpf(("rx_NewCall(conn %"AFS_PTR_FMT")\n", conn));
1388 clock_GetTime(&queueTime);
1390 * Check if there are others waiting for a new call.
1391 * If so, let them go first to avoid starving them.
1392 * This is a fairly simple scheme, and might not be
1393 * a complete solution for large numbers of waiters.
1395 * makeCallWaiters keeps track of the number of
1396 * threads waiting to make calls and the
1397 * RX_CONN_MAKECALL_WAITING flag bit is used to
1398 * indicate that there are indeed calls waiting.
1399 * The flag is set when the waiter is incremented.
1400 * It is only cleared when makeCallWaiters is 0.
1401 * This prevents us from accidently destroying the
1402 * connection while it is potentially about to be used.
1404 MUTEX_ENTER(&conn->conn_call_lock);
1405 MUTEX_ENTER(&conn->conn_data_lock);
1406 while (conn->flags & RX_CONN_MAKECALL_ACTIVE) {
1407 conn->flags |= RX_CONN_MAKECALL_WAITING;
1408 conn->makeCallWaiters++;
1409 MUTEX_EXIT(&conn->conn_data_lock);
1411 #ifdef RX_ENABLE_LOCKS
1412 CV_WAIT(&conn->conn_call_cv, &conn->conn_call_lock);
1416 MUTEX_ENTER(&conn->conn_data_lock);
1417 conn->makeCallWaiters--;
1418 if (conn->makeCallWaiters == 0)
1419 conn->flags &= ~RX_CONN_MAKECALL_WAITING;
1422 /* We are now the active thread in rx_NewCall */
1423 conn->flags |= RX_CONN_MAKECALL_ACTIVE;
1424 MUTEX_EXIT(&conn->conn_data_lock);
1429 for (i = 0; i < RX_MAXCALLS; i++) {
1430 call = conn->call[i];
1432 if (!ignoreBusy && conn->lastBusy[i] != leastBusy) {
1433 /* we're not ignoring busy call slots; only look at the
1434 * call slot that is the "least" busy */
1438 if (call->state == RX_STATE_DALLY) {
1439 MUTEX_ENTER(&call->lock);
1440 if (call->state == RX_STATE_DALLY) {
1441 if (ignoreBusy && conn->lastBusy[i]) {
1442 /* if we're ignoring busy call slots, skip any ones that
1443 * have lastBusy set */
1444 if (leastBusy == 0 || conn->lastBusy[i] < leastBusy) {
1445 leastBusy = conn->lastBusy[i];
1447 MUTEX_EXIT(&call->lock);
1452 * We are setting the state to RX_STATE_RESET to
1453 * ensure that no one else will attempt to use this
1454 * call once we drop the conn->conn_call_lock and
1455 * call->lock. We must drop the conn->conn_call_lock
1456 * before calling rxi_ResetCall because the process
1457 * of clearing the transmit queue can block for an
1458 * extended period of time. If we block while holding
1459 * the conn->conn_call_lock, then all rx_EndCall
1460 * processing will block as well. This has a detrimental
1461 * effect on overall system performance.
1463 call->state = RX_STATE_RESET;
1464 MUTEX_EXIT(&conn->conn_call_lock);
1465 MUTEX_ENTER(&rx_refcnt_mutex);
1466 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
1467 MUTEX_EXIT(&rx_refcnt_mutex);
1468 rxi_ResetCall(call, 0);
1469 (*call->callNumber)++;
1470 if (MUTEX_TRYENTER(&conn->conn_call_lock))
1474 * If we failed to be able to safely obtain the
1475 * conn->conn_call_lock we will have to drop the
1476 * call->lock to avoid a deadlock. When the call->lock
1477 * is released the state of the call can change. If it
1478 * is no longer RX_STATE_RESET then some other thread is
1481 MUTEX_EXIT(&call->lock);
1482 MUTEX_ENTER(&conn->conn_call_lock);
1483 MUTEX_ENTER(&call->lock);
1485 if (call->state == RX_STATE_RESET)
1489 * If we get here it means that after dropping
1490 * the conn->conn_call_lock and call->lock that
1491 * the call is no longer ours. If we can't find
1492 * a free call in the remaining slots we should
1493 * not go immediately to RX_CONN_MAKECALL_WAITING
1494 * because by dropping the conn->conn_call_lock
1495 * we have given up synchronization with rx_EndCall.
1496 * Instead, cycle through one more time to see if
1497 * we can find a call that can call our own.
1499 MUTEX_ENTER(&rx_refcnt_mutex);
1500 CALL_RELE(call, RX_CALL_REFCOUNT_BEGIN);
1501 MUTEX_EXIT(&rx_refcnt_mutex);
1504 MUTEX_EXIT(&call->lock);
1507 if (ignoreBusy && conn->lastBusy[i]) {
1508 /* if we're ignoring busy call slots, skip any ones that
1509 * have lastBusy set */
1510 if (leastBusy == 0 || conn->lastBusy[i] < leastBusy) {
1511 leastBusy = conn->lastBusy[i];
1516 /* rxi_NewCall returns with mutex locked */
1517 call = rxi_NewCall(conn, i);
1518 MUTEX_ENTER(&rx_refcnt_mutex);
1519 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
1520 MUTEX_EXIT(&rx_refcnt_mutex);
1524 if (i < RX_MAXCALLS) {
1525 conn->lastBusy[i] = 0;
1530 if (leastBusy && ignoreBusy) {
1531 /* we didn't find a useable call slot, but we did see at least one
1532 * 'busy' slot; look again and only use a slot with the 'least
1538 MUTEX_ENTER(&conn->conn_data_lock);
1539 conn->flags |= RX_CONN_MAKECALL_WAITING;
1540 conn->makeCallWaiters++;
1541 MUTEX_EXIT(&conn->conn_data_lock);
1543 #ifdef RX_ENABLE_LOCKS
1544 CV_WAIT(&conn->conn_call_cv, &conn->conn_call_lock);
1548 MUTEX_ENTER(&conn->conn_data_lock);
1549 conn->makeCallWaiters--;
1550 if (conn->makeCallWaiters == 0)
1551 conn->flags &= ~RX_CONN_MAKECALL_WAITING;
1552 MUTEX_EXIT(&conn->conn_data_lock);
1554 /* Client is initially in send mode */
1555 call->state = RX_STATE_ACTIVE;
1556 call->error = conn->error;
1558 call->mode = RX_MODE_ERROR;
1560 call->mode = RX_MODE_SENDING;
1562 /* remember start time for call in case we have hard dead time limit */
1563 call->queueTime = queueTime;
1564 clock_GetTime(&call->startTime);
1565 hzero(call->bytesSent);
1566 hzero(call->bytesRcvd);
1568 /* Turn on busy protocol. */
1569 rxi_KeepAliveOn(call);
1571 /* Attempt MTU discovery */
1572 rxi_GrowMTUOn(call);
1575 * We are no longer the active thread in rx_NewCall
1577 MUTEX_ENTER(&conn->conn_data_lock);
1578 conn->flags &= ~RX_CONN_MAKECALL_ACTIVE;
1579 MUTEX_EXIT(&conn->conn_data_lock);
1582 * Wake up anyone else who might be giving us a chance to
1583 * run (see code above that avoids resource starvation).
1585 #ifdef RX_ENABLE_LOCKS
1586 CV_BROADCAST(&conn->conn_call_cv);
1590 MUTEX_EXIT(&conn->conn_call_lock);
1592 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
1593 if (call->flags & (RX_CALL_TQ_BUSY | RX_CALL_TQ_CLEARME)) {
1594 osi_Panic("rx_NewCall call about to be used without an empty tq");
1596 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
1598 MUTEX_EXIT(&call->lock);
1601 dpf(("rx_NewCall(call %"AFS_PTR_FMT")\n", call));
1606 rxi_HasActiveCalls(struct rx_connection *aconn)
1609 struct rx_call *tcall;
1613 for (i = 0; i < RX_MAXCALLS; i++) {
1614 if ((tcall = aconn->call[i])) {
1615 if ((tcall->state == RX_STATE_ACTIVE)
1616 || (tcall->state == RX_STATE_PRECALL)) {
1627 rxi_GetCallNumberVector(struct rx_connection *aconn,
1628 afs_int32 * aint32s)
1631 struct rx_call *tcall;
1635 for (i = 0; i < RX_MAXCALLS; i++) {
1636 if ((tcall = aconn->call[i]) && (tcall->state == RX_STATE_DALLY))
1637 aint32s[i] = aconn->callNumber[i] + 1;
1639 aint32s[i] = aconn->callNumber[i];
1646 rxi_SetCallNumberVector(struct rx_connection *aconn,
1647 afs_int32 * aint32s)
1650 struct rx_call *tcall;
1654 for (i = 0; i < RX_MAXCALLS; i++) {
1655 if ((tcall = aconn->call[i]) && (tcall->state == RX_STATE_DALLY))
1656 aconn->callNumber[i] = aint32s[i] - 1;
1658 aconn->callNumber[i] = aint32s[i];
1664 /* Advertise a new service. A service is named locally by a UDP port
1665 * number plus a 16-bit service id. Returns (struct rx_service *) 0
1668 char *serviceName; Name for identification purposes (e.g. the
1669 service name might be used for probing for
1672 rx_NewServiceHost(afs_uint32 host, u_short port, u_short serviceId,
1673 char *serviceName, struct rx_securityClass **securityObjects,
1674 int nSecurityObjects,
1675 afs_int32(*serviceProc) (struct rx_call * acall))
1677 osi_socket socket = OSI_NULLSOCKET;
1678 struct rx_service *tservice;
1684 if (serviceId == 0) {
1686 "rx_NewService: service id for service %s is not non-zero.\n",
1693 "rx_NewService: A non-zero port must be specified on this call if a non-zero port was not provided at Rx initialization (service %s).\n",
1701 tservice = rxi_AllocService();
1704 #ifdef RX_ENABLE_LOCKS
1705 MUTEX_INIT(&tservice->svc_data_lock, "svc data lock", MUTEX_DEFAULT, 0);
1708 for (i = 0; i < RX_MAX_SERVICES; i++) {
1709 struct rx_service *service = rx_services[i];
1711 if (port == service->servicePort && host == service->serviceHost) {
1712 if (service->serviceId == serviceId) {
1713 /* The identical service has already been
1714 * installed; if the caller was intending to
1715 * change the security classes used by this
1716 * service, he/she loses. */
1718 "rx_NewService: tried to install service %s with service id %d, which is already in use for service %s\n",
1719 serviceName, serviceId, service->serviceName);
1721 rxi_FreeService(tservice);
1724 /* Different service, same port: re-use the socket
1725 * which is bound to the same port */
1726 socket = service->socket;
1729 if (socket == OSI_NULLSOCKET) {
1730 /* If we don't already have a socket (from another
1731 * service on same port) get a new one */
1732 socket = rxi_GetHostUDPSocket(host, port);
1733 if (socket == OSI_NULLSOCKET) {
1735 rxi_FreeService(tservice);
1740 service->socket = socket;
1741 service->serviceHost = host;
1742 service->servicePort = port;
1743 service->serviceId = serviceId;
1744 service->serviceName = serviceName;
1745 service->nSecurityObjects = nSecurityObjects;
1746 service->securityObjects = securityObjects;
1747 service->minProcs = 0;
1748 service->maxProcs = 1;
1749 service->idleDeadTime = 60;
1750 service->idleDeadErr = 0;
1751 service->connDeadTime = rx_connDeadTime;
1752 service->executeRequestProc = serviceProc;
1753 service->checkReach = 0;
1754 service->nSpecific = 0;
1755 service->specific = NULL;
1756 rx_services[i] = service; /* not visible until now */
1762 rxi_FreeService(tservice);
1763 (osi_Msg "rx_NewService: cannot support > %d services\n",
1768 /* Set configuration options for all of a service's security objects */
1771 rx_SetSecurityConfiguration(struct rx_service *service,
1772 rx_securityConfigVariables type,
1776 for (i = 0; i<service->nSecurityObjects; i++) {
1777 if (service->securityObjects[i]) {
1778 RXS_SetConfiguration(service->securityObjects[i], NULL, type,
1786 rx_NewService(u_short port, u_short serviceId, char *serviceName,
1787 struct rx_securityClass **securityObjects, int nSecurityObjects,
1788 afs_int32(*serviceProc) (struct rx_call * acall))
1790 return rx_NewServiceHost(htonl(INADDR_ANY), port, serviceId, serviceName, securityObjects, nSecurityObjects, serviceProc);
1793 /* Generic request processing loop. This routine should be called
1794 * by the implementation dependent rx_ServerProc. If socketp is
1795 * non-null, it will be set to the file descriptor that this thread
1796 * is now listening on. If socketp is null, this routine will never
1799 rxi_ServerProc(int threadID, struct rx_call *newcall, osi_socket * socketp)
1801 struct rx_call *call;
1803 struct rx_service *tservice = NULL;
1810 call = rx_GetCall(threadID, tservice, socketp);
1811 if (socketp && *socketp != OSI_NULLSOCKET) {
1812 /* We are now a listener thread */
1817 /* if server is restarting( typically smooth shutdown) then do not
1818 * allow any new calls.
1821 if (rx_tranquil && (call != NULL)) {
1825 MUTEX_ENTER(&call->lock);
1827 rxi_CallError(call, RX_RESTARTING);
1828 rxi_SendCallAbort(call, (struct rx_packet *)0, 0, 0);
1830 MUTEX_EXIT(&call->lock);
1834 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
1835 #ifdef RX_ENABLE_LOCKS
1837 #endif /* RX_ENABLE_LOCKS */
1838 afs_termState = AFSOP_STOP_AFS;
1839 afs_osi_Wakeup(&afs_termState);
1840 #ifdef RX_ENABLE_LOCKS
1842 #endif /* RX_ENABLE_LOCKS */
1847 tservice = call->conn->service;
1849 if (tservice->beforeProc)
1850 (*tservice->beforeProc) (call);
1852 code = tservice->executeRequestProc(call);
1854 if (tservice->afterProc)
1855 (*tservice->afterProc) (call, code);
1857 rx_EndCall(call, code);
1858 if (rx_stats_active) {
1859 MUTEX_ENTER(&rx_stats_mutex);
1861 MUTEX_EXIT(&rx_stats_mutex);
1868 rx_WakeupServerProcs(void)
1870 struct rx_serverQueueEntry *np, *tqp;
1874 MUTEX_ENTER(&rx_serverPool_lock);
1876 #ifdef RX_ENABLE_LOCKS
1877 if (rx_waitForPacket)
1878 CV_BROADCAST(&rx_waitForPacket->cv);
1879 #else /* RX_ENABLE_LOCKS */
1880 if (rx_waitForPacket)
1881 osi_rxWakeup(rx_waitForPacket);
1882 #endif /* RX_ENABLE_LOCKS */
1883 MUTEX_ENTER(&freeSQEList_lock);
1884 for (np = rx_FreeSQEList; np; np = tqp) {
1885 tqp = *(struct rx_serverQueueEntry **)np;
1886 #ifdef RX_ENABLE_LOCKS
1887 CV_BROADCAST(&np->cv);
1888 #else /* RX_ENABLE_LOCKS */
1890 #endif /* RX_ENABLE_LOCKS */
1892 MUTEX_EXIT(&freeSQEList_lock);
1893 for (queue_Scan(&rx_idleServerQueue, np, tqp, rx_serverQueueEntry)) {
1894 #ifdef RX_ENABLE_LOCKS
1895 CV_BROADCAST(&np->cv);
1896 #else /* RX_ENABLE_LOCKS */
1898 #endif /* RX_ENABLE_LOCKS */
1900 MUTEX_EXIT(&rx_serverPool_lock);
1905 * One thing that seems to happen is that all the server threads get
1906 * tied up on some empty or slow call, and then a whole bunch of calls
1907 * arrive at once, using up the packet pool, so now there are more
1908 * empty calls. The most critical resources here are server threads
1909 * and the free packet pool. The "doreclaim" code seems to help in
1910 * general. I think that eventually we arrive in this state: there
1911 * are lots of pending calls which do have all their packets present,
1912 * so they won't be reclaimed, are multi-packet calls, so they won't
1913 * be scheduled until later, and thus are tying up most of the free
1914 * packet pool for a very long time.
1916 * 1. schedule multi-packet calls if all the packets are present.
1917 * Probably CPU-bound operation, useful to return packets to pool.
1918 * Do what if there is a full window, but the last packet isn't here?
1919 * 3. preserve one thread which *only* runs "best" calls, otherwise
1920 * it sleeps and waits for that type of call.
1921 * 4. Don't necessarily reserve a whole window for each thread. In fact,
1922 * the current dataquota business is badly broken. The quota isn't adjusted
1923 * to reflect how many packets are presently queued for a running call.
1924 * So, when we schedule a queued call with a full window of packets queued
1925 * up for it, that *should* free up a window full of packets for other 2d-class
1926 * calls to be able to use from the packet pool. But it doesn't.
1928 * NB. Most of the time, this code doesn't run -- since idle server threads
1929 * sit on the idle server queue and are assigned by "...ReceivePacket" as soon
1930 * as a new call arrives.
1932 /* Sleep until a call arrives. Returns a pointer to the call, ready
1933 * for an rx_Read. */
1934 #ifdef RX_ENABLE_LOCKS
1936 rx_GetCall(int tno, struct rx_service *cur_service, osi_socket * socketp)
1938 struct rx_serverQueueEntry *sq;
1939 struct rx_call *call = (struct rx_call *)0;
1940 struct rx_service *service = NULL;
1942 MUTEX_ENTER(&freeSQEList_lock);
1944 if ((sq = rx_FreeSQEList)) {
1945 rx_FreeSQEList = *(struct rx_serverQueueEntry **)sq;
1946 MUTEX_EXIT(&freeSQEList_lock);
1947 } else { /* otherwise allocate a new one and return that */
1948 MUTEX_EXIT(&freeSQEList_lock);
1949 sq = rxi_Alloc(sizeof(struct rx_serverQueueEntry));
1950 MUTEX_INIT(&sq->lock, "server Queue lock", MUTEX_DEFAULT, 0);
1951 CV_INIT(&sq->cv, "server Queue lock", CV_DEFAULT, 0);
1954 MUTEX_ENTER(&rx_serverPool_lock);
1955 if (cur_service != NULL) {
1956 ReturnToServerPool(cur_service);
1959 if (queue_IsNotEmpty(&rx_incomingCallQueue)) {
1960 struct rx_call *tcall, *ncall, *choice2 = NULL;
1962 /* Scan for eligible incoming calls. A call is not eligible
1963 * if the maximum number of calls for its service type are
1964 * already executing */
1965 /* One thread will process calls FCFS (to prevent starvation),
1966 * while the other threads may run ahead looking for calls which
1967 * have all their input data available immediately. This helps
1968 * keep threads from blocking, waiting for data from the client. */
1969 for (queue_Scan(&rx_incomingCallQueue, tcall, ncall, rx_call)) {
1970 service = tcall->conn->service;
1971 if (!QuotaOK(service)) {
1974 MUTEX_ENTER(&rx_pthread_mutex);
1975 if (tno == rxi_fcfs_thread_num
1976 || !tcall->queue_item_header.next) {
1977 MUTEX_EXIT(&rx_pthread_mutex);
1978 /* If we're the fcfs thread , then we'll just use
1979 * this call. If we haven't been able to find an optimal
1980 * choice, and we're at the end of the list, then use a
1981 * 2d choice if one has been identified. Otherwise... */
1982 call = (choice2 ? choice2 : tcall);
1983 service = call->conn->service;
1985 MUTEX_EXIT(&rx_pthread_mutex);
1986 if (!queue_IsEmpty(&tcall->rq)) {
1987 struct rx_packet *rp;
1988 rp = queue_First(&tcall->rq, rx_packet);
1989 if (rp->header.seq == 1) {
1991 || (rp->header.flags & RX_LAST_PACKET)) {
1993 } else if (rxi_2dchoice && !choice2
1994 && !(tcall->flags & RX_CALL_CLEARED)
1995 && (tcall->rprev > rxi_HardAckRate)) {
2005 ReturnToServerPool(service);
2012 MUTEX_EXIT(&rx_serverPool_lock);
2013 MUTEX_ENTER(&call->lock);
2015 if (call->flags & RX_CALL_WAIT_PROC) {
2016 call->flags &= ~RX_CALL_WAIT_PROC;
2017 rx_atomic_dec(&rx_nWaiting);
2020 if (call->state != RX_STATE_PRECALL || call->error) {
2021 MUTEX_EXIT(&call->lock);
2022 MUTEX_ENTER(&rx_serverPool_lock);
2023 ReturnToServerPool(service);
2028 if (queue_IsEmpty(&call->rq)
2029 || queue_First(&call->rq, rx_packet)->header.seq != 1)
2030 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
2032 CLEAR_CALL_QUEUE_LOCK(call);
2035 /* If there are no eligible incoming calls, add this process
2036 * to the idle server queue, to wait for one */
2040 *socketp = OSI_NULLSOCKET;
2042 sq->socketp = socketp;
2043 queue_Append(&rx_idleServerQueue, sq);
2044 #ifndef AFS_AIX41_ENV
2045 rx_waitForPacket = sq;
2047 rx_waitingForPacket = sq;
2048 #endif /* AFS_AIX41_ENV */
2050 CV_WAIT(&sq->cv, &rx_serverPool_lock);
2052 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
2053 MUTEX_EXIT(&rx_serverPool_lock);
2054 return (struct rx_call *)0;
2057 } while (!(call = sq->newcall)
2058 && !(socketp && *socketp != OSI_NULLSOCKET));
2059 MUTEX_EXIT(&rx_serverPool_lock);
2061 MUTEX_ENTER(&call->lock);
2067 MUTEX_ENTER(&freeSQEList_lock);
2068 *(struct rx_serverQueueEntry **)sq = rx_FreeSQEList;
2069 rx_FreeSQEList = sq;
2070 MUTEX_EXIT(&freeSQEList_lock);
2073 clock_GetTime(&call->startTime);
2074 call->state = RX_STATE_ACTIVE;
2075 call->mode = RX_MODE_RECEIVING;
2076 #ifdef RX_KERNEL_TRACE
2077 if (ICL_SETACTIVE(afs_iclSetp)) {
2078 int glockOwner = ISAFS_GLOCK();
2081 afs_Trace3(afs_iclSetp, CM_TRACE_WASHERE, ICL_TYPE_STRING,
2082 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
2089 rxi_calltrace(RX_CALL_START, call);
2090 dpf(("rx_GetCall(port=%d, service=%d) ==> call %"AFS_PTR_FMT"\n",
2091 call->conn->service->servicePort, call->conn->service->serviceId,
2094 MUTEX_EXIT(&call->lock);
2095 MUTEX_ENTER(&rx_refcnt_mutex);
2096 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
2097 MUTEX_EXIT(&rx_refcnt_mutex);
2099 dpf(("rx_GetCall(socketp=%p, *socketp=0x%x)\n", socketp, *socketp));
2104 #else /* RX_ENABLE_LOCKS */
2106 rx_GetCall(int tno, struct rx_service *cur_service, osi_socket * socketp)
2108 struct rx_serverQueueEntry *sq;
2109 struct rx_call *call = (struct rx_call *)0, *choice2;
2110 struct rx_service *service = NULL;
2114 MUTEX_ENTER(&freeSQEList_lock);
2116 if ((sq = rx_FreeSQEList)) {
2117 rx_FreeSQEList = *(struct rx_serverQueueEntry **)sq;
2118 MUTEX_EXIT(&freeSQEList_lock);
2119 } else { /* otherwise allocate a new one and return that */
2120 MUTEX_EXIT(&freeSQEList_lock);
2121 sq = rxi_Alloc(sizeof(struct rx_serverQueueEntry));
2122 MUTEX_INIT(&sq->lock, "server Queue lock", MUTEX_DEFAULT, 0);
2123 CV_INIT(&sq->cv, "server Queue lock", CV_DEFAULT, 0);
2125 MUTEX_ENTER(&sq->lock);
2127 if (cur_service != NULL) {
2128 cur_service->nRequestsRunning--;
2129 MUTEX_ENTER(&rx_quota_mutex);
2130 if (cur_service->nRequestsRunning < cur_service->minProcs)
2133 MUTEX_EXIT(&rx_quota_mutex);
2135 if (queue_IsNotEmpty(&rx_incomingCallQueue)) {
2136 struct rx_call *tcall, *ncall;
2137 /* Scan for eligible incoming calls. A call is not eligible
2138 * if the maximum number of calls for its service type are
2139 * already executing */
2140 /* One thread will process calls FCFS (to prevent starvation),
2141 * while the other threads may run ahead looking for calls which
2142 * have all their input data available immediately. This helps
2143 * keep threads from blocking, waiting for data from the client. */
2144 choice2 = (struct rx_call *)0;
2145 for (queue_Scan(&rx_incomingCallQueue, tcall, ncall, rx_call)) {
2146 service = tcall->conn->service;
2147 if (QuotaOK(service)) {
2148 MUTEX_ENTER(&rx_pthread_mutex);
2149 if (tno == rxi_fcfs_thread_num
2150 || !tcall->queue_item_header.next) {
2151 MUTEX_EXIT(&rx_pthread_mutex);
2152 /* If we're the fcfs thread, then we'll just use
2153 * this call. If we haven't been able to find an optimal
2154 * choice, and we're at the end of the list, then use a
2155 * 2d choice if one has been identified. Otherwise... */
2156 call = (choice2 ? choice2 : tcall);
2157 service = call->conn->service;
2159 MUTEX_EXIT(&rx_pthread_mutex);
2160 if (!queue_IsEmpty(&tcall->rq)) {
2161 struct rx_packet *rp;
2162 rp = queue_First(&tcall->rq, rx_packet);
2163 if (rp->header.seq == 1
2165 || (rp->header.flags & RX_LAST_PACKET))) {
2167 } else if (rxi_2dchoice && !choice2
2168 && !(tcall->flags & RX_CALL_CLEARED)
2169 && (tcall->rprev > rxi_HardAckRate)) {
2183 /* we can't schedule a call if there's no data!!! */
2184 /* send an ack if there's no data, if we're missing the
2185 * first packet, or we're missing something between first
2186 * and last -- there's a "hole" in the incoming data. */
2187 if (queue_IsEmpty(&call->rq)
2188 || queue_First(&call->rq, rx_packet)->header.seq != 1
2189 || call->rprev != queue_Last(&call->rq, rx_packet)->header.seq)
2190 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
2192 call->flags &= (~RX_CALL_WAIT_PROC);
2193 service->nRequestsRunning++;
2194 /* just started call in minProcs pool, need fewer to maintain
2196 MUTEX_ENTER(&rx_quota_mutex);
2197 if (service->nRequestsRunning <= service->minProcs)
2200 MUTEX_EXIT(&rx_quota_mutex);
2201 rx_atomic_dec(&rx_nWaiting);
2202 /* MUTEX_EXIT(&call->lock); */
2204 /* If there are no eligible incoming calls, add this process
2205 * to the idle server queue, to wait for one */
2208 *socketp = OSI_NULLSOCKET;
2210 sq->socketp = socketp;
2211 queue_Append(&rx_idleServerQueue, sq);
2215 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
2217 rxi_Free(sq, sizeof(struct rx_serverQueueEntry));
2218 return (struct rx_call *)0;
2221 } while (!(call = sq->newcall)
2222 && !(socketp && *socketp != OSI_NULLSOCKET));
2224 MUTEX_EXIT(&sq->lock);
2226 MUTEX_ENTER(&freeSQEList_lock);
2227 *(struct rx_serverQueueEntry **)sq = rx_FreeSQEList;
2228 rx_FreeSQEList = sq;
2229 MUTEX_EXIT(&freeSQEList_lock);
2232 clock_GetTime(&call->startTime);
2233 call->state = RX_STATE_ACTIVE;
2234 call->mode = RX_MODE_RECEIVING;
2235 #ifdef RX_KERNEL_TRACE
2236 if (ICL_SETACTIVE(afs_iclSetp)) {
2237 int glockOwner = ISAFS_GLOCK();
2240 afs_Trace3(afs_iclSetp, CM_TRACE_WASHERE, ICL_TYPE_STRING,
2241 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
2248 rxi_calltrace(RX_CALL_START, call);
2249 dpf(("rx_GetCall(port=%d, service=%d) ==> call %p\n",
2250 call->conn->service->servicePort, call->conn->service->serviceId,
2253 dpf(("rx_GetCall(socketp=%p, *socketp=0x%x)\n", socketp, *socketp));
2260 #endif /* RX_ENABLE_LOCKS */
2264 /* Establish a procedure to be called when a packet arrives for a
2265 * call. This routine will be called at most once after each call,
2266 * and will also be called if there is an error condition on the or
2267 * the call is complete. Used by multi rx to build a selection
2268 * function which determines which of several calls is likely to be a
2269 * good one to read from.
2270 * NOTE: the way this is currently implemented it is probably only a
2271 * good idea to (1) use it immediately after a newcall (clients only)
2272 * and (2) only use it once. Other uses currently void your warranty
2275 rx_SetArrivalProc(struct rx_call *call,
2276 void (*proc) (struct rx_call * call,
2279 void * handle, int arg)
2281 call->arrivalProc = proc;
2282 call->arrivalProcHandle = handle;
2283 call->arrivalProcArg = arg;
2286 /* Call is finished (possibly prematurely). Return rc to the peer, if
2287 * appropriate, and return the final error code from the conversation
2291 rx_EndCall(struct rx_call *call, afs_int32 rc)
2293 struct rx_connection *conn = call->conn;
2297 dpf(("rx_EndCall(call %"AFS_PTR_FMT" rc %d error %d abortCode %d)\n",
2298 call, rc, call->error, call->abortCode));
2301 MUTEX_ENTER(&call->lock);
2303 if (rc == 0 && call->error == 0) {
2304 call->abortCode = 0;
2305 call->abortCount = 0;
2308 call->arrivalProc = (void (*)())0;
2309 if (rc && call->error == 0) {
2310 rxi_CallError(call, rc);
2311 call->mode = RX_MODE_ERROR;
2312 /* Send an abort message to the peer if this error code has
2313 * only just been set. If it was set previously, assume the
2314 * peer has already been sent the error code or will request it
2316 rxi_SendCallAbort(call, (struct rx_packet *)0, 0, 0);
2318 if (conn->type == RX_SERVER_CONNECTION) {
2319 /* Make sure reply or at least dummy reply is sent */
2320 if (call->mode == RX_MODE_RECEIVING) {
2321 MUTEX_EXIT(&call->lock);
2322 rxi_WriteProc(call, 0, 0);
2323 MUTEX_ENTER(&call->lock);
2325 if (call->mode == RX_MODE_SENDING) {
2326 MUTEX_EXIT(&call->lock);
2327 rxi_FlushWrite(call);
2328 MUTEX_ENTER(&call->lock);
2330 rxi_calltrace(RX_CALL_END, call);
2331 /* Call goes to hold state until reply packets are acknowledged */
2332 if (call->tfirst + call->nSoftAcked < call->tnext) {
2333 call->state = RX_STATE_HOLD;
2335 call->state = RX_STATE_DALLY;
2336 rxi_ClearTransmitQueue(call, 0);
2337 rxi_rto_cancel(call);
2338 rxevent_Cancel(call->keepAliveEvent, call,
2339 RX_CALL_REFCOUNT_ALIVE);
2341 } else { /* Client connection */
2343 /* Make sure server receives input packets, in the case where
2344 * no reply arguments are expected */
2345 if ((call->mode == RX_MODE_SENDING)
2346 || (call->mode == RX_MODE_RECEIVING && call->rnext == 1)) {
2347 MUTEX_EXIT(&call->lock);
2348 (void)rxi_ReadProc(call, &dummy, 1);
2349 MUTEX_ENTER(&call->lock);
2352 /* If we had an outstanding delayed ack, be nice to the server
2353 * and force-send it now.
2355 if (call->delayedAckEvent) {
2356 rxevent_Cancel(call->delayedAckEvent, call,
2357 RX_CALL_REFCOUNT_DELAY);
2358 call->delayedAckEvent = NULL;
2359 rxi_SendDelayedAck(NULL, call, NULL);
2362 /* We need to release the call lock since it's lower than the
2363 * conn_call_lock and we don't want to hold the conn_call_lock
2364 * over the rx_ReadProc call. The conn_call_lock needs to be held
2365 * here for the case where rx_NewCall is perusing the calls on
2366 * the connection structure. We don't want to signal until
2367 * rx_NewCall is in a stable state. Otherwise, rx_NewCall may
2368 * have checked this call, found it active and by the time it
2369 * goes to sleep, will have missed the signal.
2371 MUTEX_EXIT(&call->lock);
2372 MUTEX_ENTER(&conn->conn_call_lock);
2373 MUTEX_ENTER(&call->lock);
2375 if (!(call->flags & RX_CALL_PEER_BUSY)) {
2376 conn->lastBusy[call->channel] = 0;
2379 MUTEX_ENTER(&conn->conn_data_lock);
2380 conn->flags |= RX_CONN_BUSY;
2381 if (conn->flags & RX_CONN_MAKECALL_WAITING) {
2382 MUTEX_EXIT(&conn->conn_data_lock);
2383 #ifdef RX_ENABLE_LOCKS
2384 CV_BROADCAST(&conn->conn_call_cv);
2389 #ifdef RX_ENABLE_LOCKS
2391 MUTEX_EXIT(&conn->conn_data_lock);
2393 #endif /* RX_ENABLE_LOCKS */
2394 call->state = RX_STATE_DALLY;
2396 error = call->error;
2398 /* currentPacket, nLeft, and NFree must be zeroed here, because
2399 * ResetCall cannot: ResetCall may be called at splnet(), in the
2400 * kernel version, and may interrupt the macros rx_Read or
2401 * rx_Write, which run at normal priority for efficiency. */
2402 if (call->currentPacket) {
2403 #ifdef RX_TRACK_PACKETS
2404 call->currentPacket->flags &= ~RX_PKTFLAG_CP;
2406 rxi_FreePacket(call->currentPacket);
2407 call->currentPacket = (struct rx_packet *)0;
2410 call->nLeft = call->nFree = call->curlen = 0;
2412 /* Free any packets from the last call to ReadvProc/WritevProc */
2413 #ifdef RXDEBUG_PACKET
2415 #endif /* RXDEBUG_PACKET */
2416 rxi_FreePackets(0, &call->iovq);
2417 MUTEX_EXIT(&call->lock);
2419 MUTEX_ENTER(&rx_refcnt_mutex);
2420 CALL_RELE(call, RX_CALL_REFCOUNT_BEGIN);
2421 MUTEX_EXIT(&rx_refcnt_mutex);
2422 if (conn->type == RX_CLIENT_CONNECTION) {
2423 MUTEX_ENTER(&conn->conn_data_lock);
2424 conn->flags &= ~RX_CONN_BUSY;
2425 MUTEX_EXIT(&conn->conn_data_lock);
2426 MUTEX_EXIT(&conn->conn_call_lock);
2430 * Map errors to the local host's errno.h format.
2432 error = ntoh_syserr_conv(error);
2436 #if !defined(KERNEL)
2438 /* Call this routine when shutting down a server or client (especially
2439 * clients). This will allow Rx to gracefully garbage collect server
2440 * connections, and reduce the number of retries that a server might
2441 * make to a dead client.
2442 * This is not quite right, since some calls may still be ongoing and
2443 * we can't lock them to destroy them. */
2447 struct rx_connection **conn_ptr, **conn_end;
2451 if (rxinit_status == 1) {
2453 return; /* Already shutdown. */
2455 rxi_DeleteCachedConnections();
2456 if (rx_connHashTable) {
2457 MUTEX_ENTER(&rx_connHashTable_lock);
2458 for (conn_ptr = &rx_connHashTable[0], conn_end =
2459 &rx_connHashTable[rx_hashTableSize]; conn_ptr < conn_end;
2461 struct rx_connection *conn, *next;
2462 for (conn = *conn_ptr; conn; conn = next) {
2464 if (conn->type == RX_CLIENT_CONNECTION) {
2465 MUTEX_ENTER(&rx_refcnt_mutex);
2467 MUTEX_EXIT(&rx_refcnt_mutex);
2468 #ifdef RX_ENABLE_LOCKS
2469 rxi_DestroyConnectionNoLock(conn);
2470 #else /* RX_ENABLE_LOCKS */
2471 rxi_DestroyConnection(conn);
2472 #endif /* RX_ENABLE_LOCKS */
2476 #ifdef RX_ENABLE_LOCKS
2477 while (rx_connCleanup_list) {
2478 struct rx_connection *conn;
2479 conn = rx_connCleanup_list;
2480 rx_connCleanup_list = rx_connCleanup_list->next;
2481 MUTEX_EXIT(&rx_connHashTable_lock);
2482 rxi_CleanupConnection(conn);
2483 MUTEX_ENTER(&rx_connHashTable_lock);
2485 MUTEX_EXIT(&rx_connHashTable_lock);
2486 #endif /* RX_ENABLE_LOCKS */
2491 afs_winsockCleanup();
2499 /* if we wakeup packet waiter too often, can get in loop with two
2500 AllocSendPackets each waking each other up (from ReclaimPacket calls) */
2502 rxi_PacketsUnWait(void)
2504 if (!rx_waitingForPackets) {
2508 if (rxi_OverQuota(RX_PACKET_CLASS_SEND)) {
2509 return; /* still over quota */
2512 rx_waitingForPackets = 0;
2513 #ifdef RX_ENABLE_LOCKS
2514 CV_BROADCAST(&rx_waitingForPackets_cv);
2516 osi_rxWakeup(&rx_waitingForPackets);
2522 /* ------------------Internal interfaces------------------------- */
2524 /* Return this process's service structure for the
2525 * specified socket and service */
2526 static struct rx_service *
2527 rxi_FindService(osi_socket socket, u_short serviceId)
2529 struct rx_service **sp;
2530 for (sp = &rx_services[0]; *sp; sp++) {
2531 if ((*sp)->serviceId == serviceId && (*sp)->socket == socket)
2537 #ifdef RXDEBUG_PACKET
2538 #ifdef KDUMP_RX_LOCK
2539 static struct rx_call_rx_lock *rx_allCallsp = 0;
2541 static struct rx_call *rx_allCallsp = 0;
2543 #endif /* RXDEBUG_PACKET */
2545 /* Allocate a call structure, for the indicated channel of the
2546 * supplied connection. The mode and state of the call must be set by
2547 * the caller. Returns the call with mutex locked. */
2548 static struct rx_call *
2549 rxi_NewCall(struct rx_connection *conn, int channel)
2551 struct rx_call *call;
2552 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2553 struct rx_call *cp; /* Call pointer temp */
2554 struct rx_call *nxp; /* Next call pointer, for queue_Scan */
2555 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2557 dpf(("rxi_NewCall(conn %"AFS_PTR_FMT", channel %d)\n", conn, channel));
2559 /* Grab an existing call structure, or allocate a new one.
2560 * Existing call structures are assumed to have been left reset by
2562 MUTEX_ENTER(&rx_freeCallQueue_lock);
2564 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2566 * EXCEPT that the TQ might not yet be cleared out.
2567 * Skip over those with in-use TQs.
2570 for (queue_Scan(&rx_freeCallQueue, cp, nxp, rx_call)) {
2571 if (!(cp->flags & RX_CALL_TQ_BUSY)) {
2577 #else /* AFS_GLOBAL_RXLOCK_KERNEL */
2578 if (queue_IsNotEmpty(&rx_freeCallQueue)) {
2579 call = queue_First(&rx_freeCallQueue, rx_call);
2580 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2582 if (rx_stats_active)
2583 rx_atomic_dec(&rx_stats.nFreeCallStructs);
2584 MUTEX_EXIT(&rx_freeCallQueue_lock);
2585 MUTEX_ENTER(&call->lock);
2586 CLEAR_CALL_QUEUE_LOCK(call);
2587 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2588 /* Now, if TQ wasn't cleared earlier, do it now. */
2589 rxi_WaitforTQBusy(call);
2590 if (call->flags & RX_CALL_TQ_CLEARME) {
2591 rxi_ClearTransmitQueue(call, 1);
2592 /*queue_Init(&call->tq);*/
2594 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2595 /* Bind the call to its connection structure */
2597 rxi_ResetCall(call, 1);
2600 call = rxi_Alloc(sizeof(struct rx_call));
2601 #ifdef RXDEBUG_PACKET
2602 call->allNextp = rx_allCallsp;
2603 rx_allCallsp = call;
2605 rx_atomic_inc_and_read(&rx_stats.nCallStructs);
2606 #else /* RXDEBUG_PACKET */
2607 rx_atomic_inc(&rx_stats.nCallStructs);
2608 #endif /* RXDEBUG_PACKET */
2610 MUTEX_EXIT(&rx_freeCallQueue_lock);
2611 MUTEX_INIT(&call->lock, "call lock", MUTEX_DEFAULT, NULL);
2612 MUTEX_ENTER(&call->lock);
2613 CV_INIT(&call->cv_twind, "call twind", CV_DEFAULT, 0);
2614 CV_INIT(&call->cv_rq, "call rq", CV_DEFAULT, 0);
2615 CV_INIT(&call->cv_tq, "call tq", CV_DEFAULT, 0);
2617 /* Initialize once-only items */
2618 queue_Init(&call->tq);
2619 queue_Init(&call->rq);
2620 queue_Init(&call->iovq);
2621 #ifdef RXDEBUG_PACKET
2622 call->rqc = call->tqc = call->iovqc = 0;
2623 #endif /* RXDEBUG_PACKET */
2624 /* Bind the call to its connection structure (prereq for reset) */
2626 rxi_ResetCall(call, 1);
2628 call->channel = channel;
2629 call->callNumber = &conn->callNumber[channel];
2630 call->rwind = conn->rwind[channel];
2631 call->twind = conn->twind[channel];
2632 /* Note that the next expected call number is retained (in
2633 * conn->callNumber[i]), even if we reallocate the call structure
2635 conn->call[channel] = call;
2636 /* if the channel's never been used (== 0), we should start at 1, otherwise
2637 * the call number is valid from the last time this channel was used */
2638 if (*call->callNumber == 0)
2639 *call->callNumber = 1;
2644 /* A call has been inactive long enough that so we can throw away
2645 * state, including the call structure, which is placed on the call
2648 * call->lock amd rx_refcnt_mutex are held upon entry.
2649 * haveCTLock is set when called from rxi_ReapConnections.
2652 rxi_FreeCall(struct rx_call *call, int haveCTLock)
2654 int channel = call->channel;
2655 struct rx_connection *conn = call->conn;
2658 if (call->state == RX_STATE_DALLY || call->state == RX_STATE_HOLD)
2659 (*call->callNumber)++;
2661 * We are setting the state to RX_STATE_RESET to
2662 * ensure that no one else will attempt to use this
2663 * call once we drop the refcnt lock. We must drop
2664 * the refcnt lock before calling rxi_ResetCall
2665 * because it cannot be held across acquiring the
2666 * freepktQ lock. NewCall does the same.
2668 call->state = RX_STATE_RESET;
2669 MUTEX_EXIT(&rx_refcnt_mutex);
2670 rxi_ResetCall(call, 0);
2672 MUTEX_ENTER(&conn->conn_call_lock);
2673 if (call->conn->call[channel] == call)
2674 call->conn->call[channel] = 0;
2675 MUTEX_EXIT(&conn->conn_call_lock);
2677 MUTEX_ENTER(&rx_freeCallQueue_lock);
2678 SET_CALL_QUEUE_LOCK(call, &rx_freeCallQueue_lock);
2679 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2680 /* A call may be free even though its transmit queue is still in use.
2681 * Since we search the call list from head to tail, put busy calls at
2682 * the head of the list, and idle calls at the tail.
2684 if (call->flags & RX_CALL_TQ_BUSY)
2685 queue_Prepend(&rx_freeCallQueue, call);
2687 queue_Append(&rx_freeCallQueue, call);
2688 #else /* AFS_GLOBAL_RXLOCK_KERNEL */
2689 queue_Append(&rx_freeCallQueue, call);
2690 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2691 if (rx_stats_active)
2692 rx_atomic_inc(&rx_stats.nFreeCallStructs);
2693 MUTEX_EXIT(&rx_freeCallQueue_lock);
2695 /* Destroy the connection if it was previously slated for
2696 * destruction, i.e. the Rx client code previously called
2697 * rx_DestroyConnection (client connections), or
2698 * rxi_ReapConnections called the same routine (server
2699 * connections). Only do this, however, if there are no
2700 * outstanding calls. Note that for fine grain locking, there appears
2701 * to be a deadlock in that rxi_FreeCall has a call locked and
2702 * DestroyConnectionNoLock locks each call in the conn. But note a
2703 * few lines up where we have removed this call from the conn.
2704 * If someone else destroys a connection, they either have no
2705 * call lock held or are going through this section of code.
2707 MUTEX_ENTER(&conn->conn_data_lock);
2708 if (conn->flags & RX_CONN_DESTROY_ME && !(conn->flags & RX_CONN_MAKECALL_WAITING)) {
2709 MUTEX_ENTER(&rx_refcnt_mutex);
2711 MUTEX_EXIT(&rx_refcnt_mutex);
2712 MUTEX_EXIT(&conn->conn_data_lock);
2713 #ifdef RX_ENABLE_LOCKS
2715 rxi_DestroyConnectionNoLock(conn);
2717 rxi_DestroyConnection(conn);
2718 #else /* RX_ENABLE_LOCKS */
2719 rxi_DestroyConnection(conn);
2720 #endif /* RX_ENABLE_LOCKS */
2722 MUTEX_EXIT(&conn->conn_data_lock);
2724 MUTEX_ENTER(&rx_refcnt_mutex);
2727 rx_atomic_t rxi_Allocsize = RX_ATOMIC_INIT(0);
2728 rx_atomic_t rxi_Alloccnt = RX_ATOMIC_INIT(0);
2731 rxi_Alloc(size_t size)
2735 if (rx_stats_active) {
2736 rx_atomic_add(&rxi_Allocsize, (int) size);
2737 rx_atomic_inc(&rxi_Alloccnt);
2741 #if defined(KERNEL) && !defined(UKERNEL) && defined(AFS_FBSD80_ENV)
2742 afs_osi_Alloc_NoSleep(size);
2747 osi_Panic("rxi_Alloc error");
2753 rxi_Free(void *addr, size_t size)
2755 if (rx_stats_active) {
2756 rx_atomic_sub(&rxi_Allocsize, (int) size);
2757 rx_atomic_dec(&rxi_Alloccnt);
2759 osi_Free(addr, size);
2763 rxi_SetPeerMtu(struct rx_peer *peer, afs_uint32 host, afs_uint32 port, int mtu)
2765 struct rx_peer **peer_ptr = NULL, **peer_end = NULL;
2766 struct rx_peer *next = NULL;
2770 MUTEX_ENTER(&rx_peerHashTable_lock);
2772 peer_ptr = &rx_peerHashTable[0];
2773 peer_end = &rx_peerHashTable[rx_hashTableSize];
2776 for ( ; peer_ptr < peer_end; peer_ptr++) {
2779 for ( ; peer; peer = next) {
2781 if (host == peer->host)
2786 hashIndex = PEER_HASH(host, port);
2787 for (peer = rx_peerHashTable[hashIndex]; peer; peer = peer->next) {
2788 if ((peer->host == host) && (peer->port == port))
2793 MUTEX_ENTER(&rx_peerHashTable_lock);
2798 MUTEX_EXIT(&rx_peerHashTable_lock);
2800 MUTEX_ENTER(&peer->peer_lock);
2801 /* We don't handle dropping below min, so don't */
2802 mtu = MAX(mtu, RX_MIN_PACKET_SIZE);
2803 peer->ifMTU=MIN(mtu, peer->ifMTU);
2804 peer->natMTU = rxi_AdjustIfMTU(peer->ifMTU);
2805 /* if we tweaked this down, need to tune our peer MTU too */
2806 peer->MTU = MIN(peer->MTU, peer->natMTU);
2807 /* if we discovered a sub-1500 mtu, degrade */
2808 if (peer->ifMTU < OLD_MAX_PACKET_SIZE)
2809 peer->maxDgramPackets = 1;
2810 /* We no longer have valid peer packet information */
2811 if (peer->maxPacketSize-RX_IPUDP_SIZE > peer->ifMTU)
2812 peer->maxPacketSize = 0;
2813 MUTEX_EXIT(&peer->peer_lock);
2815 MUTEX_ENTER(&rx_peerHashTable_lock);
2817 if (host && !port) {
2819 /* pick up where we left off */
2823 MUTEX_EXIT(&rx_peerHashTable_lock);
2826 /* Find the peer process represented by the supplied (host,port)
2827 * combination. If there is no appropriate active peer structure, a
2828 * new one will be allocated and initialized
2829 * The origPeer, if set, is a pointer to a peer structure on which the
2830 * refcount will be be decremented. This is used to replace the peer
2831 * structure hanging off a connection structure */
2833 rxi_FindPeer(afs_uint32 host, u_short port,
2834 struct rx_peer *origPeer, int create)
2838 hashIndex = PEER_HASH(host, port);
2839 MUTEX_ENTER(&rx_peerHashTable_lock);
2840 for (pp = rx_peerHashTable[hashIndex]; pp; pp = pp->next) {
2841 if ((pp->host == host) && (pp->port == port))
2846 pp = rxi_AllocPeer(); /* This bzero's *pp */
2847 pp->host = host; /* set here or in InitPeerParams is zero */
2849 MUTEX_INIT(&pp->peer_lock, "peer_lock", MUTEX_DEFAULT, 0);
2850 queue_Init(&pp->congestionQueue);
2851 queue_Init(&pp->rpcStats);
2852 pp->next = rx_peerHashTable[hashIndex];
2853 rx_peerHashTable[hashIndex] = pp;
2854 rxi_InitPeerParams(pp);
2855 if (rx_stats_active)
2856 rx_atomic_inc(&rx_stats.nPeerStructs);
2863 origPeer->refCount--;
2864 MUTEX_EXIT(&rx_peerHashTable_lock);
2869 /* Find the connection at (host, port) started at epoch, and with the
2870 * given connection id. Creates the server connection if necessary.
2871 * The type specifies whether a client connection or a server
2872 * connection is desired. In both cases, (host, port) specify the
2873 * peer's (host, pair) pair. Client connections are not made
2874 * automatically by this routine. The parameter socket gives the
2875 * socket descriptor on which the packet was received. This is used,
2876 * in the case of server connections, to check that *new* connections
2877 * come via a valid (port, serviceId). Finally, the securityIndex
2878 * parameter must match the existing index for the connection. If a
2879 * server connection is created, it will be created using the supplied
2880 * index, if the index is valid for this service */
2881 struct rx_connection *
2882 rxi_FindConnection(osi_socket socket, afs_uint32 host,
2883 u_short port, u_short serviceId, afs_uint32 cid,
2884 afs_uint32 epoch, int type, u_int securityIndex)
2886 int hashindex, flag, i;
2887 struct rx_connection *conn;
2888 hashindex = CONN_HASH(host, port, cid, epoch, type);
2889 MUTEX_ENTER(&rx_connHashTable_lock);
2890 rxLastConn ? (conn = rxLastConn, flag = 0) : (conn =
2891 rx_connHashTable[hashindex],
2894 if ((conn->type == type) && ((cid & RX_CIDMASK) == conn->cid)
2895 && (epoch == conn->epoch)) {
2896 struct rx_peer *pp = conn->peer;
2897 if (securityIndex != conn->securityIndex) {
2898 /* this isn't supposed to happen, but someone could forge a packet
2899 * like this, and there seems to be some CM bug that makes this
2900 * happen from time to time -- in which case, the fileserver
2902 MUTEX_EXIT(&rx_connHashTable_lock);
2903 return (struct rx_connection *)0;
2905 if (pp->host == host && pp->port == port)
2907 if (type == RX_CLIENT_CONNECTION && pp->port == port)
2909 /* So what happens when it's a callback connection? */
2910 if ( /*type == RX_CLIENT_CONNECTION && */
2911 (conn->epoch & 0x80000000))
2915 /* the connection rxLastConn that was used the last time is not the
2916 ** one we are looking for now. Hence, start searching in the hash */
2918 conn = rx_connHashTable[hashindex];
2923 struct rx_service *service;
2924 if (type == RX_CLIENT_CONNECTION) {
2925 MUTEX_EXIT(&rx_connHashTable_lock);
2926 return (struct rx_connection *)0;
2928 service = rxi_FindService(socket, serviceId);
2929 if (!service || (securityIndex >= service->nSecurityObjects)
2930 || (service->securityObjects[securityIndex] == 0)) {
2931 MUTEX_EXIT(&rx_connHashTable_lock);
2932 return (struct rx_connection *)0;
2934 conn = rxi_AllocConnection(); /* This bzero's the connection */
2935 MUTEX_INIT(&conn->conn_call_lock, "conn call lock", MUTEX_DEFAULT, 0);
2936 MUTEX_INIT(&conn->conn_data_lock, "conn data lock", MUTEX_DEFAULT, 0);
2937 CV_INIT(&conn->conn_call_cv, "conn call cv", CV_DEFAULT, 0);
2938 conn->next = rx_connHashTable[hashindex];
2939 rx_connHashTable[hashindex] = conn;
2940 conn->peer = rxi_FindPeer(host, port, 0, 1);
2941 conn->type = RX_SERVER_CONNECTION;
2942 conn->lastSendTime = clock_Sec(); /* don't GC immediately */
2943 conn->epoch = epoch;
2944 conn->cid = cid & RX_CIDMASK;
2945 /* conn->serial = conn->lastSerial = 0; */
2946 /* conn->timeout = 0; */
2947 conn->ackRate = RX_FAST_ACK_RATE;
2948 conn->service = service;
2949 conn->serviceId = serviceId;
2950 conn->securityIndex = securityIndex;
2951 conn->securityObject = service->securityObjects[securityIndex];
2952 conn->nSpecific = 0;
2953 conn->specific = NULL;
2954 rx_SetConnDeadTime(conn, service->connDeadTime);
2955 rx_SetConnIdleDeadTime(conn, service->idleDeadTime);
2956 rx_SetServerConnIdleDeadErr(conn, service->idleDeadErr);
2957 for (i = 0; i < RX_MAXCALLS; i++) {
2958 conn->twind[i] = rx_initSendWindow;
2959 conn->rwind[i] = rx_initReceiveWindow;
2961 /* Notify security object of the new connection */
2962 RXS_NewConnection(conn->securityObject, conn);
2963 /* XXXX Connection timeout? */
2964 if (service->newConnProc)
2965 (*service->newConnProc) (conn);
2966 if (rx_stats_active)
2967 rx_atomic_inc(&rx_stats.nServerConns);
2970 MUTEX_ENTER(&rx_refcnt_mutex);
2972 MUTEX_EXIT(&rx_refcnt_mutex);
2974 rxLastConn = conn; /* store this connection as the last conn used */
2975 MUTEX_EXIT(&rx_connHashTable_lock);
2980 * Timeout a call on a busy call channel if appropriate.
2982 * @param[in] call The busy call.
2984 * @pre 'call' is marked as busy (namely,
2985 * call->conn->lastBusy[call->channel] != 0)
2987 * @pre call->lock is held
2988 * @pre rxi_busyChannelError is nonzero
2990 * @note call->lock is dropped and reacquired
2993 rxi_CheckBusy(struct rx_call *call)
2995 struct rx_connection *conn = call->conn;
2996 int channel = call->channel;
2997 int freechannel = 0;
2999 afs_uint32 callNumber = *call->callNumber;
3001 MUTEX_EXIT(&call->lock);
3003 MUTEX_ENTER(&conn->conn_call_lock);
3005 /* Are there any other call slots on this conn that we should try? Look for
3006 * slots that are empty and are either non-busy, or were marked as busy
3007 * longer than conn->secondsUntilDead seconds before this call started. */
3009 for (i = 0; i < RX_MAXCALLS && !freechannel; i++) {
3011 /* only look at channels that aren't us */
3015 if (conn->lastBusy[i]) {
3016 /* if this channel looked busy too recently, don't look at it */
3017 if (conn->lastBusy[i] >= call->startTime.sec) {
3020 if (call->startTime.sec - conn->lastBusy[i] < conn->secondsUntilDead) {
3025 if (conn->call[i]) {
3026 struct rx_call *tcall = conn->call[i];
3027 MUTEX_ENTER(&tcall->lock);
3028 if (tcall->state == RX_STATE_DALLY) {
3031 MUTEX_EXIT(&tcall->lock);
3037 MUTEX_EXIT(&conn->conn_call_lock);
3039 MUTEX_ENTER(&call->lock);
3041 /* Since the call->lock and conn->conn_call_lock have been released it is
3042 * possible that (1) the call may no longer be busy and/or (2) the call may
3043 * have been reused by another waiting thread. Therefore, we must confirm
3044 * that the call state has not changed when deciding whether or not to
3045 * force this application thread to retry by forcing a Timeout error. */
3047 if (freechannel && *call->callNumber == callNumber &&
3048 (call->flags & RX_CALL_PEER_BUSY)) {
3049 /* Since 'freechannel' is set, there exists another channel in this
3050 * rx_conn that the application thread might be able to use. We know
3051 * that we have the correct call since callNumber is unchanged, and we
3052 * know that the call is still busy. So, set the call error state to
3053 * rxi_busyChannelError so the application can retry the request,
3054 * presumably on a less-busy call channel. */
3056 rxi_CallError(call, rxi_busyChannelError);
3060 /* There are two packet tracing routines available for testing and monitoring
3061 * Rx. One is called just after every packet is received and the other is
3062 * called just before every packet is sent. Received packets, have had their
3063 * headers decoded, and packets to be sent have not yet had their headers
3064 * encoded. Both take two parameters: a pointer to the packet and a sockaddr
3065 * containing the network address. Both can be modified. The return value, if
3066 * non-zero, indicates that the packet should be dropped. */
3068 int (*rx_justReceived) (struct rx_packet *, struct sockaddr_in *) = 0;
3069 int (*rx_almostSent) (struct rx_packet *, struct sockaddr_in *) = 0;
3071 /* A packet has been received off the interface. Np is the packet, socket is
3072 * the socket number it was received from (useful in determining which service
3073 * this packet corresponds to), and (host, port) reflect the host,port of the
3074 * sender. This call returns the packet to the caller if it is finished with
3075 * it, rather than de-allocating it, just as a small performance hack */
3078 rxi_ReceivePacket(struct rx_packet *np, osi_socket socket,
3079 afs_uint32 host, u_short port, int *tnop,
3080 struct rx_call **newcallp)
3082 struct rx_call *call;
3083 struct rx_connection *conn;
3085 afs_uint32 currentCallNumber;
3091 struct rx_packet *tnp;
3094 /* We don't print out the packet until now because (1) the time may not be
3095 * accurate enough until now in the lwp implementation (rx_Listener only gets
3096 * the time after the packet is read) and (2) from a protocol point of view,
3097 * this is the first time the packet has been seen */
3098 packetType = (np->header.type > 0 && np->header.type < RX_N_PACKET_TYPES)
3099 ? rx_packetTypes[np->header.type - 1] : "*UNKNOWN*";
3100 dpf(("R %d %s: %x.%d.%d.%d.%d.%d.%d flags %d, packet %"AFS_PTR_FMT"\n",
3101 np->header.serial, packetType, ntohl(host), ntohs(port), np->header.serviceId,
3102 np->header.epoch, np->header.cid, np->header.callNumber,
3103 np->header.seq, np->header.flags, np));
3106 if (np->header.type == RX_PACKET_TYPE_VERSION) {
3107 return rxi_ReceiveVersionPacket(np, socket, host, port, 1);
3110 if (np->header.type == RX_PACKET_TYPE_DEBUG) {
3111 return rxi_ReceiveDebugPacket(np, socket, host, port, 1);
3114 /* If an input tracer function is defined, call it with the packet and
3115 * network address. Note this function may modify its arguments. */
3116 if (rx_justReceived) {
3117 struct sockaddr_in addr;
3119 addr.sin_family = AF_INET;
3120 addr.sin_port = port;
3121 addr.sin_addr.s_addr = host;
3122 #ifdef STRUCT_SOCKADDR_HAS_SA_LEN
3123 addr.sin_len = sizeof(addr);
3124 #endif /* AFS_OSF_ENV */
3125 drop = (*rx_justReceived) (np, &addr);
3126 /* drop packet if return value is non-zero */
3129 port = addr.sin_port; /* in case fcn changed addr */
3130 host = addr.sin_addr.s_addr;
3134 /* If packet was not sent by the client, then *we* must be the client */
3135 type = ((np->header.flags & RX_CLIENT_INITIATED) != RX_CLIENT_INITIATED)
3136 ? RX_CLIENT_CONNECTION : RX_SERVER_CONNECTION;
3138 /* Find the connection (or fabricate one, if we're the server & if
3139 * necessary) associated with this packet */
3141 rxi_FindConnection(socket, host, port, np->header.serviceId,
3142 np->header.cid, np->header.epoch, type,
3143 np->header.securityIndex);
3146 /* If no connection found or fabricated, just ignore the packet.
3147 * (An argument could be made for sending an abort packet for
3152 /* If the connection is in an error state, send an abort packet and ignore
3153 * the incoming packet */
3155 /* Don't respond to an abort packet--we don't want loops! */
3156 MUTEX_ENTER(&conn->conn_data_lock);
3157 if (np->header.type != RX_PACKET_TYPE_ABORT)
3158 np = rxi_SendConnectionAbort(conn, np, 1, 0);
3159 MUTEX_ENTER(&rx_refcnt_mutex);
3161 MUTEX_EXIT(&rx_refcnt_mutex);
3162 MUTEX_EXIT(&conn->conn_data_lock);
3166 /* Check for connection-only requests (i.e. not call specific). */
3167 if (np->header.callNumber == 0) {
3168 switch (np->header.type) {
3169 case RX_PACKET_TYPE_ABORT: {
3170 /* What if the supplied error is zero? */
3171 afs_int32 errcode = ntohl(rx_GetInt32(np, 0));
3172 dpf(("rxi_ReceivePacket ABORT rx_GetInt32 = %d\n", errcode));
3173 rxi_ConnectionError(conn, errcode);
3174 MUTEX_ENTER(&rx_refcnt_mutex);
3176 MUTEX_EXIT(&rx_refcnt_mutex);
3179 case RX_PACKET_TYPE_CHALLENGE:
3180 tnp = rxi_ReceiveChallengePacket(conn, np, 1);
3181 MUTEX_ENTER(&rx_refcnt_mutex);
3183 MUTEX_EXIT(&rx_refcnt_mutex);
3185 case RX_PACKET_TYPE_RESPONSE:
3186 tnp = rxi_ReceiveResponsePacket(conn, np, 1);
3187 MUTEX_ENTER(&rx_refcnt_mutex);
3189 MUTEX_EXIT(&rx_refcnt_mutex);
3191 case RX_PACKET_TYPE_PARAMS:
3192 case RX_PACKET_TYPE_PARAMS + 1:
3193 case RX_PACKET_TYPE_PARAMS + 2:
3194 /* ignore these packet types for now */
3195 MUTEX_ENTER(&rx_refcnt_mutex);
3197 MUTEX_EXIT(&rx_refcnt_mutex);
3202 /* Should not reach here, unless the peer is broken: send an
3204 rxi_ConnectionError(conn, RX_PROTOCOL_ERROR);
3205 MUTEX_ENTER(&conn->conn_data_lock);
3206 tnp = rxi_SendConnectionAbort(conn, np, 1, 0);
3207 MUTEX_ENTER(&rx_refcnt_mutex);
3209 MUTEX_EXIT(&rx_refcnt_mutex);
3210 MUTEX_EXIT(&conn->conn_data_lock);
3215 channel = np->header.cid & RX_CHANNELMASK;
3216 call = conn->call[channel];
3219 MUTEX_ENTER(&call->lock);
3220 currentCallNumber = conn->callNumber[channel];
3221 } else if (type == RX_SERVER_CONNECTION) { /* No call allocated */
3222 MUTEX_ENTER(&conn->conn_call_lock);
3223 call = conn->call[channel];
3225 MUTEX_ENTER(&call->lock);
3226 MUTEX_EXIT(&conn->conn_call_lock);
3227 currentCallNumber = conn->callNumber[channel];
3229 call = rxi_NewCall(conn, channel); /* returns locked call */
3230 MUTEX_EXIT(&conn->conn_call_lock);
3231 *call->callNumber = currentCallNumber = np->header.callNumber;
3233 if (np->header.callNumber == 0)
3234 dpf(("RecPacket call 0 %d %s: %x.%u.%u.%u.%u.%u.%u flags %d, packet %"AFS_PTR_FMT" len %d\n",
3235 np->header.serial, rx_packetTypes[np->header.type - 1], ntohl(conn->peer->host), ntohs(conn->peer->port),
3236 np->header.serial, np->header.epoch, np->header.cid, np->header.callNumber, np->header.seq,
3237 np->header.flags, np, np->length));
3239 call->state = RX_STATE_PRECALL;
3240 clock_GetTime(&call->queueTime);
3241 hzero(call->bytesSent);
3242 hzero(call->bytesRcvd);
3244 * If the number of queued calls exceeds the overload
3245 * threshold then abort this call.
3247 if ((rx_BusyThreshold > 0) &&
3248 (rx_atomic_read(&rx_nWaiting) > rx_BusyThreshold)) {
3249 struct rx_packet *tp;
3251 rxi_CallError(call, rx_BusyError);
3252 tp = rxi_SendCallAbort(call, np, 1, 0);
3253 MUTEX_EXIT(&call->lock);
3254 MUTEX_ENTER(&rx_refcnt_mutex);
3256 MUTEX_EXIT(&rx_refcnt_mutex);
3257 if (rx_stats_active)
3258 rx_atomic_inc(&rx_stats.nBusies);
3261 rxi_KeepAliveOn(call);
3263 } else { /* RX_CLIENT_CONNECTION and No call allocated */
3264 /* This packet can't be for this call. If the new call address is
3265 * 0 then no call is running on this channel. If there is a call
3266 * then, since this is a client connection we're getting data for
3267 * it must be for the previous call.
3269 if (rx_stats_active)
3270 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3271 MUTEX_ENTER(&rx_refcnt_mutex);
3273 MUTEX_EXIT(&rx_refcnt_mutex);
3277 /* There is a non-NULL locked call at this point */
3278 if (type == RX_SERVER_CONNECTION) { /* We're the server */
3279 if (np->header.callNumber < currentCallNumber) {
3280 MUTEX_EXIT(&call->lock);
3281 if (rx_stats_active)
3282 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3283 MUTEX_ENTER(&rx_refcnt_mutex);
3285 MUTEX_EXIT(&rx_refcnt_mutex);
3287 } else if (np->header.callNumber != currentCallNumber) {
3288 /* Wait until the transmit queue is idle before deciding
3289 * whether to reset the current call. Chances are that the
3290 * call will be in ether DALLY or HOLD state once the TQ_BUSY
3293 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
3294 if (call->state == RX_STATE_ACTIVE) {
3295 rxi_WaitforTQBusy(call);
3297 * If we entered error state while waiting,
3298 * must call rxi_CallError to permit rxi_ResetCall
3299 * to processed when the tqWaiter count hits zero.
3302 rxi_CallError(call, call->error);
3303 MUTEX_EXIT(&call->lock);
3304 MUTEX_ENTER(&rx_refcnt_mutex);
3306 MUTEX_EXIT(&rx_refcnt_mutex);
3310 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
3311 /* If the new call cannot be taken right now send a busy and set
3312 * the error condition in this call, so that it terminates as
3313 * quickly as possible */
3314 if (call->state == RX_STATE_ACTIVE) {
3315 struct rx_packet *tp;
3317 rxi_CallError(call, RX_CALL_DEAD);
3318 tp = rxi_SendSpecial(call, conn, np, RX_PACKET_TYPE_BUSY,
3320 MUTEX_EXIT(&call->lock);
3321 MUTEX_ENTER(&rx_refcnt_mutex);
3323 MUTEX_EXIT(&rx_refcnt_mutex);
3326 rxi_ResetCall(call, 0);
3327 *call->callNumber = np->header.callNumber;
3329 if (np->header.callNumber == 0)
3330 dpf(("RecPacket call 0 %d %s: %x.%u.%u.%u.%u.%u.%u flags %d, packet %"AFS_PTR_FMT" len %d\n",
3331 np->header.serial, rx_packetTypes[np->header.type - 1], ntohl(conn->peer->host), ntohs(conn->peer->port),
3332 np->header.serial, np->header.epoch, np->header.cid, np->header.callNumber, np->header.seq,
3333 np->header.flags, np, np->length));
3335 call->state = RX_STATE_PRECALL;
3336 clock_GetTime(&call->queueTime);
3337 hzero(call->bytesSent);
3338 hzero(call->bytesRcvd);
3340 * If the number of queued calls exceeds the overload
3341 * threshold then abort this call.
3343 if ((rx_BusyThreshold > 0) &&
3344 (rx_atomic_read(&rx_nWaiting) > rx_BusyThreshold)) {
3345 struct rx_packet *tp;
3347 rxi_CallError(call, rx_BusyError);
3348 tp = rxi_SendCallAbort(call, np, 1, 0);
3349 MUTEX_EXIT(&call->lock);
3350 MUTEX_ENTER(&rx_refcnt_mutex);
3352 MUTEX_EXIT(&rx_refcnt_mutex);
3353 if (rx_stats_active)
3354 rx_atomic_inc(&rx_stats.nBusies);
3357 rxi_KeepAliveOn(call);
3359 /* Continuing call; do nothing here. */
3361 } else { /* we're the client */
3362 /* Ignore all incoming acknowledgements for calls in DALLY state */
3363 if ((call->state == RX_STATE_DALLY)
3364 && (np->header.type == RX_PACKET_TYPE_ACK)) {
3365 if (rx_stats_active)
3366 rx_atomic_inc(&rx_stats.ignorePacketDally);
3367 MUTEX_EXIT(&call->lock);
3368 MUTEX_ENTER(&rx_refcnt_mutex);
3370 MUTEX_EXIT(&rx_refcnt_mutex);
3374 /* Ignore anything that's not relevant to the current call. If there
3375 * isn't a current call, then no packet is relevant. */
3376 if (np->header.callNumber != currentCallNumber) {
3377 if (rx_stats_active)
3378 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3379 MUTEX_EXIT(&call->lock);
3380 MUTEX_ENTER(&rx_refcnt_mutex);
3382 MUTEX_EXIT(&rx_refcnt_mutex);
3385 /* If the service security object index stamped in the packet does not
3386 * match the connection's security index, ignore the packet */
3387 if (np->header.securityIndex != conn->securityIndex) {
3388 MUTEX_EXIT(&call->lock);
3389 MUTEX_ENTER(&rx_refcnt_mutex);
3391 MUTEX_EXIT(&rx_refcnt_mutex);
3395 /* If we're receiving the response, then all transmit packets are
3396 * implicitly acknowledged. Get rid of them. */
3397 if (np->header.type == RX_PACKET_TYPE_DATA) {
3398 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
3399 /* XXX Hack. Because we must release the global rx lock when
3400 * sending packets (osi_NetSend) we drop all acks while we're
3401 * traversing the tq in rxi_Start sending packets out because
3402 * packets may move to the freePacketQueue as result of being here!
3403 * So we drop these packets until we're safely out of the
3404 * traversing. Really ugly!
3405 * For fine grain RX locking, we set the acked field in the
3406 * packets and let rxi_Start remove them from the transmit queue.
3408 if (call->flags & RX_CALL_TQ_BUSY) {
3409 #ifdef RX_ENABLE_LOCKS
3410 rxi_SetAcksInTransmitQueue(call);
3412 MUTEX_ENTER(&rx_refcnt_mutex);
3414 MUTEX_EXIT(&rx_refcnt_mutex);
3415 return np; /* xmitting; drop packet */
3418 rxi_ClearTransmitQueue(call, 0);
3420 #else /* AFS_GLOBAL_RXLOCK_KERNEL */
3421 rxi_ClearTransmitQueue(call, 0);
3422 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
3424 if (np->header.type == RX_PACKET_TYPE_ACK) {
3425 /* now check to see if this is an ack packet acknowledging that the
3426 * server actually *lost* some hard-acked data. If this happens we
3427 * ignore this packet, as it may indicate that the server restarted in
3428 * the middle of a call. It is also possible that this is an old ack
3429 * packet. We don't abort the connection in this case, because this
3430 * *might* just be an old ack packet. The right way to detect a server
3431 * restart in the midst of a call is to notice that the server epoch
3433 /* XXX I'm not sure this is exactly right, since tfirst **IS**
3434 * XXX unacknowledged. I think that this is off-by-one, but
3435 * XXX I don't dare change it just yet, since it will
3436 * XXX interact badly with the server-restart detection
3437 * XXX code in receiveackpacket. */
3438 if (ntohl(rx_GetInt32(np, FIRSTACKOFFSET)) < call->tfirst) {
3439 if (rx_stats_active)
3440 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3441 MUTEX_EXIT(&call->lock);
3442 MUTEX_ENTER(&rx_refcnt_mutex);
3444 MUTEX_EXIT(&rx_refcnt_mutex);
3448 } /* else not a data packet */
3451 osirx_AssertMine(&call->lock, "rxi_ReceivePacket middle");
3452 /* Set remote user defined status from packet */
3453 call->remoteStatus = np->header.userStatus;
3455 /* Note the gap between the expected next packet and the actual
3456 * packet that arrived, when the new packet has a smaller serial number
3457 * than expected. Rioses frequently reorder packets all by themselves,
3458 * so this will be quite important with very large window sizes.
3459 * Skew is checked against 0 here to avoid any dependence on the type of
3460 * inPacketSkew (which may be unsigned). In C, -1 > (unsigned) 0 is always
3462 * The inPacketSkew should be a smoothed running value, not just a maximum. MTUXXX
3463 * see CalculateRoundTripTime for an example of how to keep smoothed values.
3464 * I think using a beta of 1/8 is probably appropriate. 93.04.21
3466 MUTEX_ENTER(&conn->conn_data_lock);
3467 skew = conn->lastSerial - np->header.serial;
3468 conn->lastSerial = np->header.serial;
3469 MUTEX_EXIT(&conn->conn_data_lock);
3471 struct rx_peer *peer;
3473 if (skew > peer->inPacketSkew) {
3474 dpf(("*** In skew changed from %d to %d\n",
3475 peer->inPacketSkew, skew));
3476 peer->inPacketSkew = skew;
3480 /* Now do packet type-specific processing */
3481 switch (np->header.type) {
3482 case RX_PACKET_TYPE_DATA:
3483 np = rxi_ReceiveDataPacket(call, np, 1, socket, host, port, tnop,
3486 case RX_PACKET_TYPE_ACK:
3487 /* Respond immediately to ack packets requesting acknowledgement
3489 if (np->header.flags & RX_REQUEST_ACK) {
3491 (void)rxi_SendCallAbort(call, 0, 1, 0);
3493 (void)rxi_SendAck(call, 0, np->header.serial,
3494 RX_ACK_PING_RESPONSE, 1);
3496 np = rxi_ReceiveAckPacket(call, np, 1);
3498 case RX_PACKET_TYPE_ABORT: {
3499 /* An abort packet: reset the call, passing the error up to the user. */
3500 /* What if error is zero? */
3501 /* What if the error is -1? the application will treat it as a timeout. */
3502 afs_int32 errdata = ntohl(*(afs_int32 *) rx_DataOf(np));
3503 dpf(("rxi_ReceivePacket ABORT rx_DataOf = %d\n", errdata));
3504 rxi_CallError(call, errdata);
3505 MUTEX_EXIT(&call->lock);
3506 MUTEX_ENTER(&rx_refcnt_mutex);
3508 MUTEX_EXIT(&rx_refcnt_mutex);
3509 return np; /* xmitting; drop packet */
3511 case RX_PACKET_TYPE_BUSY: {
3512 struct clock busyTime;
3514 clock_GetTime(&busyTime);
3516 MUTEX_EXIT(&call->lock);
3518 MUTEX_ENTER(&conn->conn_call_lock);
3519 MUTEX_ENTER(&call->lock);
3520 conn->lastBusy[call->channel] = busyTime.sec;
3521 call->flags |= RX_CALL_PEER_BUSY;
3522 MUTEX_EXIT(&call->lock);
3523 MUTEX_EXIT(&conn->conn_call_lock);
3525 MUTEX_ENTER(&rx_refcnt_mutex);
3527 MUTEX_EXIT(&rx_refcnt_mutex);
3531 case RX_PACKET_TYPE_ACKALL:
3532 /* All packets acknowledged, so we can drop all packets previously
3533 * readied for sending */
3534 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
3535 /* XXX Hack. We because we can't release the global rx lock when
3536 * sending packets (osi_NetSend) we drop all ack pkts while we're
3537 * traversing the tq in rxi_Start sending packets out because
3538 * packets may move to the freePacketQueue as result of being
3539 * here! So we drop these packets until we're safely out of the
3540 * traversing. Really ugly!
3541 * For fine grain RX locking, we set the acked field in the packets
3542 * and let rxi_Start remove the packets from the transmit queue.
3544 if (call->flags & RX_CALL_TQ_BUSY) {
3545 #ifdef RX_ENABLE_LOCKS
3546 rxi_SetAcksInTransmitQueue(call);
3548 #else /* RX_ENABLE_LOCKS */
3549 MUTEX_EXIT(&call->lock);
3550 MUTEX_ENTER(&rx_refcnt_mutex);
3552 MUTEX_EXIT(&rx_refcnt_mutex);
3553 return np; /* xmitting; drop packet */
3554 #endif /* RX_ENABLE_LOCKS */
3556 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
3557 rxi_ClearTransmitQueue(call, 0);
3560 /* Should not reach here, unless the peer is broken: send an abort
3562 rxi_CallError(call, RX_PROTOCOL_ERROR);
3563 np = rxi_SendCallAbort(call, np, 1, 0);
3566 /* Note when this last legitimate packet was received, for keep-alive
3567 * processing. Note, we delay getting the time until now in the hope that
3568 * the packet will be delivered to the user before any get time is required
3569 * (if not, then the time won't actually be re-evaluated here). */
3570 call->lastReceiveTime = clock_Sec();
3571 /* we've received a legit packet, so the channel is not busy */
3572 call->flags &= ~RX_CALL_PEER_BUSY;
3573 MUTEX_EXIT(&call->lock);
3574 MUTEX_ENTER(&rx_refcnt_mutex);
3576 MUTEX_EXIT(&rx_refcnt_mutex);
3580 /* return true if this is an "interesting" connection from the point of view
3581 of someone trying to debug the system */
3583 rxi_IsConnInteresting(struct rx_connection *aconn)
3586 struct rx_call *tcall;
3588 if (aconn->flags & (RX_CONN_MAKECALL_WAITING | RX_CONN_DESTROY_ME))
3591 for (i = 0; i < RX_MAXCALLS; i++) {
3592 tcall = aconn->call[i];
3594 if ((tcall->state == RX_STATE_PRECALL)
3595 || (tcall->state == RX_STATE_ACTIVE))
3597 if ((tcall->mode == RX_MODE_SENDING)
3598 || (tcall->mode == RX_MODE_RECEIVING))
3606 /* if this is one of the last few packets AND it wouldn't be used by the
3607 receiving call to immediately satisfy a read request, then drop it on
3608 the floor, since accepting it might prevent a lock-holding thread from
3609 making progress in its reading. If a call has been cleared while in
3610 the precall state then ignore all subsequent packets until the call
3611 is assigned to a thread. */
3614 TooLow(struct rx_packet *ap, struct rx_call *acall)
3618 MUTEX_ENTER(&rx_quota_mutex);
3619 if (((ap->header.seq != 1) && (acall->flags & RX_CALL_CLEARED)
3620 && (acall->state == RX_STATE_PRECALL))
3621 || ((rx_nFreePackets < rxi_dataQuota + 2)
3622 && !((ap->header.seq < acall->rnext + rx_initSendWindow)
3623 && (acall->flags & RX_CALL_READER_WAIT)))) {
3626 MUTEX_EXIT(&rx_quota_mutex);
3632 rxi_CheckReachEvent(struct rxevent *event, void *arg1, void *arg2)
3634 struct rx_connection *conn = arg1;
3635 struct rx_call *acall = arg2;
3636 struct rx_call *call = acall;
3637 struct clock when, now;
3640 MUTEX_ENTER(&conn->conn_data_lock);
3641 conn->checkReachEvent = NULL;
3642 waiting = conn->flags & RX_CONN_ATTACHWAIT;
3644 MUTEX_ENTER(&rx_refcnt_mutex);
3646 MUTEX_EXIT(&rx_refcnt_mutex);
3648 MUTEX_EXIT(&conn->conn_data_lock);
3652 MUTEX_ENTER(&conn->conn_call_lock);
3653 MUTEX_ENTER(&conn->conn_data_lock);
3654 for (i = 0; i < RX_MAXCALLS; i++) {
3655 struct rx_call *tc = conn->call[i];
3656 if (tc && tc->state == RX_STATE_PRECALL) {
3662 /* Indicate that rxi_CheckReachEvent is no longer running by
3663 * clearing the flag. Must be atomic under conn_data_lock to
3664 * avoid a new call slipping by: rxi_CheckConnReach holds
3665 * conn_data_lock while checking RX_CONN_ATTACHWAIT.
3667 conn->flags &= ~RX_CONN_ATTACHWAIT;
3668 MUTEX_EXIT(&conn->conn_data_lock);
3669 MUTEX_EXIT(&conn->conn_call_lock);
3674 MUTEX_ENTER(&call->lock);
3675 rxi_SendAck(call, NULL, 0, RX_ACK_PING, 0);
3677 MUTEX_EXIT(&call->lock);
3679 clock_GetTime(&now);
3681 when.sec += RX_CHECKREACH_TIMEOUT;
3682 MUTEX_ENTER(&conn->conn_data_lock);
3683 if (!conn->checkReachEvent) {
3684 MUTEX_ENTER(&rx_refcnt_mutex);
3686 MUTEX_EXIT(&rx_refcnt_mutex);
3687 conn->checkReachEvent =
3688 rxevent_PostNow(&when, &now, rxi_CheckReachEvent, conn,
3691 MUTEX_EXIT(&conn->conn_data_lock);
3697 rxi_CheckConnReach(struct rx_connection *conn, struct rx_call *call)
3699 struct rx_service *service = conn->service;
3700 struct rx_peer *peer = conn->peer;
3701 afs_uint32 now, lastReach;
3703 if (service->checkReach == 0)
3707 MUTEX_ENTER(&peer->peer_lock);
3708 lastReach = peer->lastReachTime;
3709 MUTEX_EXIT(&peer->peer_lock);
3710 if (now - lastReach < RX_CHECKREACH_TTL)
3713 MUTEX_ENTER(&conn->conn_data_lock);
3714 if (conn->flags & RX_CONN_ATTACHWAIT) {
3715 MUTEX_EXIT(&conn->conn_data_lock);
3718 conn->flags |= RX_CONN_ATTACHWAIT;
3719 MUTEX_EXIT(&conn->conn_data_lock);
3720 if (!conn->checkReachEvent)
3721 rxi_CheckReachEvent(NULL, conn, call);
3726 /* try to attach call, if authentication is complete */
3728 TryAttach(struct rx_call *acall, osi_socket socket,
3729 int *tnop, struct rx_call **newcallp,
3732 struct rx_connection *conn = acall->conn;
3734 if (conn->type == RX_SERVER_CONNECTION