2 * Copyright 2000, International Business Machines Corporation and others.
5 * This software has been released under the terms of the IBM Public
6 * License. For details, see the LICENSE file in the top-level source
7 * directory or online at http://www.openafs.org/dl/license10.html
10 /* RX: Extended Remote Procedure Call */
12 #include <afsconfig.h>
13 #include <afs/param.h>
16 # include "afs/sysincludes.h"
17 # include "afsincludes.h"
22 # ifdef AFS_LINUX20_ENV
23 # include "h/socket.h"
25 # include "netinet/in.h"
27 # include "netinet/ip6.h"
28 # include "inet/common.h"
30 # include "inet/ip_ire.h"
32 # include "afs/afs_args.h"
33 # include "afs/afs_osi.h"
34 # ifdef RX_KERNEL_TRACE
35 # include "rx_kcommon.h"
37 # if defined(AFS_AIX_ENV)
41 # undef RXDEBUG /* turn off debugging */
43 # if defined(AFS_SGI_ENV)
44 # include "sys/debug.h"
47 # include "afs/sysincludes.h"
48 # include "afsincludes.h"
49 # endif /* !UKERNEL */
50 # include "afs/lock.h"
51 # include "rx_kmutex.h"
52 # include "rx_kernel.h"
53 # define AFSOP_STOP_RXCALLBACK 210 /* Stop CALLBACK process */
54 # define AFSOP_STOP_AFS 211 /* Stop AFS process */
55 # define AFSOP_STOP_BKG 212 /* Stop BKG process */
56 extern afs_int32 afs_termState;
58 # include "sys/lockl.h"
59 # include "sys/lock_def.h"
60 # endif /* AFS_AIX41_ENV */
61 # include "afs/rxgen_consts.h"
66 # include <afs/afsutil.h>
67 # include <WINNT\afsreg.h>
75 #include <opr/queue.h>
79 #include "rx_atomic.h"
80 #include "rx_globals.h"
82 #include "rx_internal.h"
89 #include "rx_packet.h"
90 #include "rx_server.h"
92 #include <afs/rxgen_consts.h>
95 #ifdef AFS_PTHREAD_ENV
97 int (*registerProgram) (pid_t, char *) = 0;
98 int (*swapNameProgram) (pid_t, const char *, char *) = 0;
101 int (*registerProgram) (PROCESS, char *) = 0;
102 int (*swapNameProgram) (PROCESS, const char *, char *) = 0;
106 /* Local static routines */
107 static void rxi_DestroyConnectionNoLock(struct rx_connection *conn);
108 static void rxi_ComputeRoundTripTime(struct rx_packet *, struct rx_ackPacket *,
109 struct rx_call *, struct rx_peer *,
111 static void rxi_Resend(struct rxevent *event, void *arg0, void *arg1,
113 static void rxi_SendDelayedAck(struct rxevent *event, void *call,
114 void *dummy, int dummy2);
115 static void rxi_SendDelayedCallAbort(struct rxevent *event, void *arg1,
116 void *dummy, int dummy2);
117 static void rxi_SendDelayedConnAbort(struct rxevent *event, void *arg1,
118 void *unused, int unused2);
119 static void rxi_ReapConnections(struct rxevent *unused, void *unused1,
120 void *unused2, int unused3);
121 static struct rx_packet *rxi_SendCallAbort(struct rx_call *call,
122 struct rx_packet *packet,
123 int istack, int force);
124 static void rxi_AckAll(struct rx_call *call);
125 static struct rx_connection
126 *rxi_FindConnection(osi_socket socket, afs_uint32 host, u_short port,
127 u_short serviceId, afs_uint32 cid,
128 afs_uint32 epoch, int type, u_int securityIndex);
129 static struct rx_packet
130 *rxi_ReceiveDataPacket(struct rx_call *call, struct rx_packet *np,
131 int istack, osi_socket socket,
132 afs_uint32 host, u_short port, int *tnop,
133 struct rx_call **newcallp);
134 static struct rx_packet
135 *rxi_ReceiveAckPacket(struct rx_call *call, struct rx_packet *np,
137 static struct rx_packet
138 *rxi_ReceiveResponsePacket(struct rx_connection *conn,
139 struct rx_packet *np, int istack);
140 static struct rx_packet
141 *rxi_ReceiveChallengePacket(struct rx_connection *conn,
142 struct rx_packet *np, int istack);
143 static void rxi_AttachServerProc(struct rx_call *call, osi_socket socket,
144 int *tnop, struct rx_call **newcallp);
145 static void rxi_ClearTransmitQueue(struct rx_call *call, int force);
146 static void rxi_ClearReceiveQueue(struct rx_call *call);
147 static void rxi_ResetCall(struct rx_call *call, int newcall);
148 static void rxi_ScheduleKeepAliveEvent(struct rx_call *call);
149 static void rxi_ScheduleNatKeepAliveEvent(struct rx_connection *conn);
150 static void rxi_ScheduleGrowMTUEvent(struct rx_call *call, int secs);
151 static void rxi_KeepAliveOn(struct rx_call *call);
152 static void rxi_GrowMTUOn(struct rx_call *call);
153 static void rxi_ChallengeOn(struct rx_connection *conn);
154 static int rxi_CheckCall(struct rx_call *call, int haveCTLock);
155 static void rxi_AckAllInTransmitQueue(struct rx_call *call);
157 #ifdef RX_ENABLE_LOCKS
159 rx_atomic_t rxi_start_aborted; /* rxi_start awoke after rxi_Send in error.*/
160 rx_atomic_t rxi_start_in_error;
162 #endif /* RX_ENABLE_LOCKS */
164 /* Constant delay time before sending an acknowledge of the last packet
165 * received. This is to avoid sending an extra acknowledge when the
166 * client is about to make another call, anyway, or the server is
169 * The lastAckDelay may not exceeed 400ms without causing peers to
170 * unecessarily timeout.
172 struct clock rx_lastAckDelay = {0, 400000};
174 /* Constant delay time before sending a soft ack when none was requested.
175 * This is to make sure we send soft acks before the sender times out,
176 * Normally we wait and send a hard ack when the receiver consumes the packet
178 * This value has been 100ms in all shipping versions of OpenAFS. Changing it
179 * will require changes to the peer's RTT calculations.
181 struct clock rx_softAckDelay = {0, 100000};
184 * rxi_rpc_peer_stat_cnt counts the total number of peer stat structures
185 * currently allocated within rx. This number is used to allocate the
186 * memory required to return the statistics when queried.
187 * Protected by the rx_rpc_stats mutex.
190 static unsigned int rxi_rpc_peer_stat_cnt;
193 * rxi_rpc_process_stat_cnt counts the total number of local process stat
194 * structures currently allocated within rx. The number is used to allocate
195 * the memory required to return the statistics when queried.
196 * Protected by the rx_rpc_stats mutex.
199 static unsigned int rxi_rpc_process_stat_cnt;
202 * rxi_busyChannelError is a boolean. It indicates whether or not RX_CALL_BUSY
203 * errors should be reported to the application when a call channel appears busy
204 * (inferred from the receipt of RX_PACKET_TYPE_BUSY packets on the channel),
205 * and there are other call channels in the connection that are not busy.
206 * If 0, we do not return errors upon receiving busy packets; we just keep
207 * trying on the same call channel until we hit a timeout.
209 static afs_int32 rxi_busyChannelError = 0;
211 rx_atomic_t rx_nWaiting = RX_ATOMIC_INIT(0);
212 rx_atomic_t rx_nWaited = RX_ATOMIC_INIT(0);
214 /* Incoming calls wait on this queue when there are no available
215 * server processes */
216 struct opr_queue rx_incomingCallQueue;
218 /* Server processes wait on this queue when there are no appropriate
219 * calls to process */
220 struct opr_queue rx_idleServerQueue;
222 #if !defined(offsetof)
223 #include <stddef.h> /* for definition of offsetof() */
226 #ifdef RX_ENABLE_LOCKS
227 afs_kmutex_t rx_atomic_mutex;
230 /* Forward prototypes */
231 static struct rx_call * rxi_NewCall(struct rx_connection *, int);
234 putConnection (struct rx_connection *conn) {
235 MUTEX_ENTER(&rx_refcnt_mutex);
237 MUTEX_EXIT(&rx_refcnt_mutex);
240 #ifdef AFS_PTHREAD_ENV
243 * Use procedural initialization of mutexes/condition variables
247 extern afs_kmutex_t rx_quota_mutex;
248 extern afs_kmutex_t rx_pthread_mutex;
249 extern afs_kmutex_t rx_packets_mutex;
250 extern afs_kmutex_t rx_refcnt_mutex;
251 extern afs_kmutex_t des_init_mutex;
252 extern afs_kmutex_t des_random_mutex;
253 extern afs_kmutex_t rx_clock_mutex;
254 extern afs_kmutex_t rxi_connCacheMutex;
255 extern afs_kmutex_t event_handler_mutex;
256 extern afs_kmutex_t listener_mutex;
257 extern afs_kmutex_t rx_if_init_mutex;
258 extern afs_kmutex_t rx_if_mutex;
260 extern afs_kcondvar_t rx_event_handler_cond;
261 extern afs_kcondvar_t rx_listener_cond;
263 static afs_kmutex_t epoch_mutex;
264 static afs_kmutex_t rx_init_mutex;
265 static afs_kmutex_t rx_debug_mutex;
266 static afs_kmutex_t rx_rpc_stats;
269 rxi_InitPthread(void)
271 MUTEX_INIT(&rx_clock_mutex, "clock", MUTEX_DEFAULT, 0);
272 MUTEX_INIT(&rx_stats_mutex, "stats", MUTEX_DEFAULT, 0);
273 MUTEX_INIT(&rx_atomic_mutex, "atomic", MUTEX_DEFAULT, 0);
274 MUTEX_INIT(&rx_quota_mutex, "quota", MUTEX_DEFAULT, 0);
275 MUTEX_INIT(&rx_pthread_mutex, "pthread", MUTEX_DEFAULT, 0);
276 MUTEX_INIT(&rx_packets_mutex, "packets", MUTEX_DEFAULT, 0);
277 MUTEX_INIT(&rx_refcnt_mutex, "refcnts", MUTEX_DEFAULT, 0);
278 MUTEX_INIT(&epoch_mutex, "epoch", MUTEX_DEFAULT, 0);
279 MUTEX_INIT(&rx_init_mutex, "init", MUTEX_DEFAULT, 0);
280 MUTEX_INIT(&event_handler_mutex, "event handler", MUTEX_DEFAULT, 0);
281 MUTEX_INIT(&rxi_connCacheMutex, "conn cache", MUTEX_DEFAULT, 0);
282 MUTEX_INIT(&listener_mutex, "listener", MUTEX_DEFAULT, 0);
283 MUTEX_INIT(&rx_if_init_mutex, "if init", MUTEX_DEFAULT, 0);
284 MUTEX_INIT(&rx_if_mutex, "if", MUTEX_DEFAULT, 0);
285 MUTEX_INIT(&rx_debug_mutex, "debug", MUTEX_DEFAULT, 0);
287 CV_INIT(&rx_event_handler_cond, "evhand", CV_DEFAULT, 0);
288 CV_INIT(&rx_listener_cond, "rxlisten", CV_DEFAULT, 0);
290 osi_Assert(pthread_key_create(&rx_thread_id_key, NULL) == 0);
291 osi_Assert(pthread_key_create(&rx_ts_info_key, NULL) == 0);
293 MUTEX_INIT(&rx_rpc_stats, "rx_rpc_stats", MUTEX_DEFAULT, 0);
294 MUTEX_INIT(&rx_freePktQ_lock, "rx_freePktQ_lock", MUTEX_DEFAULT, 0);
295 #ifdef RX_ENABLE_LOCKS
298 #endif /* RX_LOCKS_DB */
299 MUTEX_INIT(&freeSQEList_lock, "freeSQEList lock", MUTEX_DEFAULT, 0);
300 MUTEX_INIT(&rx_freeCallQueue_lock, "rx_freeCallQueue_lock", MUTEX_DEFAULT,
302 CV_INIT(&rx_waitingForPackets_cv, "rx_waitingForPackets_cv", CV_DEFAULT,
304 MUTEX_INIT(&rx_peerHashTable_lock, "rx_peerHashTable_lock", MUTEX_DEFAULT,
306 MUTEX_INIT(&rx_connHashTable_lock, "rx_connHashTable_lock", MUTEX_DEFAULT,
308 MUTEX_INIT(&rx_serverPool_lock, "rx_serverPool_lock", MUTEX_DEFAULT, 0);
309 MUTEX_INIT(&rxi_keyCreate_lock, "rxi_keyCreate_lock", MUTEX_DEFAULT, 0);
310 #endif /* RX_ENABLE_LOCKS */
313 pthread_once_t rx_once_init = PTHREAD_ONCE_INIT;
314 #define INIT_PTHREAD_LOCKS osi_Assert(pthread_once(&rx_once_init, rxi_InitPthread)==0)
316 * The rx_stats_mutex mutex protects the following global variables:
317 * rxi_lowConnRefCount
318 * rxi_lowPeerRefCount
327 * The rx_quota_mutex mutex protects the following global variables:
335 * The rx_freePktQ_lock protects the following global variables:
340 * The rx_packets_mutex mutex protects the following global variables:
348 * The rx_pthread_mutex mutex protects the following global variables:
349 * rxi_fcfs_thread_num
352 #define INIT_PTHREAD_LOCKS
356 /* Variables for handling the minProcs implementation. availProcs gives the
357 * number of threads available in the pool at this moment (not counting dudes
358 * executing right now). totalMin gives the total number of procs required
359 * for handling all minProcs requests. minDeficit is a dynamic variable
360 * tracking the # of procs required to satisfy all of the remaining minProcs
362 * For fine grain locking to work, the quota check and the reservation of
363 * a server thread has to come while rxi_availProcs and rxi_minDeficit
364 * are locked. To this end, the code has been modified under #ifdef
365 * RX_ENABLE_LOCKS so that quota checks and reservation occur at the
366 * same time. A new function, ReturnToServerPool() returns the allocation.
368 * A call can be on several queue's (but only one at a time). When
369 * rxi_ResetCall wants to remove the call from a queue, it has to ensure
370 * that no one else is touching the queue. To this end, we store the address
371 * of the queue lock in the call structure (under the call lock) when we
372 * put the call on a queue, and we clear the call_queue_lock when the
373 * call is removed from a queue (once the call lock has been obtained).
374 * This allows rxi_ResetCall to safely synchronize with others wishing
375 * to manipulate the queue.
378 #if defined(RX_ENABLE_LOCKS)
379 static afs_kmutex_t rx_rpc_stats;
382 /* We keep a "last conn pointer" in rxi_FindConnection. The odds are
383 ** pretty good that the next packet coming in is from the same connection
384 ** as the last packet, since we're send multiple packets in a transmit window.
386 struct rx_connection *rxLastConn = 0;
388 #ifdef RX_ENABLE_LOCKS
389 /* The locking hierarchy for rx fine grain locking is composed of these
392 * rx_connHashTable_lock - synchronizes conn creation, rx_connHashTable access
393 * conn_call_lock - used to synchonize rx_EndCall and rx_NewCall
394 * call->lock - locks call data fields.
395 * These are independent of each other:
396 * rx_freeCallQueue_lock
401 * serverQueueEntry->lock
402 * rx_peerHashTable_lock - locked under rx_connHashTable_lock
404 * peer->lock - locks peer data fields.
405 * conn_data_lock - that more than one thread is not updating a conn data
406 * field at the same time.
417 * Do we need a lock to protect the peer field in the conn structure?
418 * conn->peer was previously a constant for all intents and so has no
419 * lock protecting this field. The multihomed client delta introduced
420 * a RX code change : change the peer field in the connection structure
421 * to that remote interface from which the last packet for this
422 * connection was sent out. This may become an issue if further changes
425 #define SET_CALL_QUEUE_LOCK(C, L) (C)->call_queue_lock = (L)
426 #define CLEAR_CALL_QUEUE_LOCK(C) (C)->call_queue_lock = NULL
428 /* rxdb_fileID is used to identify the lock location, along with line#. */
429 static int rxdb_fileID = RXDB_FILE_RX;
430 #endif /* RX_LOCKS_DB */
431 #else /* RX_ENABLE_LOCKS */
432 #define SET_CALL_QUEUE_LOCK(C, L)
433 #define CLEAR_CALL_QUEUE_LOCK(C)
434 #endif /* RX_ENABLE_LOCKS */
435 struct rx_serverQueueEntry *rx_waitForPacket = 0;
436 struct rx_serverQueueEntry *rx_waitingForPacket = 0;
438 /* ------------Exported Interfaces------------- */
440 /* This function allows rxkad to set the epoch to a suitably random number
441 * which rx_NewConnection will use in the future. The principle purpose is to
442 * get rxnull connections to use the same epoch as the rxkad connections do, at
443 * least once the first rxkad connection is established. This is important now
444 * that the host/port addresses aren't used in FindConnection: the uniqueness
445 * of epoch/cid matters and the start time won't do. */
447 #ifdef AFS_PTHREAD_ENV
449 * This mutex protects the following global variables:
453 #define LOCK_EPOCH MUTEX_ENTER(&epoch_mutex)
454 #define UNLOCK_EPOCH MUTEX_EXIT(&epoch_mutex)
458 #endif /* AFS_PTHREAD_ENV */
461 rx_SetEpoch(afs_uint32 epoch)
468 /* Initialize rx. A port number may be mentioned, in which case this
469 * becomes the default port number for any service installed later.
470 * If 0 is provided for the port number, a random port will be chosen
471 * by the kernel. Whether this will ever overlap anything in
472 * /etc/services is anybody's guess... Returns 0 on success, -1 on
477 int rxinit_status = 1;
478 #ifdef AFS_PTHREAD_ENV
480 * This mutex protects the following global variables:
484 #define LOCK_RX_INIT MUTEX_ENTER(&rx_init_mutex)
485 #define UNLOCK_RX_INIT MUTEX_EXIT(&rx_init_mutex)
488 #define UNLOCK_RX_INIT
492 rx_InitHost(u_int host, u_int port)
499 char *htable, *ptable;
506 if (rxinit_status == 0) {
507 tmp_status = rxinit_status;
509 return tmp_status; /* Already started; return previous error code. */
515 if (afs_winsockInit() < 0)
521 * Initialize anything necessary to provide a non-premptive threading
524 rxi_InitializeThreadSupport();
527 /* Allocate and initialize a socket for client and perhaps server
530 rx_socket = rxi_GetHostUDPSocket(host, (u_short) port);
531 if (rx_socket == OSI_NULLSOCKET) {
535 #if defined(RX_ENABLE_LOCKS) && defined(KERNEL)
538 #endif /* RX_LOCKS_DB */
539 MUTEX_INIT(&rx_stats_mutex, "rx_stats_mutex", MUTEX_DEFAULT, 0);
540 MUTEX_INIT(&rx_quota_mutex, "rx_quota_mutex", MUTEX_DEFAULT, 0);
541 MUTEX_INIT(&rx_atomic_mutex, "rx_atomic_mutex", MUTEX_DEFAULT, 0);
542 MUTEX_INIT(&rx_pthread_mutex, "rx_pthread_mutex", MUTEX_DEFAULT, 0);
543 MUTEX_INIT(&rx_packets_mutex, "rx_packets_mutex", MUTEX_DEFAULT, 0);
544 MUTEX_INIT(&rx_refcnt_mutex, "rx_refcnt_mutex", MUTEX_DEFAULT, 0);
545 MUTEX_INIT(&rx_rpc_stats, "rx_rpc_stats", MUTEX_DEFAULT, 0);
546 MUTEX_INIT(&rx_freePktQ_lock, "rx_freePktQ_lock", MUTEX_DEFAULT, 0);
547 MUTEX_INIT(&freeSQEList_lock, "freeSQEList lock", MUTEX_DEFAULT, 0);
548 MUTEX_INIT(&rx_freeCallQueue_lock, "rx_freeCallQueue_lock", MUTEX_DEFAULT,
550 CV_INIT(&rx_waitingForPackets_cv, "rx_waitingForPackets_cv", CV_DEFAULT,
552 MUTEX_INIT(&rx_peerHashTable_lock, "rx_peerHashTable_lock", MUTEX_DEFAULT,
554 MUTEX_INIT(&rx_connHashTable_lock, "rx_connHashTable_lock", MUTEX_DEFAULT,
556 MUTEX_INIT(&rx_serverPool_lock, "rx_serverPool_lock", MUTEX_DEFAULT, 0);
557 #if defined(AFS_HPUX110_ENV)
559 rx_sleepLock = alloc_spinlock(LAST_HELD_ORDER - 10, "rx_sleepLock");
560 #endif /* AFS_HPUX110_ENV */
561 #endif /* RX_ENABLE_LOCKS && KERNEL */
564 rx_connDeadTime = 12;
565 rx_tranquil = 0; /* reset flag */
566 rxi_ResetStatistics();
567 htable = osi_Alloc(rx_hashTableSize * sizeof(struct rx_connection *));
568 PIN(htable, rx_hashTableSize * sizeof(struct rx_connection *)); /* XXXXX */
569 memset(htable, 0, rx_hashTableSize * sizeof(struct rx_connection *));
570 ptable = osi_Alloc(rx_hashTableSize * sizeof(struct rx_peer *));
571 PIN(ptable, rx_hashTableSize * sizeof(struct rx_peer *)); /* XXXXX */
572 memset(ptable, 0, rx_hashTableSize * sizeof(struct rx_peer *));
574 /* Malloc up a bunch of packets & buffers */
576 opr_queue_Init(&rx_freePacketQueue);
577 rxi_NeedMorePackets = FALSE;
578 rx_nPackets = 0; /* rx_nPackets is managed by rxi_MorePackets* */
580 /* enforce a minimum number of allocated packets */
581 if (rx_extraPackets < rxi_nSendFrags * rx_maxSendWindow)
582 rx_extraPackets = rxi_nSendFrags * rx_maxSendWindow;
584 /* allocate the initial free packet pool */
585 #ifdef RX_ENABLE_TSFPQ
586 rxi_MorePacketsTSFPQ(rx_extraPackets + RX_MAX_QUOTA + 2, RX_TS_FPQ_FLUSH_GLOBAL, 0);
587 #else /* RX_ENABLE_TSFPQ */
588 rxi_MorePackets(rx_extraPackets + RX_MAX_QUOTA + 2); /* fudge */
589 #endif /* RX_ENABLE_TSFPQ */
596 #if defined(AFS_NT40_ENV) && !defined(AFS_PTHREAD_ENV)
597 tv.tv_sec = clock_now.sec;
598 tv.tv_usec = clock_now.usec;
599 srand((unsigned int)tv.tv_usec);
606 #if defined(KERNEL) && !defined(UKERNEL)
607 /* Really, this should never happen in a real kernel */
610 struct sockaddr_in addr;
612 int addrlen = sizeof(addr);
614 socklen_t addrlen = sizeof(addr);
616 if (getsockname((intptr_t)rx_socket, (struct sockaddr *)&addr, &addrlen)) {
618 osi_Free(htable, rx_hashTableSize * sizeof(struct rx_connection *));
621 rx_port = addr.sin_port;
624 rx_stats.minRtt.sec = 9999999;
626 rx_SetEpoch(tv.tv_sec | 0x80000000);
628 rx_SetEpoch(tv.tv_sec); /* Start time of this package, rxkad
629 * will provide a randomer value. */
631 MUTEX_ENTER(&rx_quota_mutex);
632 rxi_dataQuota += rx_extraQuota; /* + extra pkts caller asked to rsrv */
633 MUTEX_EXIT(&rx_quota_mutex);
634 /* *Slightly* random start time for the cid. This is just to help
635 * out with the hashing function at the peer */
636 rx_nextCid = ((tv.tv_sec ^ tv.tv_usec) << RX_CIDSHIFT);
637 rx_connHashTable = (struct rx_connection **)htable;
638 rx_peerHashTable = (struct rx_peer **)ptable;
640 rx_hardAckDelay.sec = 0;
641 rx_hardAckDelay.usec = 100000; /* 100 milliseconds */
643 rxevent_Init(20, rxi_ReScheduleEvents);
645 /* Initialize various global queues */
646 opr_queue_Init(&rx_idleServerQueue);
647 opr_queue_Init(&rx_incomingCallQueue);
648 opr_queue_Init(&rx_freeCallQueue);
650 #if defined(AFS_NT40_ENV) && !defined(KERNEL)
651 /* Initialize our list of usable IP addresses. */
655 #if defined(RXK_LISTENER_ENV) || !defined(KERNEL)
656 /* Start listener process (exact function is dependent on the
657 * implementation environment--kernel or user space) */
662 tmp_status = rxinit_status = 0;
670 return rx_InitHost(htonl(INADDR_ANY), port);
676 * The rxi_rto functions implement a TCP (RFC2988) style algorithm for
677 * maintaing the round trip timer.
682 * Start a new RTT timer for a given call and packet.
684 * There must be no resendEvent already listed for this call, otherwise this
685 * will leak events - intended for internal use within the RTO code only
688 * the RX call to start the timer for
689 * @param[in] lastPacket
690 * a flag indicating whether the last packet has been sent or not
692 * @pre call must be locked before calling this function
696 rxi_rto_startTimer(struct rx_call *call, int lastPacket, int istack)
698 struct clock now, retryTime;
703 clock_Add(&retryTime, &call->rto);
705 /* If we're sending the last packet, and we're the client, then the server
706 * may wait for an additional 400ms before returning the ACK, wait for it
707 * rather than hitting a timeout */
708 if (lastPacket && call->conn->type == RX_CLIENT_CONNECTION)
709 clock_Addmsec(&retryTime, 400);
711 CALL_HOLD(call, RX_CALL_REFCOUNT_RESEND);
712 call->resendEvent = rxevent_Post(&retryTime, &now, rxi_Resend,
717 * Cancel an RTT timer for a given call.
721 * the RX call to cancel the timer for
723 * @pre call must be locked before calling this function
728 rxi_rto_cancel(struct rx_call *call)
730 rxevent_Cancel(&call->resendEvent, call, RX_CALL_REFCOUNT_RESEND);
734 * Tell the RTO timer that we have sent a packet.
736 * If the timer isn't already running, then start it. If the timer is running,
740 * the RX call that the packet has been sent on
741 * @param[in] lastPacket
742 * A flag which is true if this is the last packet for the call
744 * @pre The call must be locked before calling this function
749 rxi_rto_packet_sent(struct rx_call *call, int lastPacket, int istack)
751 if (call->resendEvent)
754 rxi_rto_startTimer(call, lastPacket, istack);
758 * Tell the RTO timer that we have received an new ACK message
760 * This function should be called whenever a call receives an ACK that
761 * acknowledges new packets. Whatever happens, we stop the current timer.
762 * If there are unacked packets in the queue which have been sent, then
763 * we restart the timer from now. Otherwise, we leave it stopped.
766 * the RX call that the ACK has been received on
770 rxi_rto_packet_acked(struct rx_call *call, int istack)
772 struct opr_queue *cursor;
774 rxi_rto_cancel(call);
776 if (opr_queue_IsEmpty(&call->tq))
779 for (opr_queue_Scan(&call->tq, cursor)) {
780 struct rx_packet *p = opr_queue_Entry(cursor, struct rx_packet, entry);
781 if (p->header.seq > call->tfirst + call->twind)
784 if (!(p->flags & RX_PKTFLAG_ACKED) && p->flags & RX_PKTFLAG_SENT) {
785 rxi_rto_startTimer(call, p->header.flags & RX_LAST_PACKET, istack);
793 * Set an initial round trip timeout for a peer connection
795 * @param[in] secs The timeout to set in seconds
799 rx_rto_setPeerTimeoutSecs(struct rx_peer *peer, int secs) {
800 peer->rtt = secs * 8000;
804 * Enables or disables the busy call channel error (RX_CALL_BUSY).
806 * @param[in] onoff Non-zero to enable busy call channel errors.
808 * @pre Neither rx_Init nor rx_InitHost have been called yet
811 rx_SetBusyChannelError(afs_int32 onoff)
813 osi_Assert(rxinit_status != 0);
814 rxi_busyChannelError = onoff ? 1 : 0;
818 * Set a delayed ack event on the specified call for the given time
820 * @param[in] call - the call on which to set the event
821 * @param[in] offset - the delay from now after which the event fires
824 rxi_PostDelayedAckEvent(struct rx_call *call, struct clock *offset)
826 struct clock now, when;
830 clock_Add(&when, offset);
832 if (!call->delayedAckEvent
833 || clock_Gt(&call->delayedAckTime, &when)) {
835 rxevent_Cancel(&call->delayedAckEvent, call,
836 RX_CALL_REFCOUNT_DELAY);
837 CALL_HOLD(call, RX_CALL_REFCOUNT_DELAY);
839 call->delayedAckEvent = rxevent_Post(&when, &now,
842 call->delayedAckTime = when;
846 /* called with unincremented nRequestsRunning to see if it is OK to start
847 * a new thread in this service. Could be "no" for two reasons: over the
848 * max quota, or would prevent others from reaching their min quota.
850 #ifdef RX_ENABLE_LOCKS
851 /* This verion of QuotaOK reserves quota if it's ok while the
852 * rx_serverPool_lock is held. Return quota using ReturnToServerPool().
855 QuotaOK(struct rx_service *aservice)
857 /* check if over max quota */
858 if (aservice->nRequestsRunning >= aservice->maxProcs) {
862 /* under min quota, we're OK */
863 /* otherwise, can use only if there are enough to allow everyone
864 * to go to their min quota after this guy starts.
867 MUTEX_ENTER(&rx_quota_mutex);
868 if ((aservice->nRequestsRunning < aservice->minProcs)
869 || (rxi_availProcs > rxi_minDeficit)) {
870 aservice->nRequestsRunning++;
871 /* just started call in minProcs pool, need fewer to maintain
873 if (aservice->nRequestsRunning <= aservice->minProcs)
876 MUTEX_EXIT(&rx_quota_mutex);
879 MUTEX_EXIT(&rx_quota_mutex);
885 ReturnToServerPool(struct rx_service *aservice)
887 aservice->nRequestsRunning--;
888 MUTEX_ENTER(&rx_quota_mutex);
889 if (aservice->nRequestsRunning < aservice->minProcs)
892 MUTEX_EXIT(&rx_quota_mutex);
895 #else /* RX_ENABLE_LOCKS */
897 QuotaOK(struct rx_service *aservice)
900 /* under min quota, we're OK */
901 if (aservice->nRequestsRunning < aservice->minProcs)
904 /* check if over max quota */
905 if (aservice->nRequestsRunning >= aservice->maxProcs)
908 /* otherwise, can use only if there are enough to allow everyone
909 * to go to their min quota after this guy starts.
911 MUTEX_ENTER(&rx_quota_mutex);
912 if (rxi_availProcs > rxi_minDeficit)
914 MUTEX_EXIT(&rx_quota_mutex);
917 #endif /* RX_ENABLE_LOCKS */
920 /* Called by rx_StartServer to start up lwp's to service calls.
921 NExistingProcs gives the number of procs already existing, and which
922 therefore needn't be created. */
924 rxi_StartServerProcs(int nExistingProcs)
926 struct rx_service *service;
931 /* For each service, reserve N processes, where N is the "minimum"
932 * number of processes that MUST be able to execute a request in parallel,
933 * at any time, for that process. Also compute the maximum difference
934 * between any service's maximum number of processes that can run
935 * (i.e. the maximum number that ever will be run, and a guarantee
936 * that this number will run if other services aren't running), and its
937 * minimum number. The result is the extra number of processes that
938 * we need in order to provide the latter guarantee */
939 for (i = 0; i < RX_MAX_SERVICES; i++) {
941 service = rx_services[i];
942 if (service == (struct rx_service *)0)
944 nProcs += service->minProcs;
945 diff = service->maxProcs - service->minProcs;
949 nProcs += maxdiff; /* Extra processes needed to allow max number requested to run in any given service, under good conditions */
950 nProcs -= nExistingProcs; /* Subtract the number of procs that were previously created for use as server procs */
951 for (i = 0; i < nProcs; i++) {
952 rxi_StartServerProc(rx_ServerProc, rx_stackSize);
958 /* This routine is only required on Windows */
960 rx_StartClientThread(void)
962 #ifdef AFS_PTHREAD_ENV
964 pid = pthread_self();
965 #endif /* AFS_PTHREAD_ENV */
967 #endif /* AFS_NT40_ENV */
969 /* This routine must be called if any services are exported. If the
970 * donateMe flag is set, the calling process is donated to the server
973 rx_StartServer(int donateMe)
975 struct rx_service *service;
981 /* Start server processes, if necessary (exact function is dependent
982 * on the implementation environment--kernel or user space). DonateMe
983 * will be 1 if there is 1 pre-existing proc, i.e. this one. In this
984 * case, one less new proc will be created rx_StartServerProcs.
986 rxi_StartServerProcs(donateMe);
988 /* count up the # of threads in minProcs, and add set the min deficit to
989 * be that value, too.
991 for (i = 0; i < RX_MAX_SERVICES; i++) {
992 service = rx_services[i];
993 if (service == (struct rx_service *)0)
995 MUTEX_ENTER(&rx_quota_mutex);
996 rxi_totalMin += service->minProcs;
997 /* below works even if a thread is running, since minDeficit would
998 * still have been decremented and later re-incremented.
1000 rxi_minDeficit += service->minProcs;
1001 MUTEX_EXIT(&rx_quota_mutex);
1004 /* Turn on reaping of idle server connections */
1005 rxi_ReapConnections(NULL, NULL, NULL, 0);
1010 #ifndef AFS_NT40_ENV
1014 #ifdef AFS_PTHREAD_ENV
1016 pid = afs_pointer_to_int(pthread_self());
1017 #else /* AFS_PTHREAD_ENV */
1019 LWP_CurrentProcess(&pid);
1020 #endif /* AFS_PTHREAD_ENV */
1022 sprintf(name, "srv_%d", ++nProcs);
1023 if (registerProgram)
1024 (*registerProgram) (pid, name);
1026 #endif /* AFS_NT40_ENV */
1027 rx_ServerProc(NULL); /* Never returns */
1029 #ifdef RX_ENABLE_TSFPQ
1030 /* no use leaving packets around in this thread's local queue if
1031 * it isn't getting donated to the server thread pool.
1033 rxi_FlushLocalPacketsTSFPQ();
1034 #endif /* RX_ENABLE_TSFPQ */
1038 /* Create a new client connection to the specified service, using the
1039 * specified security object to implement the security model for this
1041 struct rx_connection *
1042 rx_NewConnection(afs_uint32 shost, u_short sport, u_short sservice,
1043 struct rx_securityClass *securityObject,
1044 int serviceSecurityIndex)
1048 struct rx_connection *conn;
1053 dpf(("rx_NewConnection(host %x, port %u, service %u, securityObject %p, "
1054 "serviceSecurityIndex %d)\n",
1055 ntohl(shost), ntohs(sport), sservice, securityObject,
1056 serviceSecurityIndex));
1058 /* Vasilsi said: "NETPRI protects Cid and Alloc", but can this be true in
1059 * the case of kmem_alloc? */
1060 conn = rxi_AllocConnection();
1061 #ifdef RX_ENABLE_LOCKS
1062 MUTEX_INIT(&conn->conn_call_lock, "conn call lock", MUTEX_DEFAULT, 0);
1063 MUTEX_INIT(&conn->conn_data_lock, "conn data lock", MUTEX_DEFAULT, 0);
1064 CV_INIT(&conn->conn_call_cv, "conn call cv", CV_DEFAULT, 0);
1067 MUTEX_ENTER(&rx_connHashTable_lock);
1068 cid = (rx_nextCid += RX_MAXCALLS);
1069 conn->type = RX_CLIENT_CONNECTION;
1071 conn->epoch = rx_epoch;
1072 conn->peer = rxi_FindPeer(shost, sport, 0, 1);
1073 conn->serviceId = sservice;
1074 conn->securityObject = securityObject;
1075 conn->securityData = (void *) 0;
1076 conn->securityIndex = serviceSecurityIndex;
1077 rx_SetConnDeadTime(conn, rx_connDeadTime);
1078 rx_SetConnSecondsUntilNatPing(conn, 0);
1079 conn->ackRate = RX_FAST_ACK_RATE;
1080 conn->nSpecific = 0;
1081 conn->specific = NULL;
1082 conn->challengeEvent = NULL;
1083 conn->delayedAbortEvent = NULL;
1084 conn->abortCount = 0;
1086 for (i = 0; i < RX_MAXCALLS; i++) {
1087 conn->twind[i] = rx_initSendWindow;
1088 conn->rwind[i] = rx_initReceiveWindow;
1089 conn->lastBusy[i] = 0;
1092 RXS_NewConnection(securityObject, conn);
1094 CONN_HASH(shost, sport, conn->cid, conn->epoch, RX_CLIENT_CONNECTION);
1096 conn->refCount++; /* no lock required since only this thread knows... */
1097 conn->next = rx_connHashTable[hashindex];
1098 rx_connHashTable[hashindex] = conn;
1099 if (rx_stats_active)
1100 rx_atomic_inc(&rx_stats.nClientConns);
1101 MUTEX_EXIT(&rx_connHashTable_lock);
1107 * Ensure a connection's timeout values are valid.
1109 * @param[in] conn The connection to check
1111 * @post conn->secondUntilDead <= conn->idleDeadTime <= conn->hardDeadTime,
1112 * unless idleDeadTime and/or hardDeadTime are not set
1116 rxi_CheckConnTimeouts(struct rx_connection *conn)
1118 /* a connection's timeouts must have the relationship
1119 * deadTime <= idleDeadTime <= hardDeadTime. Otherwise, for example, a
1120 * total loss of network to a peer may cause an idle timeout instead of a
1121 * dead timeout, simply because the idle timeout gets hit first. Also set
1122 * a minimum deadTime of 6, just to ensure it doesn't get set too low. */
1123 /* this logic is slightly complicated by the fact that
1124 * idleDeadTime/hardDeadTime may not be set at all, but it's not too bad.
1126 conn->secondsUntilDead = MAX(conn->secondsUntilDead, 6);
1127 if (conn->idleDeadTime) {
1128 conn->idleDeadTime = MAX(conn->idleDeadTime, conn->secondsUntilDead);
1130 if (conn->hardDeadTime) {
1131 if (conn->idleDeadTime) {
1132 conn->hardDeadTime = MAX(conn->idleDeadTime, conn->hardDeadTime);
1134 conn->hardDeadTime = MAX(conn->secondsUntilDead, conn->hardDeadTime);
1140 rx_SetConnDeadTime(struct rx_connection *conn, int seconds)
1142 /* The idea is to set the dead time to a value that allows several
1143 * keepalives to be dropped without timing out the connection. */
1144 conn->secondsUntilDead = seconds;
1145 rxi_CheckConnTimeouts(conn);
1146 conn->secondsUntilPing = conn->secondsUntilDead / 6;
1150 rx_SetConnHardDeadTime(struct rx_connection *conn, int seconds)
1152 conn->hardDeadTime = seconds;
1153 rxi_CheckConnTimeouts(conn);
1157 rx_SetConnIdleDeadTime(struct rx_connection *conn, int seconds)
1159 conn->idleDeadTime = seconds;
1160 conn->idleDeadDetection = (seconds ? 1 : 0);
1161 rxi_CheckConnTimeouts(conn);
1164 int rxi_lowPeerRefCount = 0;
1165 int rxi_lowConnRefCount = 0;
1168 * Cleanup a connection that was destroyed in rxi_DestroyConnectioNoLock.
1169 * NOTE: must not be called with rx_connHashTable_lock held.
1172 rxi_CleanupConnection(struct rx_connection *conn)
1174 /* Notify the service exporter, if requested, that this connection
1175 * is being destroyed */
1176 if (conn->type == RX_SERVER_CONNECTION && conn->service->destroyConnProc)
1177 (*conn->service->destroyConnProc) (conn);
1179 /* Notify the security module that this connection is being destroyed */
1180 RXS_DestroyConnection(conn->securityObject, conn);
1182 /* If this is the last connection using the rx_peer struct, set its
1183 * idle time to now. rxi_ReapConnections will reap it if it's still
1184 * idle (refCount == 0) after rx_idlePeerTime (60 seconds) have passed.
1186 MUTEX_ENTER(&rx_peerHashTable_lock);
1187 if (conn->peer->refCount < 2) {
1188 conn->peer->idleWhen = clock_Sec();
1189 if (conn->peer->refCount < 1) {
1190 conn->peer->refCount = 1;
1191 if (rx_stats_active) {
1192 MUTEX_ENTER(&rx_stats_mutex);
1193 rxi_lowPeerRefCount++;
1194 MUTEX_EXIT(&rx_stats_mutex);
1198 conn->peer->refCount--;
1199 MUTEX_EXIT(&rx_peerHashTable_lock);
1201 if (rx_stats_active)
1203 if (conn->type == RX_SERVER_CONNECTION)
1204 rx_atomic_dec(&rx_stats.nServerConns);
1206 rx_atomic_dec(&rx_stats.nClientConns);
1209 if (conn->specific) {
1211 for (i = 0; i < conn->nSpecific; i++) {
1212 if (conn->specific[i] && rxi_keyCreate_destructor[i])
1213 (*rxi_keyCreate_destructor[i]) (conn->specific[i]);
1214 conn->specific[i] = NULL;
1216 free(conn->specific);
1218 conn->specific = NULL;
1219 conn->nSpecific = 0;
1220 #endif /* !KERNEL */
1222 MUTEX_DESTROY(&conn->conn_call_lock);
1223 MUTEX_DESTROY(&conn->conn_data_lock);
1224 CV_DESTROY(&conn->conn_call_cv);
1226 rxi_FreeConnection(conn);
1229 /* Destroy the specified connection */
1231 rxi_DestroyConnection(struct rx_connection *conn)
1233 MUTEX_ENTER(&rx_connHashTable_lock);
1234 rxi_DestroyConnectionNoLock(conn);
1235 /* conn should be at the head of the cleanup list */
1236 if (conn == rx_connCleanup_list) {
1237 rx_connCleanup_list = rx_connCleanup_list->next;
1238 MUTEX_EXIT(&rx_connHashTable_lock);
1239 rxi_CleanupConnection(conn);
1241 #ifdef RX_ENABLE_LOCKS
1243 MUTEX_EXIT(&rx_connHashTable_lock);
1245 #endif /* RX_ENABLE_LOCKS */
1249 rxi_DestroyConnectionNoLock(struct rx_connection *conn)
1251 struct rx_connection **conn_ptr;
1253 struct rx_packet *packet;
1260 MUTEX_ENTER(&conn->conn_data_lock);
1261 MUTEX_ENTER(&rx_refcnt_mutex);
1262 if (conn->refCount > 0)
1265 if (rx_stats_active) {
1266 MUTEX_ENTER(&rx_stats_mutex);
1267 rxi_lowConnRefCount++;
1268 MUTEX_EXIT(&rx_stats_mutex);
1272 if ((conn->refCount > 0) || (conn->flags & RX_CONN_BUSY)) {
1273 /* Busy; wait till the last guy before proceeding */
1274 MUTEX_EXIT(&rx_refcnt_mutex);
1275 MUTEX_EXIT(&conn->conn_data_lock);
1280 /* If the client previously called rx_NewCall, but it is still
1281 * waiting, treat this as a running call, and wait to destroy the
1282 * connection later when the call completes. */
1283 if ((conn->type == RX_CLIENT_CONNECTION)
1284 && (conn->flags & (RX_CONN_MAKECALL_WAITING|RX_CONN_MAKECALL_ACTIVE))) {
1285 conn->flags |= RX_CONN_DESTROY_ME;
1286 MUTEX_EXIT(&conn->conn_data_lock);
1290 MUTEX_EXIT(&rx_refcnt_mutex);
1291 MUTEX_EXIT(&conn->conn_data_lock);
1293 /* Check for extant references to this connection */
1294 MUTEX_ENTER(&conn->conn_call_lock);
1295 for (i = 0; i < RX_MAXCALLS; i++) {
1296 struct rx_call *call = conn->call[i];
1299 if (conn->type == RX_CLIENT_CONNECTION) {
1300 MUTEX_ENTER(&call->lock);
1301 if (call->delayedAckEvent) {
1302 /* Push the final acknowledgment out now--there
1303 * won't be a subsequent call to acknowledge the
1304 * last reply packets */
1305 rxevent_Cancel(&call->delayedAckEvent, call,
1306 RX_CALL_REFCOUNT_DELAY);
1307 if (call->state == RX_STATE_PRECALL
1308 || call->state == RX_STATE_ACTIVE) {
1309 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
1314 MUTEX_EXIT(&call->lock);
1318 MUTEX_EXIT(&conn->conn_call_lock);
1320 #ifdef RX_ENABLE_LOCKS
1322 if (MUTEX_TRYENTER(&conn->conn_data_lock)) {
1323 MUTEX_EXIT(&conn->conn_data_lock);
1325 /* Someone is accessing a packet right now. */
1329 #endif /* RX_ENABLE_LOCKS */
1332 /* Don't destroy the connection if there are any call
1333 * structures still in use */
1334 MUTEX_ENTER(&conn->conn_data_lock);
1335 conn->flags |= RX_CONN_DESTROY_ME;
1336 MUTEX_EXIT(&conn->conn_data_lock);
1341 if (conn->natKeepAliveEvent) {
1342 rxi_NatKeepAliveOff(conn);
1345 if (conn->delayedAbortEvent) {
1346 rxevent_Cancel(&conn->delayedAbortEvent, NULL, 0);
1347 packet = rxi_AllocPacket(RX_PACKET_CLASS_SPECIAL);
1349 MUTEX_ENTER(&conn->conn_data_lock);
1350 rxi_SendConnectionAbort(conn, packet, 0, 1);
1351 MUTEX_EXIT(&conn->conn_data_lock);
1352 rxi_FreePacket(packet);
1356 /* Remove from connection hash table before proceeding */
1358 &rx_connHashTable[CONN_HASH
1359 (peer->host, peer->port, conn->cid, conn->epoch,
1361 for (; *conn_ptr; conn_ptr = &(*conn_ptr)->next) {
1362 if (*conn_ptr == conn) {
1363 *conn_ptr = conn->next;
1367 /* if the conn that we are destroying was the last connection, then we
1368 * clear rxLastConn as well */
1369 if (rxLastConn == conn)
1372 /* Make sure the connection is completely reset before deleting it. */
1373 /* get rid of pending events that could zap us later */
1374 rxevent_Cancel(&conn->challengeEvent, NULL, 0);
1375 rxevent_Cancel(&conn->checkReachEvent, NULL, 0);
1376 rxevent_Cancel(&conn->natKeepAliveEvent, NULL, 0);
1378 /* Add the connection to the list of destroyed connections that
1379 * need to be cleaned up. This is necessary to avoid deadlocks
1380 * in the routines we call to inform others that this connection is
1381 * being destroyed. */
1382 conn->next = rx_connCleanup_list;
1383 rx_connCleanup_list = conn;
1386 /* Externally available version */
1388 rx_DestroyConnection(struct rx_connection *conn)
1393 rxi_DestroyConnection(conn);
1398 rx_GetConnection(struct rx_connection *conn)
1403 MUTEX_ENTER(&rx_refcnt_mutex);
1405 MUTEX_EXIT(&rx_refcnt_mutex);
1409 #ifdef RX_ENABLE_LOCKS
1410 /* Wait for the transmit queue to no longer be busy.
1411 * requires the call->lock to be held */
1413 rxi_WaitforTQBusy(struct rx_call *call) {
1414 while (!call->error && (call->flags & RX_CALL_TQ_BUSY)) {
1415 call->flags |= RX_CALL_TQ_WAIT;
1417 MUTEX_ASSERT(&call->lock);
1418 CV_WAIT(&call->cv_tq, &call->lock);
1420 if (call->tqWaiters == 0) {
1421 call->flags &= ~RX_CALL_TQ_WAIT;
1428 rxi_WakeUpTransmitQueue(struct rx_call *call)
1430 if (call->tqWaiters || (call->flags & RX_CALL_TQ_WAIT)) {
1431 dpf(("call %"AFS_PTR_FMT" has %d waiters and flags %d\n",
1432 call, call->tqWaiters, call->flags));
1433 #ifdef RX_ENABLE_LOCKS
1434 MUTEX_ASSERT(&call->lock);
1435 CV_BROADCAST(&call->cv_tq);
1436 #else /* RX_ENABLE_LOCKS */
1437 osi_rxWakeup(&call->tq);
1438 #endif /* RX_ENABLE_LOCKS */
1442 /* Start a new rx remote procedure call, on the specified connection.
1443 * If wait is set to 1, wait for a free call channel; otherwise return
1444 * 0. Maxtime gives the maximum number of seconds this call may take,
1445 * after rx_NewCall returns. After this time interval, a call to any
1446 * of rx_SendData, rx_ReadData, etc. will fail with RX_CALL_TIMEOUT.
1447 * For fine grain locking, we hold the conn_call_lock in order to
1448 * to ensure that we don't get signalle after we found a call in an active
1449 * state and before we go to sleep.
1452 rx_NewCall(struct rx_connection *conn)
1454 int i, wait, ignoreBusy = 1;
1455 struct rx_call *call;
1456 struct clock queueTime;
1457 afs_uint32 leastBusy = 0;
1461 dpf(("rx_NewCall(conn %"AFS_PTR_FMT")\n", conn));
1464 clock_GetTime(&queueTime);
1466 * Check if there are others waiting for a new call.
1467 * If so, let them go first to avoid starving them.
1468 * This is a fairly simple scheme, and might not be
1469 * a complete solution for large numbers of waiters.
1471 * makeCallWaiters keeps track of the number of
1472 * threads waiting to make calls and the
1473 * RX_CONN_MAKECALL_WAITING flag bit is used to
1474 * indicate that there are indeed calls waiting.
1475 * The flag is set when the waiter is incremented.
1476 * It is only cleared when makeCallWaiters is 0.
1477 * This prevents us from accidently destroying the
1478 * connection while it is potentially about to be used.
1480 MUTEX_ENTER(&conn->conn_call_lock);
1481 MUTEX_ENTER(&conn->conn_data_lock);
1482 while (conn->flags & RX_CONN_MAKECALL_ACTIVE) {
1483 conn->flags |= RX_CONN_MAKECALL_WAITING;
1484 conn->makeCallWaiters++;
1485 MUTEX_EXIT(&conn->conn_data_lock);
1487 #ifdef RX_ENABLE_LOCKS
1488 CV_WAIT(&conn->conn_call_cv, &conn->conn_call_lock);
1492 MUTEX_ENTER(&conn->conn_data_lock);
1493 conn->makeCallWaiters--;
1494 if (conn->makeCallWaiters == 0)
1495 conn->flags &= ~RX_CONN_MAKECALL_WAITING;
1498 /* We are now the active thread in rx_NewCall */
1499 conn->flags |= RX_CONN_MAKECALL_ACTIVE;
1500 MUTEX_EXIT(&conn->conn_data_lock);
1505 for (i = 0; i < RX_MAXCALLS; i++) {
1506 call = conn->call[i];
1508 if (!ignoreBusy && conn->lastBusy[i] != leastBusy) {
1509 /* we're not ignoring busy call slots; only look at the
1510 * call slot that is the "least" busy */
1514 if (call->state == RX_STATE_DALLY) {
1515 MUTEX_ENTER(&call->lock);
1516 if (call->state == RX_STATE_DALLY) {
1517 if (ignoreBusy && conn->lastBusy[i]) {
1518 /* if we're ignoring busy call slots, skip any ones that
1519 * have lastBusy set */
1520 if (leastBusy == 0 || conn->lastBusy[i] < leastBusy) {
1521 leastBusy = conn->lastBusy[i];
1523 MUTEX_EXIT(&call->lock);
1528 * We are setting the state to RX_STATE_RESET to
1529 * ensure that no one else will attempt to use this
1530 * call once we drop the conn->conn_call_lock and
1531 * call->lock. We must drop the conn->conn_call_lock
1532 * before calling rxi_ResetCall because the process
1533 * of clearing the transmit queue can block for an
1534 * extended period of time. If we block while holding
1535 * the conn->conn_call_lock, then all rx_EndCall
1536 * processing will block as well. This has a detrimental
1537 * effect on overall system performance.
1539 call->state = RX_STATE_RESET;
1540 (*call->callNumber)++;
1541 MUTEX_EXIT(&conn->conn_call_lock);
1542 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
1543 rxi_ResetCall(call, 0);
1544 if (MUTEX_TRYENTER(&conn->conn_call_lock))
1548 * If we failed to be able to safely obtain the
1549 * conn->conn_call_lock we will have to drop the
1550 * call->lock to avoid a deadlock. When the call->lock
1551 * is released the state of the call can change. If it
1552 * is no longer RX_STATE_RESET then some other thread is
1555 MUTEX_EXIT(&call->lock);
1556 MUTEX_ENTER(&conn->conn_call_lock);
1557 MUTEX_ENTER(&call->lock);
1559 if (call->state == RX_STATE_RESET)
1563 * If we get here it means that after dropping
1564 * the conn->conn_call_lock and call->lock that
1565 * the call is no longer ours. If we can't find
1566 * a free call in the remaining slots we should
1567 * not go immediately to RX_CONN_MAKECALL_WAITING
1568 * because by dropping the conn->conn_call_lock
1569 * we have given up synchronization with rx_EndCall.
1570 * Instead, cycle through one more time to see if
1571 * we can find a call that can call our own.
1573 CALL_RELE(call, RX_CALL_REFCOUNT_BEGIN);
1576 MUTEX_EXIT(&call->lock);
1579 if (ignoreBusy && conn->lastBusy[i]) {
1580 /* if we're ignoring busy call slots, skip any ones that
1581 * have lastBusy set */
1582 if (leastBusy == 0 || conn->lastBusy[i] < leastBusy) {
1583 leastBusy = conn->lastBusy[i];
1588 /* rxi_NewCall returns with mutex locked */
1589 call = rxi_NewCall(conn, i);
1590 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
1594 if (i < RX_MAXCALLS) {
1595 conn->lastBusy[i] = 0;
1596 call->flags &= ~RX_CALL_PEER_BUSY;
1601 if (leastBusy && ignoreBusy) {
1602 /* we didn't find a useable call slot, but we did see at least one
1603 * 'busy' slot; look again and only use a slot with the 'least
1609 MUTEX_ENTER(&conn->conn_data_lock);
1610 conn->flags |= RX_CONN_MAKECALL_WAITING;
1611 conn->makeCallWaiters++;
1612 MUTEX_EXIT(&conn->conn_data_lock);
1614 #ifdef RX_ENABLE_LOCKS
1615 CV_WAIT(&conn->conn_call_cv, &conn->conn_call_lock);
1619 MUTEX_ENTER(&conn->conn_data_lock);
1620 conn->makeCallWaiters--;
1621 if (conn->makeCallWaiters == 0)
1622 conn->flags &= ~RX_CONN_MAKECALL_WAITING;
1623 MUTEX_EXIT(&conn->conn_data_lock);
1625 /* Client is initially in send mode */
1626 call->state = RX_STATE_ACTIVE;
1627 call->error = conn->error;
1629 call->app.mode = RX_MODE_ERROR;
1631 call->app.mode = RX_MODE_SENDING;
1633 #ifdef AFS_RXERRQ_ENV
1634 /* remember how many network errors the peer has when we started, so if
1635 * more errors are encountered after the call starts, we know the other endpoint won't be
1636 * responding to us */
1637 call->neterr_gen = rx_atomic_read(&conn->peer->neterrs);
1640 /* remember start time for call in case we have hard dead time limit */
1641 call->queueTime = queueTime;
1642 clock_GetTime(&call->startTime);
1643 call->app.bytesSent = 0;
1644 call->app.bytesRcvd = 0;
1646 /* Turn on busy protocol. */
1647 rxi_KeepAliveOn(call);
1649 /* Attempt MTU discovery */
1650 rxi_GrowMTUOn(call);
1653 * We are no longer the active thread in rx_NewCall
1655 MUTEX_ENTER(&conn->conn_data_lock);
1656 conn->flags &= ~RX_CONN_MAKECALL_ACTIVE;
1657 MUTEX_EXIT(&conn->conn_data_lock);
1660 * Wake up anyone else who might be giving us a chance to
1661 * run (see code above that avoids resource starvation).
1663 #ifdef RX_ENABLE_LOCKS
1664 if (call->flags & (RX_CALL_TQ_BUSY | RX_CALL_TQ_CLEARME)) {
1665 osi_Panic("rx_NewCall call about to be used without an empty tq");
1668 CV_BROADCAST(&conn->conn_call_cv);
1672 MUTEX_EXIT(&conn->conn_call_lock);
1673 MUTEX_EXIT(&call->lock);
1676 dpf(("rx_NewCall(call %"AFS_PTR_FMT")\n", call));
1681 rxi_HasActiveCalls(struct rx_connection *aconn)
1684 struct rx_call *tcall;
1688 for (i = 0; i < RX_MAXCALLS; i++) {
1689 if ((tcall = aconn->call[i])) {
1690 if ((tcall->state == RX_STATE_ACTIVE)
1691 || (tcall->state == RX_STATE_PRECALL)) {
1702 rxi_GetCallNumberVector(struct rx_connection *aconn,
1703 afs_int32 * aint32s)
1706 struct rx_call *tcall;
1710 MUTEX_ENTER(&aconn->conn_call_lock);
1711 for (i = 0; i < RX_MAXCALLS; i++) {
1712 if ((tcall = aconn->call[i]) && (tcall->state == RX_STATE_DALLY))
1713 aint32s[i] = aconn->callNumber[i] + 1;
1715 aint32s[i] = aconn->callNumber[i];
1717 MUTEX_EXIT(&aconn->conn_call_lock);
1723 rxi_SetCallNumberVector(struct rx_connection *aconn,
1724 afs_int32 * aint32s)
1727 struct rx_call *tcall;
1731 MUTEX_ENTER(&aconn->conn_call_lock);
1732 for (i = 0; i < RX_MAXCALLS; i++) {
1733 if ((tcall = aconn->call[i]) && (tcall->state == RX_STATE_DALLY))
1734 aconn->callNumber[i] = aint32s[i] - 1;
1736 aconn->callNumber[i] = aint32s[i];
1738 MUTEX_EXIT(&aconn->conn_call_lock);
1743 /* Advertise a new service. A service is named locally by a UDP port
1744 * number plus a 16-bit service id. Returns (struct rx_service *) 0
1747 char *serviceName; Name for identification purposes (e.g. the
1748 service name might be used for probing for
1751 rx_NewServiceHost(afs_uint32 host, u_short port, u_short serviceId,
1752 char *serviceName, struct rx_securityClass **securityObjects,
1753 int nSecurityObjects,
1754 afs_int32(*serviceProc) (struct rx_call * acall))
1756 osi_socket socket = OSI_NULLSOCKET;
1757 struct rx_service *tservice;
1763 if (serviceId == 0) {
1765 "rx_NewService: service id for service %s is not non-zero.\n",
1772 "rx_NewService: A non-zero port must be specified on this call if a non-zero port was not provided at Rx initialization (service %s).\n",
1780 tservice = rxi_AllocService();
1783 MUTEX_INIT(&tservice->svc_data_lock, "svc data lock", MUTEX_DEFAULT, 0);
1785 for (i = 0; i < RX_MAX_SERVICES; i++) {
1786 struct rx_service *service = rx_services[i];
1788 if (port == service->servicePort && host == service->serviceHost) {
1789 if (service->serviceId == serviceId) {
1790 /* The identical service has already been
1791 * installed; if the caller was intending to
1792 * change the security classes used by this
1793 * service, he/she loses. */
1795 "rx_NewService: tried to install service %s with service id %d, which is already in use for service %s\n",
1796 serviceName, serviceId, service->serviceName);
1798 rxi_FreeService(tservice);
1801 /* Different service, same port: re-use the socket
1802 * which is bound to the same port */
1803 socket = service->socket;
1806 if (socket == OSI_NULLSOCKET) {
1807 /* If we don't already have a socket (from another
1808 * service on same port) get a new one */
1809 socket = rxi_GetHostUDPSocket(host, port);
1810 if (socket == OSI_NULLSOCKET) {
1812 rxi_FreeService(tservice);
1817 service->socket = socket;
1818 service->serviceHost = host;
1819 service->servicePort = port;
1820 service->serviceId = serviceId;
1821 service->serviceName = serviceName;
1822 service->nSecurityObjects = nSecurityObjects;
1823 service->securityObjects = securityObjects;
1824 service->minProcs = 0;
1825 service->maxProcs = 1;
1826 service->idleDeadTime = 60;
1827 service->idleDeadErr = 0;
1828 service->connDeadTime = rx_connDeadTime;
1829 service->executeRequestProc = serviceProc;
1830 service->checkReach = 0;
1831 service->nSpecific = 0;
1832 service->specific = NULL;
1833 rx_services[i] = service; /* not visible until now */
1839 rxi_FreeService(tservice);
1840 (osi_Msg "rx_NewService: cannot support > %d services\n",
1845 /* Set configuration options for all of a service's security objects */
1848 rx_SetSecurityConfiguration(struct rx_service *service,
1849 rx_securityConfigVariables type,
1853 for (i = 0; i<service->nSecurityObjects; i++) {
1854 if (service->securityObjects[i]) {
1855 RXS_SetConfiguration(service->securityObjects[i], NULL, type,
1863 rx_NewService(u_short port, u_short serviceId, char *serviceName,
1864 struct rx_securityClass **securityObjects, int nSecurityObjects,
1865 afs_int32(*serviceProc) (struct rx_call * acall))
1867 return rx_NewServiceHost(htonl(INADDR_ANY), port, serviceId, serviceName, securityObjects, nSecurityObjects, serviceProc);
1870 /* Generic request processing loop. This routine should be called
1871 * by the implementation dependent rx_ServerProc. If socketp is
1872 * non-null, it will be set to the file descriptor that this thread
1873 * is now listening on. If socketp is null, this routine will never
1876 rxi_ServerProc(int threadID, struct rx_call *newcall, osi_socket * socketp)
1878 struct rx_call *call;
1880 struct rx_service *tservice = NULL;
1887 call = rx_GetCall(threadID, tservice, socketp);
1888 if (socketp && *socketp != OSI_NULLSOCKET) {
1889 /* We are now a listener thread */
1895 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
1896 #ifdef RX_ENABLE_LOCKS
1898 #endif /* RX_ENABLE_LOCKS */
1899 afs_termState = AFSOP_STOP_AFS;
1900 afs_osi_Wakeup(&afs_termState);
1901 #ifdef RX_ENABLE_LOCKS
1903 #endif /* RX_ENABLE_LOCKS */
1908 /* if server is restarting( typically smooth shutdown) then do not
1909 * allow any new calls.
1912 if (rx_tranquil && (call != NULL)) {
1916 MUTEX_ENTER(&call->lock);
1918 rxi_CallError(call, RX_RESTARTING);
1919 rxi_SendCallAbort(call, (struct rx_packet *)0, 0, 0);
1921 MUTEX_EXIT(&call->lock);
1926 tservice = call->conn->service;
1928 if (tservice->beforeProc)
1929 (*tservice->beforeProc) (call);
1931 code = tservice->executeRequestProc(call);
1933 if (tservice->afterProc)
1934 (*tservice->afterProc) (call, code);
1936 rx_EndCall(call, code);
1938 if (tservice->postProc)
1939 (*tservice->postProc) (code);
1941 if (rx_stats_active) {
1942 MUTEX_ENTER(&rx_stats_mutex);
1944 MUTEX_EXIT(&rx_stats_mutex);
1951 rx_WakeupServerProcs(void)
1953 struct rx_serverQueueEntry *np, *tqp;
1954 struct opr_queue *cursor;
1958 MUTEX_ENTER(&rx_serverPool_lock);
1960 #ifdef RX_ENABLE_LOCKS
1961 if (rx_waitForPacket)
1962 CV_BROADCAST(&rx_waitForPacket->cv);
1963 #else /* RX_ENABLE_LOCKS */
1964 if (rx_waitForPacket)
1965 osi_rxWakeup(rx_waitForPacket);
1966 #endif /* RX_ENABLE_LOCKS */
1967 MUTEX_ENTER(&freeSQEList_lock);
1968 for (np = rx_FreeSQEList; np; np = tqp) {
1969 tqp = *(struct rx_serverQueueEntry **)np;
1970 #ifdef RX_ENABLE_LOCKS
1971 CV_BROADCAST(&np->cv);
1972 #else /* RX_ENABLE_LOCKS */
1974 #endif /* RX_ENABLE_LOCKS */
1976 MUTEX_EXIT(&freeSQEList_lock);
1977 for (opr_queue_Scan(&rx_idleServerQueue, cursor)) {
1978 np = opr_queue_Entry(cursor, struct rx_serverQueueEntry, entry);
1979 #ifdef RX_ENABLE_LOCKS
1980 CV_BROADCAST(&np->cv);
1981 #else /* RX_ENABLE_LOCKS */
1983 #endif /* RX_ENABLE_LOCKS */
1985 MUTEX_EXIT(&rx_serverPool_lock);
1990 * One thing that seems to happen is that all the server threads get
1991 * tied up on some empty or slow call, and then a whole bunch of calls
1992 * arrive at once, using up the packet pool, so now there are more
1993 * empty calls. The most critical resources here are server threads
1994 * and the free packet pool. The "doreclaim" code seems to help in
1995 * general. I think that eventually we arrive in this state: there
1996 * are lots of pending calls which do have all their packets present,
1997 * so they won't be reclaimed, are multi-packet calls, so they won't
1998 * be scheduled until later, and thus are tying up most of the free
1999 * packet pool for a very long time.
2001 * 1. schedule multi-packet calls if all the packets are present.
2002 * Probably CPU-bound operation, useful to return packets to pool.
2003 * Do what if there is a full window, but the last packet isn't here?
2004 * 3. preserve one thread which *only* runs "best" calls, otherwise
2005 * it sleeps and waits for that type of call.
2006 * 4. Don't necessarily reserve a whole window for each thread. In fact,
2007 * the current dataquota business is badly broken. The quota isn't adjusted
2008 * to reflect how many packets are presently queued for a running call.
2009 * So, when we schedule a queued call with a full window of packets queued
2010 * up for it, that *should* free up a window full of packets for other 2d-class
2011 * calls to be able to use from the packet pool. But it doesn't.
2013 * NB. Most of the time, this code doesn't run -- since idle server threads
2014 * sit on the idle server queue and are assigned by "...ReceivePacket" as soon
2015 * as a new call arrives.
2017 /* Sleep until a call arrives. Returns a pointer to the call, ready
2018 * for an rx_Read. */
2019 #ifdef RX_ENABLE_LOCKS
2021 rx_GetCall(int tno, struct rx_service *cur_service, osi_socket * socketp)
2023 struct rx_serverQueueEntry *sq;
2024 struct rx_call *call = (struct rx_call *)0;
2025 struct rx_service *service = NULL;
2027 MUTEX_ENTER(&freeSQEList_lock);
2029 if ((sq = rx_FreeSQEList)) {
2030 rx_FreeSQEList = *(struct rx_serverQueueEntry **)sq;
2031 MUTEX_EXIT(&freeSQEList_lock);
2032 } else { /* otherwise allocate a new one and return that */
2033 MUTEX_EXIT(&freeSQEList_lock);
2034 sq = rxi_Alloc(sizeof(struct rx_serverQueueEntry));
2035 MUTEX_INIT(&sq->lock, "server Queue lock", MUTEX_DEFAULT, 0);
2036 CV_INIT(&sq->cv, "server Queue lock", CV_DEFAULT, 0);
2039 MUTEX_ENTER(&rx_serverPool_lock);
2040 if (cur_service != NULL) {
2041 ReturnToServerPool(cur_service);
2044 if (!opr_queue_IsEmpty(&rx_incomingCallQueue)) {
2045 struct rx_call *tcall, *choice2 = NULL;
2046 struct opr_queue *cursor;
2048 /* Scan for eligible incoming calls. A call is not eligible
2049 * if the maximum number of calls for its service type are
2050 * already executing */
2051 /* One thread will process calls FCFS (to prevent starvation),
2052 * while the other threads may run ahead looking for calls which
2053 * have all their input data available immediately. This helps
2054 * keep threads from blocking, waiting for data from the client. */
2055 for (opr_queue_Scan(&rx_incomingCallQueue, cursor)) {
2056 tcall = opr_queue_Entry(cursor, struct rx_call, entry);
2058 service = tcall->conn->service;
2059 if (!QuotaOK(service)) {
2062 MUTEX_ENTER(&rx_pthread_mutex);
2063 if (tno == rxi_fcfs_thread_num
2064 || opr_queue_IsEnd(&rx_incomingCallQueue, cursor)) {
2065 MUTEX_EXIT(&rx_pthread_mutex);
2066 /* If we're the fcfs thread , then we'll just use
2067 * this call. If we haven't been able to find an optimal
2068 * choice, and we're at the end of the list, then use a
2069 * 2d choice if one has been identified. Otherwise... */
2070 call = (choice2 ? choice2 : tcall);
2071 service = call->conn->service;
2073 MUTEX_EXIT(&rx_pthread_mutex);
2074 if (!opr_queue_IsEmpty(&tcall->rq)) {
2075 struct rx_packet *rp;
2076 rp = opr_queue_First(&tcall->rq, struct rx_packet,
2078 if (rp->header.seq == 1) {
2080 || (rp->header.flags & RX_LAST_PACKET)) {
2082 } else if (rxi_2dchoice && !choice2
2083 && !(tcall->flags & RX_CALL_CLEARED)
2084 && (tcall->rprev > rxi_HardAckRate)) {
2094 ReturnToServerPool(service);
2100 opr_queue_Remove(&call->entry);
2101 MUTEX_EXIT(&rx_serverPool_lock);
2102 MUTEX_ENTER(&call->lock);
2104 if (call->flags & RX_CALL_WAIT_PROC) {
2105 call->flags &= ~RX_CALL_WAIT_PROC;
2106 rx_atomic_dec(&rx_nWaiting);
2109 if (call->state != RX_STATE_PRECALL || call->error) {
2110 MUTEX_EXIT(&call->lock);
2111 MUTEX_ENTER(&rx_serverPool_lock);
2112 ReturnToServerPool(service);
2117 if (opr_queue_IsEmpty(&call->rq)
2118 || opr_queue_First(&call->rq, struct rx_packet, entry)->header.seq != 1)
2119 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
2121 CLEAR_CALL_QUEUE_LOCK(call);
2124 /* If there are no eligible incoming calls, add this process
2125 * to the idle server queue, to wait for one */
2129 *socketp = OSI_NULLSOCKET;
2131 sq->socketp = socketp;
2132 opr_queue_Append(&rx_idleServerQueue, &sq->entry);
2133 #ifndef AFS_AIX41_ENV
2134 rx_waitForPacket = sq;
2136 rx_waitingForPacket = sq;
2137 #endif /* AFS_AIX41_ENV */
2139 CV_WAIT(&sq->cv, &rx_serverPool_lock);
2141 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
2142 MUTEX_EXIT(&rx_serverPool_lock);
2143 return (struct rx_call *)0;
2146 } while (!(call = sq->newcall)
2147 && !(socketp && *socketp != OSI_NULLSOCKET));
2148 MUTEX_EXIT(&rx_serverPool_lock);
2150 MUTEX_ENTER(&call->lock);
2156 MUTEX_ENTER(&freeSQEList_lock);
2157 *(struct rx_serverQueueEntry **)sq = rx_FreeSQEList;
2158 rx_FreeSQEList = sq;
2159 MUTEX_EXIT(&freeSQEList_lock);
2162 clock_GetTime(&call->startTime);
2163 call->state = RX_STATE_ACTIVE;
2164 call->app.mode = RX_MODE_RECEIVING;
2165 #ifdef RX_KERNEL_TRACE
2166 if (ICL_SETACTIVE(afs_iclSetp)) {
2167 int glockOwner = ISAFS_GLOCK();
2170 afs_Trace3(afs_iclSetp, CM_TRACE_WASHERE, ICL_TYPE_STRING,
2171 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
2178 rxi_calltrace(RX_CALL_START, call);
2179 dpf(("rx_GetCall(port=%d, service=%d) ==> call %"AFS_PTR_FMT"\n",
2180 call->conn->service->servicePort, call->conn->service->serviceId,
2183 MUTEX_EXIT(&call->lock);
2184 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
2186 dpf(("rx_GetCall(socketp=%p, *socketp=0x%x)\n", socketp, *socketp));
2191 #else /* RX_ENABLE_LOCKS */
2193 rx_GetCall(int tno, struct rx_service *cur_service, osi_socket * socketp)
2195 struct rx_serverQueueEntry *sq;
2196 struct rx_call *call = (struct rx_call *)0, *choice2;
2197 struct rx_service *service = NULL;
2201 MUTEX_ENTER(&freeSQEList_lock);
2203 if ((sq = rx_FreeSQEList)) {
2204 rx_FreeSQEList = *(struct rx_serverQueueEntry **)sq;
2205 MUTEX_EXIT(&freeSQEList_lock);
2206 } else { /* otherwise allocate a new one and return that */
2207 MUTEX_EXIT(&freeSQEList_lock);
2208 sq = rxi_Alloc(sizeof(struct rx_serverQueueEntry));
2209 MUTEX_INIT(&sq->lock, "server Queue lock", MUTEX_DEFAULT, 0);
2210 CV_INIT(&sq->cv, "server Queue lock", CV_DEFAULT, 0);
2212 MUTEX_ENTER(&sq->lock);
2214 if (cur_service != NULL) {
2215 cur_service->nRequestsRunning--;
2216 MUTEX_ENTER(&rx_quota_mutex);
2217 if (cur_service->nRequestsRunning < cur_service->minProcs)
2220 MUTEX_EXIT(&rx_quota_mutex);
2222 if (!opr_queue_IsEmpty(&rx_incomingCallQueue)) {
2223 struct rx_call *tcall;
2224 struct opr_queue *cursor;
2225 /* Scan for eligible incoming calls. A call is not eligible
2226 * if the maximum number of calls for its service type are
2227 * already executing */
2228 /* One thread will process calls FCFS (to prevent starvation),
2229 * while the other threads may run ahead looking for calls which
2230 * have all their input data available immediately. This helps
2231 * keep threads from blocking, waiting for data from the client. */
2232 choice2 = (struct rx_call *)0;
2233 for (opr_queue_Scan(&rx_incomingCallQueue, cursor)) {
2234 tcall = opr_queue_Entry(cursor, struct rx_call, entry);
2235 service = tcall->conn->service;
2236 if (QuotaOK(service)) {
2237 MUTEX_ENTER(&rx_pthread_mutex);
2238 /* XXX - If tcall->entry.next is NULL, then we're no longer
2239 * on a queue at all. This shouldn't happen. */
2240 if (tno == rxi_fcfs_thread_num || !tcall->entry.next) {
2241 MUTEX_EXIT(&rx_pthread_mutex);
2242 /* If we're the fcfs thread, then we'll just use
2243 * this call. If we haven't been able to find an optimal
2244 * choice, and we're at the end of the list, then use a
2245 * 2d choice if one has been identified. Otherwise... */
2246 call = (choice2 ? choice2 : tcall);
2247 service = call->conn->service;
2249 MUTEX_EXIT(&rx_pthread_mutex);
2250 if (!opr_queue_IsEmpty(&tcall->rq)) {
2251 struct rx_packet *rp;
2252 rp = opr_queue_First(&tcall->rq, struct rx_packet,
2254 if (rp->header.seq == 1
2256 || (rp->header.flags & RX_LAST_PACKET))) {
2258 } else if (rxi_2dchoice && !choice2
2259 && !(tcall->flags & RX_CALL_CLEARED)
2260 && (tcall->rprev > rxi_HardAckRate)) {
2273 opr_queue_Remove(&call->entry);
2274 /* we can't schedule a call if there's no data!!! */
2275 /* send an ack if there's no data, if we're missing the
2276 * first packet, or we're missing something between first
2277 * and last -- there's a "hole" in the incoming data. */
2278 if (opr_queue_IsEmpty(&call->rq)
2279 || opr_queue_First(&call->rq, struct rx_packet, entry)->header.seq != 1
2280 || call->rprev != opr_queue_Last(&call->rq, struct rx_packet, entry)->header.seq)
2281 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
2283 call->flags &= (~RX_CALL_WAIT_PROC);
2284 service->nRequestsRunning++;
2285 /* just started call in minProcs pool, need fewer to maintain
2287 MUTEX_ENTER(&rx_quota_mutex);
2288 if (service->nRequestsRunning <= service->minProcs)
2291 MUTEX_EXIT(&rx_quota_mutex);
2292 rx_atomic_dec(&rx_nWaiting);
2293 /* MUTEX_EXIT(&call->lock); */
2295 /* If there are no eligible incoming calls, add this process
2296 * to the idle server queue, to wait for one */
2299 *socketp = OSI_NULLSOCKET;
2301 sq->socketp = socketp;
2302 opr_queue_Append(&rx_idleServerQueue, &sq->entry);
2306 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
2308 rxi_Free(sq, sizeof(struct rx_serverQueueEntry));
2309 return (struct rx_call *)0;
2312 } while (!(call = sq->newcall)
2313 && !(socketp && *socketp != OSI_NULLSOCKET));
2315 MUTEX_EXIT(&sq->lock);
2317 MUTEX_ENTER(&freeSQEList_lock);
2318 *(struct rx_serverQueueEntry **)sq = rx_FreeSQEList;
2319 rx_FreeSQEList = sq;
2320 MUTEX_EXIT(&freeSQEList_lock);
2323 clock_GetTime(&call->startTime);
2324 call->state = RX_STATE_ACTIVE;
2325 call->app.mode = RX_MODE_RECEIVING;
2326 #ifdef RX_KERNEL_TRACE
2327 if (ICL_SETACTIVE(afs_iclSetp)) {
2328 int glockOwner = ISAFS_GLOCK();
2331 afs_Trace3(afs_iclSetp, CM_TRACE_WASHERE, ICL_TYPE_STRING,
2332 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
2339 rxi_calltrace(RX_CALL_START, call);
2340 dpf(("rx_GetCall(port=%d, service=%d) ==> call %p\n",
2341 call->conn->service->servicePort, call->conn->service->serviceId,
2344 dpf(("rx_GetCall(socketp=%p, *socketp=0x%x)\n", socketp, *socketp));
2351 #endif /* RX_ENABLE_LOCKS */
2355 /* Establish a procedure to be called when a packet arrives for a
2356 * call. This routine will be called at most once after each call,
2357 * and will also be called if there is an error condition on the or
2358 * the call is complete. Used by multi rx to build a selection
2359 * function which determines which of several calls is likely to be a
2360 * good one to read from.
2361 * NOTE: the way this is currently implemented it is probably only a
2362 * good idea to (1) use it immediately after a newcall (clients only)
2363 * and (2) only use it once. Other uses currently void your warranty
2366 rx_SetArrivalProc(struct rx_call *call,
2367 void (*proc) (struct rx_call * call,
2370 void * handle, int arg)
2372 call->arrivalProc = proc;
2373 call->arrivalProcHandle = handle;
2374 call->arrivalProcArg = arg;
2377 /* Call is finished (possibly prematurely). Return rc to the peer, if
2378 * appropriate, and return the final error code from the conversation
2382 rx_EndCall(struct rx_call *call, afs_int32 rc)
2384 struct rx_connection *conn = call->conn;
2388 dpf(("rx_EndCall(call %"AFS_PTR_FMT" rc %d error %d abortCode %d)\n",
2389 call, rc, call->error, call->abortCode));
2392 MUTEX_ENTER(&call->lock);
2394 if (rc == 0 && call->error == 0) {
2395 call->abortCode = 0;
2396 call->abortCount = 0;
2399 call->arrivalProc = (void (*)())0;
2400 if (rc && call->error == 0) {
2401 rxi_CallError(call, rc);
2402 call->app.mode = RX_MODE_ERROR;
2403 /* Send an abort message to the peer if this error code has
2404 * only just been set. If it was set previously, assume the
2405 * peer has already been sent the error code or will request it
2407 rxi_SendCallAbort(call, (struct rx_packet *)0, 0, 0);
2409 if (conn->type == RX_SERVER_CONNECTION) {
2410 /* Make sure reply or at least dummy reply is sent */
2411 if (call->app.mode == RX_MODE_RECEIVING) {
2412 MUTEX_EXIT(&call->lock);
2413 rxi_WriteProc(call, 0, 0);
2414 MUTEX_ENTER(&call->lock);
2416 if (call->app.mode == RX_MODE_SENDING) {
2417 MUTEX_EXIT(&call->lock);
2418 rxi_FlushWrite(call);
2419 MUTEX_ENTER(&call->lock);
2421 rxi_calltrace(RX_CALL_END, call);
2422 /* Call goes to hold state until reply packets are acknowledged */
2423 if (call->tfirst + call->nSoftAcked < call->tnext) {
2424 call->state = RX_STATE_HOLD;
2426 call->state = RX_STATE_DALLY;
2427 rxi_ClearTransmitQueue(call, 0);
2428 rxi_rto_cancel(call);
2429 rxevent_Cancel(&call->keepAliveEvent, call,
2430 RX_CALL_REFCOUNT_ALIVE);
2432 } else { /* Client connection */
2434 /* Make sure server receives input packets, in the case where
2435 * no reply arguments are expected */
2437 if ((call->app.mode == RX_MODE_SENDING)
2438 || (call->app.mode == RX_MODE_RECEIVING && call->rnext == 1)) {
2439 MUTEX_EXIT(&call->lock);
2440 (void)rxi_ReadProc(call, &dummy, 1);
2441 MUTEX_ENTER(&call->lock);
2444 /* If we had an outstanding delayed ack, be nice to the server
2445 * and force-send it now.
2447 if (call->delayedAckEvent) {
2448 rxevent_Cancel(&call->delayedAckEvent, call,
2449 RX_CALL_REFCOUNT_DELAY);
2450 rxi_SendDelayedAck(NULL, call, NULL, 0);
2453 /* We need to release the call lock since it's lower than the
2454 * conn_call_lock and we don't want to hold the conn_call_lock
2455 * over the rx_ReadProc call. The conn_call_lock needs to be held
2456 * here for the case where rx_NewCall is perusing the calls on
2457 * the connection structure. We don't want to signal until
2458 * rx_NewCall is in a stable state. Otherwise, rx_NewCall may
2459 * have checked this call, found it active and by the time it
2460 * goes to sleep, will have missed the signal.
2462 MUTEX_EXIT(&call->lock);
2463 MUTEX_ENTER(&conn->conn_call_lock);
2464 MUTEX_ENTER(&call->lock);
2466 if (!(call->flags & RX_CALL_PEER_BUSY)) {
2467 conn->lastBusy[call->channel] = 0;
2470 MUTEX_ENTER(&conn->conn_data_lock);
2471 conn->flags |= RX_CONN_BUSY;
2472 if (conn->flags & RX_CONN_MAKECALL_WAITING) {
2473 MUTEX_EXIT(&conn->conn_data_lock);
2474 #ifdef RX_ENABLE_LOCKS
2475 CV_BROADCAST(&conn->conn_call_cv);
2480 #ifdef RX_ENABLE_LOCKS
2482 MUTEX_EXIT(&conn->conn_data_lock);
2484 #endif /* RX_ENABLE_LOCKS */
2485 call->state = RX_STATE_DALLY;
2487 error = call->error;
2489 /* currentPacket, nLeft, and NFree must be zeroed here, because
2490 * ResetCall cannot: ResetCall may be called at splnet(), in the
2491 * kernel version, and may interrupt the macros rx_Read or
2492 * rx_Write, which run at normal priority for efficiency. */
2493 if (call->app.currentPacket) {
2494 #ifdef RX_TRACK_PACKETS
2495 call->app.currentPacket->flags &= ~RX_PKTFLAG_CP;
2497 rxi_FreePacket(call->app.currentPacket);
2498 call->app.currentPacket = (struct rx_packet *)0;
2501 call->app.nLeft = call->app.nFree = call->app.curlen = 0;
2503 /* Free any packets from the last call to ReadvProc/WritevProc */
2504 #ifdef RXDEBUG_PACKET
2506 #endif /* RXDEBUG_PACKET */
2507 rxi_FreePackets(0, &call->app.iovq);
2508 MUTEX_EXIT(&call->lock);
2510 CALL_RELE(call, RX_CALL_REFCOUNT_BEGIN);
2511 if (conn->type == RX_CLIENT_CONNECTION) {
2512 MUTEX_ENTER(&conn->conn_data_lock);
2513 conn->flags &= ~RX_CONN_BUSY;
2514 MUTEX_EXIT(&conn->conn_data_lock);
2515 MUTEX_EXIT(&conn->conn_call_lock);
2519 * Map errors to the local host's errno.h format.
2521 error = ntoh_syserr_conv(error);
2525 #if !defined(KERNEL)
2527 /* Call this routine when shutting down a server or client (especially
2528 * clients). This will allow Rx to gracefully garbage collect server
2529 * connections, and reduce the number of retries that a server might
2530 * make to a dead client.
2531 * This is not quite right, since some calls may still be ongoing and
2532 * we can't lock them to destroy them. */
2536 struct rx_connection **conn_ptr, **conn_end;
2540 if (rxinit_status == 1) {
2542 return; /* Already shutdown. */
2544 rxi_DeleteCachedConnections();
2545 if (rx_connHashTable) {
2546 MUTEX_ENTER(&rx_connHashTable_lock);
2547 for (conn_ptr = &rx_connHashTable[0], conn_end =
2548 &rx_connHashTable[rx_hashTableSize]; conn_ptr < conn_end;
2550 struct rx_connection *conn, *next;
2551 for (conn = *conn_ptr; conn; conn = next) {
2553 if (conn->type == RX_CLIENT_CONNECTION) {
2554 MUTEX_ENTER(&rx_refcnt_mutex);
2556 MUTEX_EXIT(&rx_refcnt_mutex);
2557 #ifdef RX_ENABLE_LOCKS
2558 rxi_DestroyConnectionNoLock(conn);
2559 #else /* RX_ENABLE_LOCKS */
2560 rxi_DestroyConnection(conn);
2561 #endif /* RX_ENABLE_LOCKS */
2565 #ifdef RX_ENABLE_LOCKS
2566 while (rx_connCleanup_list) {
2567 struct rx_connection *conn;
2568 conn = rx_connCleanup_list;
2569 rx_connCleanup_list = rx_connCleanup_list->next;
2570 MUTEX_EXIT(&rx_connHashTable_lock);
2571 rxi_CleanupConnection(conn);
2572 MUTEX_ENTER(&rx_connHashTable_lock);
2574 MUTEX_EXIT(&rx_connHashTable_lock);
2575 #endif /* RX_ENABLE_LOCKS */
2580 afs_winsockCleanup();
2588 /* if we wakeup packet waiter too often, can get in loop with two
2589 AllocSendPackets each waking each other up (from ReclaimPacket calls) */
2591 rxi_PacketsUnWait(void)
2593 if (!rx_waitingForPackets) {
2597 if (rxi_OverQuota(RX_PACKET_CLASS_SEND)) {
2598 return; /* still over quota */
2601 rx_waitingForPackets = 0;
2602 #ifdef RX_ENABLE_LOCKS
2603 CV_BROADCAST(&rx_waitingForPackets_cv);
2605 osi_rxWakeup(&rx_waitingForPackets);
2611 /* ------------------Internal interfaces------------------------- */
2613 /* Return this process's service structure for the
2614 * specified socket and service */
2615 static struct rx_service *
2616 rxi_FindService(osi_socket socket, u_short serviceId)
2618 struct rx_service **sp;
2619 for (sp = &rx_services[0]; *sp; sp++) {
2620 if ((*sp)->serviceId == serviceId && (*sp)->socket == socket)
2626 #ifdef RXDEBUG_PACKET
2627 #ifdef KDUMP_RX_LOCK
2628 static struct rx_call_rx_lock *rx_allCallsp = 0;
2630 static struct rx_call *rx_allCallsp = 0;
2632 #endif /* RXDEBUG_PACKET */
2634 /* Allocate a call structure, for the indicated channel of the
2635 * supplied connection. The mode and state of the call must be set by
2636 * the caller. Returns the call with mutex locked. */
2637 static struct rx_call *
2638 rxi_NewCall(struct rx_connection *conn, int channel)
2640 struct rx_call *call;
2641 #ifdef RX_ENABLE_LOCKS
2642 struct rx_call *cp; /* Call pointer temp */
2643 struct opr_queue *cursor;
2646 dpf(("rxi_NewCall(conn %"AFS_PTR_FMT", channel %d)\n", conn, channel));
2648 /* Grab an existing call structure, or allocate a new one.
2649 * Existing call structures are assumed to have been left reset by
2651 MUTEX_ENTER(&rx_freeCallQueue_lock);
2653 #ifdef RX_ENABLE_LOCKS
2655 * EXCEPT that the TQ might not yet be cleared out.
2656 * Skip over those with in-use TQs.
2659 for (opr_queue_Scan(&rx_freeCallQueue, cursor)) {
2660 cp = opr_queue_Entry(cursor, struct rx_call, entry);
2661 if (!(cp->flags & RX_CALL_TQ_BUSY)) {
2667 #else /* RX_ENABLE_LOCKS */
2668 if (!opr_queue_IsEmpty(&rx_freeCallQueue)) {
2669 call = opr_queue_First(&rx_freeCallQueue, struct rx_call, entry);
2670 #endif /* RX_ENABLE_LOCKS */
2671 opr_queue_Remove(&call->entry);
2672 if (rx_stats_active)
2673 rx_atomic_dec(&rx_stats.nFreeCallStructs);
2674 MUTEX_EXIT(&rx_freeCallQueue_lock);
2675 MUTEX_ENTER(&call->lock);
2676 CLEAR_CALL_QUEUE_LOCK(call);
2677 #ifdef RX_ENABLE_LOCKS
2678 /* Now, if TQ wasn't cleared earlier, do it now. */
2679 rxi_WaitforTQBusy(call);
2680 if (call->flags & RX_CALL_TQ_CLEARME) {
2681 rxi_ClearTransmitQueue(call, 1);
2682 /*queue_Init(&call->tq);*/
2684 #endif /* RX_ENABLE_LOCKS */
2685 /* Bind the call to its connection structure */
2687 rxi_ResetCall(call, 1);
2690 call = rxi_Alloc(sizeof(struct rx_call));
2691 #ifdef RXDEBUG_PACKET
2692 call->allNextp = rx_allCallsp;
2693 rx_allCallsp = call;
2695 rx_atomic_inc_and_read(&rx_stats.nCallStructs);
2696 #else /* RXDEBUG_PACKET */
2697 rx_atomic_inc(&rx_stats.nCallStructs);
2698 #endif /* RXDEBUG_PACKET */
2700 MUTEX_EXIT(&rx_freeCallQueue_lock);
2701 MUTEX_INIT(&call->lock, "call lock", MUTEX_DEFAULT, NULL);
2702 MUTEX_ENTER(&call->lock);
2703 CV_INIT(&call->cv_twind, "call twind", CV_DEFAULT, 0);
2704 CV_INIT(&call->cv_rq, "call rq", CV_DEFAULT, 0);
2705 CV_INIT(&call->cv_tq, "call tq", CV_DEFAULT, 0);
2707 /* Initialize once-only items */
2708 opr_queue_Init(&call->tq);
2709 opr_queue_Init(&call->rq);
2710 opr_queue_Init(&call->app.iovq);
2711 #ifdef RXDEBUG_PACKET
2712 call->rqc = call->tqc = call->iovqc = 0;
2713 #endif /* RXDEBUG_PACKET */
2714 /* Bind the call to its connection structure (prereq for reset) */
2716 rxi_ResetCall(call, 1);
2718 call->channel = channel;
2719 call->callNumber = &conn->callNumber[channel];
2720 call->rwind = conn->rwind[channel];
2721 call->twind = conn->twind[channel];
2722 /* Note that the next expected call number is retained (in
2723 * conn->callNumber[i]), even if we reallocate the call structure
2725 conn->call[channel] = call;
2726 /* if the channel's never been used (== 0), we should start at 1, otherwise
2727 * the call number is valid from the last time this channel was used */
2728 if (*call->callNumber == 0)
2729 *call->callNumber = 1;
2734 /* A call has been inactive long enough that so we can throw away
2735 * state, including the call structure, which is placed on the call
2738 * call->lock amd rx_refcnt_mutex are held upon entry.
2739 * haveCTLock is set when called from rxi_ReapConnections.
2741 * return 1 if the call is freed, 0 if not.
2744 rxi_FreeCall(struct rx_call *call, int haveCTLock)
2746 int channel = call->channel;
2747 struct rx_connection *conn = call->conn;
2748 u_char state = call->state;
2751 * We are setting the state to RX_STATE_RESET to
2752 * ensure that no one else will attempt to use this
2753 * call once we drop the refcnt lock. We must drop
2754 * the refcnt lock before calling rxi_ResetCall
2755 * because it cannot be held across acquiring the
2756 * freepktQ lock. NewCall does the same.
2758 call->state = RX_STATE_RESET;
2759 MUTEX_EXIT(&rx_refcnt_mutex);
2760 rxi_ResetCall(call, 0);
2762 if (MUTEX_TRYENTER(&conn->conn_call_lock))
2764 if (state == RX_STATE_DALLY || state == RX_STATE_HOLD)
2765 (*call->callNumber)++;
2767 if (call->conn->call[channel] == call)
2768 call->conn->call[channel] = 0;
2769 MUTEX_EXIT(&conn->conn_call_lock);
2772 * We couldn't obtain the conn_call_lock so we can't
2773 * disconnect the call from the connection. Set the
2774 * call state to dally so that the call can be reused.
2776 MUTEX_ENTER(&rx_refcnt_mutex);
2777 call->state = RX_STATE_DALLY;
2781 MUTEX_ENTER(&rx_freeCallQueue_lock);
2782 SET_CALL_QUEUE_LOCK(call, &rx_freeCallQueue_lock);
2783 #ifdef RX_ENABLE_LOCKS
2784 /* A call may be free even though its transmit queue is still in use.
2785 * Since we search the call list from head to tail, put busy calls at
2786 * the head of the list, and idle calls at the tail.
2788 if (call->flags & RX_CALL_TQ_BUSY)
2789 opr_queue_Prepend(&rx_freeCallQueue, &call->entry);
2791 opr_queue_Append(&rx_freeCallQueue, &call->entry);
2792 #else /* RX_ENABLE_LOCKS */
2793 opr_queue_Append(&rx_freeCallQueue, &call->entry);
2794 #endif /* RX_ENABLE_LOCKS */
2795 if (rx_stats_active)
2796 rx_atomic_inc(&rx_stats.nFreeCallStructs);
2797 MUTEX_EXIT(&rx_freeCallQueue_lock);
2799 /* Destroy the connection if it was previously slated for
2800 * destruction, i.e. the Rx client code previously called
2801 * rx_DestroyConnection (client connections), or
2802 * rxi_ReapConnections called the same routine (server
2803 * connections). Only do this, however, if there are no
2804 * outstanding calls. Note that for fine grain locking, there appears
2805 * to be a deadlock in that rxi_FreeCall has a call locked and
2806 * DestroyConnectionNoLock locks each call in the conn. But note a
2807 * few lines up where we have removed this call from the conn.
2808 * If someone else destroys a connection, they either have no
2809 * call lock held or are going through this section of code.
2811 MUTEX_ENTER(&conn->conn_data_lock);
2812 if (conn->flags & RX_CONN_DESTROY_ME && !(conn->flags & RX_CONN_MAKECALL_WAITING)) {
2813 MUTEX_ENTER(&rx_refcnt_mutex);
2815 MUTEX_EXIT(&rx_refcnt_mutex);
2816 MUTEX_EXIT(&conn->conn_data_lock);
2817 #ifdef RX_ENABLE_LOCKS
2819 rxi_DestroyConnectionNoLock(conn);
2821 rxi_DestroyConnection(conn);
2822 #else /* RX_ENABLE_LOCKS */
2823 rxi_DestroyConnection(conn);
2824 #endif /* RX_ENABLE_LOCKS */
2826 MUTEX_EXIT(&conn->conn_data_lock);
2828 MUTEX_ENTER(&rx_refcnt_mutex);
2832 rx_atomic_t rxi_Allocsize = RX_ATOMIC_INIT(0);
2833 rx_atomic_t rxi_Alloccnt = RX_ATOMIC_INIT(0);
2836 rxi_Alloc(size_t size)
2840 if (rx_stats_active) {
2841 rx_atomic_add(&rxi_Allocsize, (int) size);
2842 rx_atomic_inc(&rxi_Alloccnt);
2846 #if defined(KERNEL) && !defined(UKERNEL) && defined(AFS_FBSD80_ENV)
2847 afs_osi_Alloc_NoSleep(size);
2852 osi_Panic("rxi_Alloc error");
2858 rxi_Free(void *addr, size_t size)
2860 if (rx_stats_active) {
2861 rx_atomic_sub(&rxi_Allocsize, (int) size);
2862 rx_atomic_dec(&rxi_Alloccnt);
2864 osi_Free(addr, size);
2868 rxi_SetPeerMtu(struct rx_peer *peer, afs_uint32 host, afs_uint32 port, int mtu)
2870 struct rx_peer **peer_ptr = NULL, **peer_end = NULL;
2871 struct rx_peer *next = NULL;
2875 MUTEX_ENTER(&rx_peerHashTable_lock);
2877 peer_ptr = &rx_peerHashTable[0];
2878 peer_end = &rx_peerHashTable[rx_hashTableSize];
2881 for ( ; peer_ptr < peer_end; peer_ptr++) {
2884 for ( ; peer; peer = next) {
2886 if (host == peer->host)
2891 hashIndex = PEER_HASH(host, port);
2892 for (peer = rx_peerHashTable[hashIndex]; peer; peer = peer->next) {
2893 if ((peer->host == host) && (peer->port == port))
2898 MUTEX_ENTER(&rx_peerHashTable_lock);
2903 MUTEX_EXIT(&rx_peerHashTable_lock);
2905 MUTEX_ENTER(&peer->peer_lock);
2906 /* We don't handle dropping below min, so don't */
2907 mtu = MAX(mtu, RX_MIN_PACKET_SIZE);
2908 peer->ifMTU=MIN(mtu, peer->ifMTU);
2909 peer->natMTU = rxi_AdjustIfMTU(peer->ifMTU);
2910 /* if we tweaked this down, need to tune our peer MTU too */
2911 peer->MTU = MIN(peer->MTU, peer->natMTU);
2912 /* if we discovered a sub-1500 mtu, degrade */
2913 if (peer->ifMTU < OLD_MAX_PACKET_SIZE)
2914 peer->maxDgramPackets = 1;
2915 /* We no longer have valid peer packet information */
2916 if (peer->maxPacketSize-RX_IPUDP_SIZE > peer->ifMTU)
2917 peer->maxPacketSize = 0;
2918 MUTEX_EXIT(&peer->peer_lock);
2920 MUTEX_ENTER(&rx_peerHashTable_lock);
2922 if (host && !port) {
2924 /* pick up where we left off */
2928 MUTEX_EXIT(&rx_peerHashTable_lock);
2931 #ifdef AFS_RXERRQ_ENV
2933 rxi_SetPeerDead(afs_uint32 host, afs_uint16 port)
2935 int hashIndex = PEER_HASH(host, port);
2936 struct rx_peer *peer;
2938 MUTEX_ENTER(&rx_peerHashTable_lock);
2940 for (peer = rx_peerHashTable[hashIndex]; peer; peer = peer->next) {
2941 if (peer->host == host && peer->port == port) {
2947 rx_atomic_inc(&peer->neterrs);
2950 MUTEX_EXIT(&rx_peerHashTable_lock);
2954 rxi_ProcessNetError(struct sock_extended_err *err, afs_uint32 addr, afs_uint16 port)
2956 # ifdef AFS_ADAPT_PMTU
2957 if (err->ee_errno == EMSGSIZE && err->ee_info >= 68) {
2958 rxi_SetPeerMtu(NULL, addr, port, err->ee_info - RX_IPUDP_SIZE);
2962 if (err->ee_origin == SO_EE_ORIGIN_ICMP && err->ee_type == ICMP_DEST_UNREACH) {
2963 switch (err->ee_code) {
2964 case ICMP_NET_UNREACH:
2965 case ICMP_HOST_UNREACH:
2966 case ICMP_PORT_UNREACH:
2969 rxi_SetPeerDead(addr, port);
2974 #endif /* AFS_RXERRQ_ENV */
2976 /* Find the peer process represented by the supplied (host,port)
2977 * combination. If there is no appropriate active peer structure, a
2978 * new one will be allocated and initialized
2979 * The origPeer, if set, is a pointer to a peer structure on which the
2980 * refcount will be be decremented. This is used to replace the peer
2981 * structure hanging off a connection structure */
2983 rxi_FindPeer(afs_uint32 host, u_short port,
2984 struct rx_peer *origPeer, int create)
2988 hashIndex = PEER_HASH(host, port);
2989 MUTEX_ENTER(&rx_peerHashTable_lock);
2990 for (pp = rx_peerHashTable[hashIndex]; pp; pp = pp->next) {
2991 if ((pp->host == host) && (pp->port == port))
2996 pp = rxi_AllocPeer(); /* This bzero's *pp */
2997 pp->host = host; /* set here or in InitPeerParams is zero */
2999 #ifdef AFS_RXERRQ_ENV
3000 rx_atomic_set(&pp->neterrs, 0);
3002 MUTEX_INIT(&pp->peer_lock, "peer_lock", MUTEX_DEFAULT, 0);
3003 opr_queue_Init(&pp->rpcStats);
3004 pp->next = rx_peerHashTable[hashIndex];
3005 rx_peerHashTable[hashIndex] = pp;
3006 rxi_InitPeerParams(pp);
3007 if (rx_stats_active)
3008 rx_atomic_inc(&rx_stats.nPeerStructs);
3015 origPeer->refCount--;
3016 MUTEX_EXIT(&rx_peerHashTable_lock);
3021 /* Find the connection at (host, port) started at epoch, and with the
3022 * given connection id. Creates the server connection if necessary.
3023 * The type specifies whether a client connection or a server
3024 * connection is desired. In both cases, (host, port) specify the
3025 * peer's (host, pair) pair. Client connections are not made
3026 * automatically by this routine. The parameter socket gives the
3027 * socket descriptor on which the packet was received. This is used,
3028 * in the case of server connections, to check that *new* connections
3029 * come via a valid (port, serviceId). Finally, the securityIndex
3030 * parameter must match the existing index for the connection. If a
3031 * server connection is created, it will be created using the supplied
3032 * index, if the index is valid for this service */
3033 static struct rx_connection *
3034 rxi_FindConnection(osi_socket socket, afs_uint32 host,
3035 u_short port, u_short serviceId, afs_uint32 cid,
3036 afs_uint32 epoch, int type, u_int securityIndex)
3038 int hashindex, flag, i;
3039 struct rx_connection *conn;
3040 hashindex = CONN_HASH(host, port, cid, epoch, type);
3041 MUTEX_ENTER(&rx_connHashTable_lock);
3042 rxLastConn ? (conn = rxLastConn, flag = 0) : (conn =
3043 rx_connHashTable[hashindex],
3046 if ((conn->type == type) && ((cid & RX_CIDMASK) == conn->cid)
3047 && (epoch == conn->epoch)) {
3048 struct rx_peer *pp = conn->peer;
3049 if (securityIndex != conn->securityIndex) {
3050 /* this isn't supposed to happen, but someone could forge a packet
3051 * like this, and there seems to be some CM bug that makes this
3052 * happen from time to time -- in which case, the fileserver
3054 MUTEX_EXIT(&rx_connHashTable_lock);
3055 return (struct rx_connection *)0;
3057 if (pp->host == host && pp->port == port)
3059 if (type == RX_CLIENT_CONNECTION && pp->port == port)
3061 /* So what happens when it's a callback connection? */
3062 if ( /*type == RX_CLIENT_CONNECTION && */
3063 (conn->epoch & 0x80000000))
3067 /* the connection rxLastConn that was used the last time is not the
3068 ** one we are looking for now. Hence, start searching in the hash */
3070 conn = rx_connHashTable[hashindex];
3075 struct rx_service *service;
3076 if (type == RX_CLIENT_CONNECTION) {
3077 MUTEX_EXIT(&rx_connHashTable_lock);
3078 return (struct rx_connection *)0;
3080 service = rxi_FindService(socket, serviceId);
3081 if (!service || (securityIndex >= service->nSecurityObjects)
3082 || (service->securityObjects[securityIndex] == 0)) {
3083 MUTEX_EXIT(&rx_connHashTable_lock);
3084 return (struct rx_connection *)0;
3086 conn = rxi_AllocConnection(); /* This bzero's the connection */
3087 MUTEX_INIT(&conn->conn_call_lock, "conn call lock", MUTEX_DEFAULT, 0);
3088 MUTEX_INIT(&conn->conn_data_lock, "conn data lock", MUTEX_DEFAULT, 0);
3089 CV_INIT(&conn->conn_call_cv, "conn call cv", CV_DEFAULT, 0);
3090 conn->next = rx_connHashTable[hashindex];
3091 rx_connHashTable[hashindex] = conn;
3092 conn->peer = rxi_FindPeer(host, port, 0, 1);
3093 conn->type = RX_SERVER_CONNECTION;
3094 conn->lastSendTime = clock_Sec(); /* don't GC immediately */
3095 conn->epoch = epoch;
3096 conn->cid = cid & RX_CIDMASK;
3097 conn->ackRate = RX_FAST_ACK_RATE;
3098 conn->service = service;
3099 conn->serviceId = serviceId;
3100 conn->securityIndex = securityIndex;
3101 conn->securityObject = service->securityObjects[securityIndex];
3102 conn->nSpecific = 0;
3103 conn->specific = NULL;
3104 rx_SetConnDeadTime(conn, service->connDeadTime);
3105 conn->idleDeadTime = service->idleDeadTime;
3106 conn->idleDeadDetection = service->idleDeadErr ? 1 : 0;
3107 for (i = 0; i < RX_MAXCALLS; i++) {
3108 conn->twind[i] = rx_initSendWindow;
3109 conn->rwind[i] = rx_initReceiveWindow;
3111 /* Notify security object of the new connection */
3112 RXS_NewConnection(conn->securityObject, conn);
3113 /* XXXX Connection timeout? */
3114 if (service->newConnProc)
3115 (*service->newConnProc) (conn);
3116 if (rx_stats_active)
3117 rx_atomic_inc(&rx_stats.nServerConns);
3120 MUTEX_ENTER(&rx_refcnt_mutex);
3122 MUTEX_EXIT(&rx_refcnt_mutex);
3124 rxLastConn = conn; /* store this connection as the last conn used */
3125 MUTEX_EXIT(&rx_connHashTable_lock);
3130 * Timeout a call on a busy call channel if appropriate.
3132 * @param[in] call The busy call.
3134 * @pre 'call' is marked as busy (namely,
3135 * call->conn->lastBusy[call->channel] != 0)
3137 * @pre call->lock is held
3138 * @pre rxi_busyChannelError is nonzero
3140 * @note call->lock is dropped and reacquired
3143 rxi_CheckBusy(struct rx_call *call)
3145 struct rx_connection *conn = call->conn;
3146 int channel = call->channel;
3147 int freechannel = 0;
3149 afs_uint32 callNumber;
3151 MUTEX_EXIT(&call->lock);
3153 MUTEX_ENTER(&conn->conn_call_lock);
3154 callNumber = *call->callNumber;
3156 /* Are there any other call slots on this conn that we should try? Look for
3157 * slots that are empty and are either non-busy, or were marked as busy
3158 * longer than conn->secondsUntilDead seconds before this call started. */
3160 for (i = 0; i < RX_MAXCALLS && !freechannel; i++) {
3162 /* only look at channels that aren't us */
3166 if (conn->lastBusy[i]) {
3167 /* if this channel looked busy too recently, don't look at it */
3168 if (conn->lastBusy[i] >= call->startTime.sec) {
3171 if (call->startTime.sec - conn->lastBusy[i] < conn->secondsUntilDead) {
3176 if (conn->call[i]) {
3177 struct rx_call *tcall = conn->call[i];
3178 MUTEX_ENTER(&tcall->lock);
3179 if (tcall->state == RX_STATE_DALLY) {
3182 MUTEX_EXIT(&tcall->lock);
3188 MUTEX_ENTER(&call->lock);
3190 /* Since the call->lock and conn->conn_call_lock have been released it is
3191 * possible that (1) the call may no longer be busy and/or (2) the call may
3192 * have been reused by another waiting thread. Therefore, we must confirm
3193 * that the call state has not changed when deciding whether or not to
3194 * force this application thread to retry by forcing a Timeout error. */
3196 if (freechannel && *call->callNumber == callNumber &&
3197 (call->flags & RX_CALL_PEER_BUSY)) {
3198 /* Since 'freechannel' is set, there exists another channel in this
3199 * rx_conn that the application thread might be able to use. We know
3200 * that we have the correct call since callNumber is unchanged, and we
3201 * know that the call is still busy. So, set the call error state to
3202 * rxi_busyChannelError so the application can retry the request,
3203 * presumably on a less-busy call channel. */
3205 rxi_CallError(call, RX_CALL_BUSY);
3207 MUTEX_EXIT(&conn->conn_call_lock);
3211 * Abort the call if the server is over the busy threshold. This
3212 * can be used without requiring a call structure be initialised,
3213 * or connected to a particular channel
3216 rxi_AbortIfServerBusy(osi_socket socket, struct rx_connection *conn,
3217 struct rx_packet *np)
3219 if ((rx_BusyThreshold > 0) &&
3220 (rx_atomic_read(&rx_nWaiting) > rx_BusyThreshold)) {
3221 rxi_SendRawAbort(socket, conn->peer->host, conn->peer->port,
3222 rx_BusyError, np, 0);
3223 if (rx_stats_active)
3224 rx_atomic_inc(&rx_stats.nBusies);
3231 static_inline struct rx_call *
3232 rxi_ReceiveClientCall(struct rx_packet *np, struct rx_connection *conn)
3235 struct rx_call *call;
3237 channel = np->header.cid & RX_CHANNELMASK;
3238 MUTEX_ENTER(&conn->conn_call_lock);
3239 call = conn->call[channel];
3240 if (!call || conn->callNumber[channel] != np->header.callNumber) {
3241 MUTEX_EXIT(&conn->conn_call_lock);
3242 if (rx_stats_active)
3243 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3247 MUTEX_ENTER(&call->lock);
3248 MUTEX_EXIT(&conn->conn_call_lock);
3250 if ((call->state == RX_STATE_DALLY)
3251 && np->header.type == RX_PACKET_TYPE_ACK) {
3252 if (rx_stats_active)
3253 rx_atomic_inc(&rx_stats.ignorePacketDally);
3254 MUTEX_EXIT(&call->lock);
3261 static_inline struct rx_call *
3262 rxi_ReceiveServerCall(osi_socket socket, struct rx_packet *np,
3263 struct rx_connection *conn)
3266 struct rx_call *call;
3268 channel = np->header.cid & RX_CHANNELMASK;
3269 MUTEX_ENTER(&conn->conn_call_lock);
3270 call = conn->call[channel];
3273 if (rxi_AbortIfServerBusy(socket, conn, np)) {
3274 MUTEX_EXIT(&conn->conn_call_lock);
3278 call = rxi_NewCall(conn, channel); /* returns locked call */
3279 *call->callNumber = np->header.callNumber;
3280 MUTEX_EXIT(&conn->conn_call_lock);
3282 call->state = RX_STATE_PRECALL;
3283 clock_GetTime(&call->queueTime);
3284 call->app.bytesSent = 0;
3285 call->app.bytesRcvd = 0;
3286 rxi_KeepAliveOn(call);
3291 if (np->header.callNumber == conn->callNumber[channel]) {
3292 MUTEX_ENTER(&call->lock);
3293 MUTEX_EXIT(&conn->conn_call_lock);
3297 if (np->header.callNumber < conn->callNumber[channel]) {
3298 MUTEX_EXIT(&conn->conn_call_lock);
3299 if (rx_stats_active)
3300 rx_atomic_inc(&rx_stats.spuriousPacketsRead);
3304 MUTEX_ENTER(&call->lock);
3305 MUTEX_EXIT(&conn->conn_call_lock);
3307 /* Wait until the transmit queue is idle before deciding
3308 * whether to reset the current call. Chances are that the
3309 * call will be in ether DALLY or HOLD state once the TQ_BUSY
3312 #ifdef RX_ENABLE_LOCKS
3313 if (call->state == RX_STATE_ACTIVE) {
3314 int old_error = call->error;
3315 rxi_WaitforTQBusy(call);
3316 /* If we entered error state while waiting,
3317 * must call rxi_CallError to permit rxi_ResetCall
3318 * to processed when the tqWaiter count hits zero.
3320 if (call->error && call->error != old_error) {
3321 rxi_CallError(call, call->error);
3322 MUTEX_EXIT(&call->lock);
3326 #endif /* RX_ENABLE_LOCKS */
3327 /* If the new call cannot be taken right now send a busy and set
3328 * the error condition in this call, so that it terminates as
3329 * quickly as possible */
3330 if (call->state == RX_STATE_ACTIVE) {
3331 rxi_CallError(call, RX_CALL_DEAD);
3332 rxi_SendSpecial(call, conn, NULL, RX_PACKET_TYPE_BUSY,
3334 MUTEX_EXIT(&call->lock);
3338 if (rxi_AbortIfServerBusy(socket, conn, np)) {
3339 MUTEX_EXIT(&call->lock);
3343 rxi_ResetCall(call, 0);
3344 /* The conn_call_lock is not held but no one else should be
3345 * using this call channel while we are processing this incoming
3346 * packet. This assignment should be safe.
3348 *call->callNumber = np->header.callNumber;
3349 call->state = RX_STATE_PRECALL;
3350 clock_GetTime(&call->queueTime);
3351 call->app.bytesSent = 0;
3352 call->app.bytesRcvd = 0;
3353 rxi_KeepAliveOn(call);
3359 /* There are two packet tracing routines available for testing and monitoring
3360 * Rx. One is called just after every packet is received and the other is
3361 * called just before every packet is sent. Received packets, have had their
3362 * headers decoded, and packets to be sent have not yet had their headers
3363 * encoded. Both take two parameters: a pointer to the packet and a sockaddr
3364 * containing the network address. Both can be modified. The return value, if
3365 * non-zero, indicates that the packet should be dropped. */
3367 int (*rx_justReceived) (struct rx_packet *, struct sockaddr_in *) = 0;
3368 int (*rx_almostSent) (struct rx_packet *, struct sockaddr_in *) = 0;
3370 /* A packet has been received off the interface. Np is the packet, socket is
3371 * the socket number it was received from (useful in determining which service
3372 * this packet corresponds to), and (host, port) reflect the host,port of the
3373 * sender. This call returns the packet to the caller if it is finished with
3374 * it, rather than de-allocating it, just as a small performance hack */
3377 rxi_ReceivePacket(struct rx_packet *np, osi_socket socket,
3378 afs_uint32 host, u_short port, int *tnop,
3379 struct rx_call **newcallp)
3381 struct rx_call *call;
3382 struct rx_connection *conn;
3387 struct rx_packet *tnp;
3390 /* We don't print out the packet until now because (1) the time may not be
3391 * accurate enough until now in the lwp implementation (rx_Listener only gets
3392 * the time after the packet is read) and (2) from a protocol point of view,
3393 * this is the first time the packet has been seen */
3394 packetType = (np->header.type > 0 && np->header.type < RX_N_PACKET_TYPES)
3395 ? rx_packetTypes[np->header.type - 1] : "*UNKNOWN*";
3396 dpf(("R %d %s: %x.%d.%d.%d.%d.%d.%d flags %d, packet %"AFS_PTR_FMT"\n",
3397 np->header.serial, packetType, ntohl(host), ntohs(port), np->header.serviceId,
3398 np->header.epoch, np->header.cid, np->header.callNumber,
3399 np->header.seq, np->header.flags, np));
3402 /* Account for connectionless packets */
3403 if (rx_stats_active &&
3404 ((np->header.type == RX_PACKET_TYPE_VERSION) ||
3405 (np->header.type == RX_PACKET_TYPE_DEBUG))) {
3406 struct rx_peer *peer;
3408 /* Try to look up the peer structure, but don't create one */
3409 peer = rxi_FindPeer(host, port, 0, 0);
3411 /* Since this may not be associated with a connection, it may have
3412 * no refCount, meaning we could race with ReapConnections
3415 if (peer && (peer->refCount > 0)) {
3416 #ifdef AFS_RXERRQ_ENV
3417 if (rx_atomic_read(&peer->neterrs)) {
3418 rx_atomic_set(&peer->neterrs, 0);
3421 MUTEX_ENTER(&peer->peer_lock);
3422 peer->bytesReceived += np->length;
3423 MUTEX_EXIT(&peer->peer_lock);
3427 if (np->header.type == RX_PACKET_TYPE_VERSION) {
3428 return rxi_ReceiveVersionPacket(np, socket, host, port, 1);
3431 if (np->header.type == RX_PACKET_TYPE_DEBUG) {
3432 return rxi_ReceiveDebugPacket(np, socket, host, port, 1);
3435 /* If an input tracer function is defined, call it with the packet and
3436 * network address. Note this function may modify its arguments. */
3437 if (rx_justReceived) {
3438 struct sockaddr_in addr;
3440 addr.sin_family = AF_INET;
3441 addr.sin_port = port;
3442 addr.sin_addr.s_addr = host;
3443 #ifdef STRUCT_SOCKADDR_HAS_SA_LEN
3444 addr.sin_len = sizeof(addr);
3445 #endif /* AFS_OSF_ENV */
3446 drop = (*rx_justReceived) (np, &addr);
3447 /* drop packet if return value is non-zero */
3450 port = addr.sin_port; /* in case fcn changed addr */
3451 host = addr.sin_addr.s_addr;
3455 /* If packet was not sent by the client, then *we* must be the client */
3456 type = ((np->header.flags & RX_CLIENT_INITIATED) != RX_CLIENT_INITIATED)
3457 ? RX_CLIENT_CONNECTION : RX_SERVER_CONNECTION;
3459 /* Find the connection (or fabricate one, if we're the server & if
3460 * necessary) associated with this packet */
3462 rxi_FindConnection(socket, host, port, np->header.serviceId,
3463 np->header.cid, np->header.epoch, type,
3464 np->header.securityIndex);
3466 /* To avoid having 2 connections just abort at each other,
3467 don't abort an abort. */
3469 if (np->header.type != RX_PACKET_TYPE_ABORT)
3470 rxi_SendRawAbort(socket, host, port, RX_INVALID_OPERATION,
3475 #ifdef AFS_RXERRQ_ENV
3476 if (rx_atomic_read(&conn->peer->neterrs)) {
3477 rx_atomic_set(&conn->peer->neterrs, 0);
3481 /* If we're doing statistics, then account for the incoming packet */
3482 if (rx_stats_active) {
3483 MUTEX_ENTER(&conn->peer->peer_lock);
3484 conn->peer->bytesReceived += np->length;
3485 MUTEX_EXIT(&conn->peer->peer_lock);
3488 /* If the connection is in an error state, send an abort packet and ignore
3489 * the incoming packet */
3491 /* Don't respond to an abort packet--we don't want loops! */
3492 MUTEX_ENTER(&conn->conn_data_lock);
3493 if (np->header.type != RX_PACKET_TYPE_ABORT)
3494 np = rxi_SendConnectionAbort(conn, np, 1, 0);
3495 putConnection(conn);
3496 MUTEX_EXIT(&conn->conn_data_lock);
3500 /* Check for connection-only requests (i.e. not call specific). */
3501 if (np->header.callNumber == 0) {
3502 switch (np->header.type) {
3503 case RX_PACKET_TYPE_ABORT: {
3504 /* What if the supplied error is zero? */
3505 afs_int32 errcode = ntohl(rx_GetInt32(np, 0));
3506 dpf(("rxi_ReceivePacket ABORT rx_GetInt32 = %d\n", errcode));
3507 rxi_ConnectionError(conn, errcode);
3508 putConnection(conn);
3511 case RX_PACKET_TYPE_CHALLENGE:
3512 tnp = rxi_ReceiveChallengePacket(conn, np, 1);
3513 putConnection(conn);
3515 case RX_PACKET_TYPE_RESPONSE:
3516 tnp = rxi_ReceiveResponsePacket(conn, np, 1);
3517 putConnection(conn);
3519 case RX_PACKET_TYPE_PARAMS:
3520 case RX_PACKET_TYPE_PARAMS + 1:
3521 case RX_PACKET_TYPE_PARAMS + 2:
3522 /* ignore these packet types for now */
3523 putConnection(conn);
3527 /* Should not reach here, unless the peer is broken: send an
3529 rxi_ConnectionError(conn, RX_PROTOCOL_ERROR);
3530 MUTEX_ENTER(&conn->conn_data_lock);
3531 tnp = rxi_SendConnectionAbort(conn, np, 1, 0);
3532 putConnection(conn);
3533 MUTEX_EXIT(&conn->conn_data_lock);
3538 if (type == RX_SERVER_CONNECTION)
3539 call = rxi_ReceiveServerCall(socket, np, conn);
3541 call = rxi_ReceiveClientCall(np, conn);
3544 putConnection(conn);
3548 MUTEX_ASSERT(&call->lock);
3549 /* Set remote user defined status from packet */
3550 call->remoteStatus = np->header.userStatus;
3552 /* Now do packet type-specific processing */
3553 switch (np->header.type) {
3554 case RX_PACKET_TYPE_DATA:
3555 /* If we're a client, and receiving a response, then all the packets
3556 * we transmitted packets are implicitly acknowledged. */
3557 if (type == RX_CLIENT_CONNECTION && !opr_queue_IsEmpty(&call->tq))
3558 rxi_AckAllInTransmitQueue(call);
3560 np = rxi_ReceiveDataPacket(call, np, 1, socket, host, port, tnop,
3563 case RX_PACKET_TYPE_ACK:
3564 /* Respond immediately to ack packets requesting acknowledgement
3566 if (np->header.flags & RX_REQUEST_ACK) {
3568 (void)rxi_SendCallAbort(call, 0, 1, 0);
3570 (void)rxi_SendAck(call, 0, np->header.serial,
3571 RX_ACK_PING_RESPONSE, 1);
3573 np = rxi_ReceiveAckPacket(call, np, 1);
3575 case RX_PACKET_TYPE_ABORT: {
3576 /* An abort packet: reset the call, passing the error up to the user. */
3577 /* What if error is zero? */
3578 /* What if the error is -1? the application will treat it as a timeout. */
3579 afs_int32 errdata = ntohl(*(afs_int32 *) rx_DataOf(np));
3580 dpf(("rxi_ReceivePacket ABORT rx_DataOf = %d\n", errdata));
3581 rxi_CallError(call, errdata);
3582 MUTEX_EXIT(&call->lock);
3583 putConnection(conn);
3584 return np; /* xmitting; drop packet */
3586 case RX_PACKET_TYPE_BUSY: {
3587 struct clock busyTime;
3589 clock_GetTime(&busyTime);
3591 MUTEX_EXIT(&call->lock);
3593 MUTEX_ENTER(&conn->conn_call_lock);
3594 MUTEX_ENTER(&call->lock);
3595 conn->lastBusy[call->channel] = busyTime.sec;
3596 call->flags |= RX_CALL_PEER_BUSY;
3597 MUTEX_EXIT(&call->lock);
3598 MUTEX_EXIT(&conn->conn_call_lock);
3600 putConnection(conn);
3604 case RX_PACKET_TYPE_ACKALL:
3605 /* All packets acknowledged, so we can drop all packets previously
3606 * readied for sending */
3607 rxi_AckAllInTransmitQueue(call);
3610 /* Should not reach here, unless the peer is broken: send an abort
3612 rxi_CallError(call, RX_PROTOCOL_ERROR);
3613 np = rxi_SendCallAbort(call, np, 1, 0);
3616 /* Note when this last legitimate packet was received, for keep-alive
3617 * processing. Note, we delay getting the time until now in the hope that
3618 * the packet will be delivered to the user before any get time is required
3619 * (if not, then the time won't actually be re-evaluated here). */
3620 call->lastReceiveTime = clock_Sec();
3621 /* we've received a legit packet, so the channel is not busy */
3622 call->flags &= ~RX_CALL_PEER_BUSY;
3623 MUTEX_EXIT(&call->lock);
3624 putConnection(conn);
3628 /* return true if this is an "interesting" connection from the point of view
3629 of someone trying to debug the system */
3631 rxi_IsConnInteresting(struct rx_connection *aconn)
3634 struct rx_call *tcall;
3636 if (aconn->flags & (RX_CONN_MAKECALL_WAITING | RX_CONN_DESTROY_ME))
3639 for (i = 0; i < RX_MAXCALLS; i++) {
3640 tcall = aconn->call[i];
3642 if ((tcall->state == RX_STATE_PRECALL)
3643 || (tcall->state == RX_STATE_ACTIVE))
3645 if ((tcall->app.mode == RX_MODE_SENDING)
3646 || (tcall->app.mode == RX_MODE_RECEIVING))
3654 /* if this is one of the last few packets AND it wouldn't be used by the
3655 receiving call to immediately satisfy a read request, then drop it on
3656 the floor, since accepting it might prevent a lock-holding thread from
3657 making progress in its reading. If a call has been cleared while in
3658 the precall state then ignore all subsequent packets until the call
3659 is assigned to a thread. */
3662 TooLow(struct rx_packet *ap, struct rx_call *acall)
3666 MUTEX_ENTER(&rx_quota_mutex);
3667 if (((ap->header.seq != 1) && (acall->flags & RX_CALL_CLEARED)
3668 && (acall->state == RX_STATE_PRECALL))
3669 || ((rx_nFreePackets < rxi_dataQuota + 2)
3670 && !((ap->header.seq < acall->rnext + rx_initSendWindow)
3671 && (acall->flags & RX_CALL_READER_WAIT)))) {
3674 MUTEX_EXIT(&rx_quota_mutex);
3680 * Clear the attach wait flag on a connection and proceed.
3682 * Any processing waiting for a connection to be attached should be
3683 * unblocked. We clear the flag and do any other needed tasks.
3686 * the conn to unmark waiting for attach
3688 * @pre conn's conn_data_lock must be locked before calling this function
3692 rxi_ConnClearAttachWait(struct rx_connection *conn)
3694 /* Indicate that rxi_CheckReachEvent is no longer running by
3695 * clearing the flag. Must be atomic under conn_data_lock to
3696 * avoid a new call slipping by: rxi_CheckConnReach holds
3697 * conn_data_lock while checking RX_CONN_ATTACHWAIT.
3699 conn->flags &= ~RX_CONN_ATTACHWAIT;
3700 if (conn->flags & RX_CONN_NAT_PING) {
3701 conn->flags &= ~RX_CONN_NAT_PING;
3702 rxi_ScheduleNatKeepAliveEvent(conn);
3707 rxi_CheckReachEvent(struct rxevent *event, void *arg1, void *arg2, int dummy)
3709 struct rx_connection *conn = arg1;
3710 struct rx_call *acall = arg2;
3711 struct rx_call *call = acall;
3712 struct clock when, now;
3715 MUTEX_ENTER(&conn->conn_data_lock);
3718 rxevent_Put(conn->checkReachEvent);
3719 conn->checkReachEvent = NULL;
3722 waiting = conn->flags & RX_CONN_ATTACHWAIT;
3724 putConnection(conn);
3726 MUTEX_EXIT(&conn->conn_data_lock);
3730 MUTEX_ENTER(&conn->conn_call_lock);
3731 MUTEX_ENTER(&conn->conn_data_lock);
3732 for (i = 0; i < RX_MAXCALLS; i++) {
3733 struct rx_call *tc = conn->call[i];
3734 if (tc && tc->state == RX_STATE_PRECALL) {
3740 rxi_ConnClearAttachWait(conn);
3741 MUTEX_EXIT(&conn->conn_data_lock);
3742 MUTEX_EXIT(&conn->conn_call_lock);
3747 MUTEX_ENTER(&call->lock);
3748 rxi_SendAck(call, NULL, 0, RX_ACK_PING, 0);
3750 MUTEX_EXIT(&call->lock);
3752 clock_GetTime(&now);
3754 when.sec += RX_CHECKREACH_TIMEOUT;
3755 MUTEX_ENTER(&conn->conn_data_lock);
3756 if (!conn->checkReachEvent) {
3757 MUTEX_ENTER(&rx_refcnt_mutex);
3759 MUTEX_EXIT(&rx_refcnt_mutex);
3760 conn->checkReachEvent = rxevent_Post(&when, &now,
3761 rxi_CheckReachEvent, conn,
3764 MUTEX_EXIT(&conn->conn_data_lock);
3770 rxi_CheckConnReach(struct rx_connection *conn, struct rx_call *call)
3772 struct rx_service *service = conn->service;
3773 struct rx_peer *peer = conn->peer;
3774 afs_uint32 now, lastReach;
3776 if (service->checkReach == 0)
3780 MUTEX_ENTER(&peer->peer_lock);
3781 lastReach = peer->lastReachTime;