2 * Copyright 2000, International Business Machines Corporation and others.
5 * This software has been released under the terms of the IBM Public
6 * License. For details, see the LICENSE file in the top-level source
7 * directory or online at http://www.openafs.org/dl/license10.html
10 /* RX: Extended Remote Procedure Call */
12 #include <afsconfig.h>
14 #include "afs/param.h"
16 #include <afs/param.h>
23 #include "afs/sysincludes.h"
24 #include "afsincludes.h"
30 #include <net/net_globals.h>
31 #endif /* AFS_OSF_ENV */
32 #ifdef AFS_LINUX20_ENV
35 #include "netinet/in.h"
36 #include "afs/afs_args.h"
37 #include "afs/afs_osi.h"
38 #ifdef RX_KERNEL_TRACE
39 #include "rx_kcommon.h"
41 #if (defined(AFS_AUX_ENV) || defined(AFS_AIX_ENV))
45 #undef RXDEBUG /* turn off debugging */
47 #if defined(AFS_SGI_ENV)
48 #include "sys/debug.h"
57 #endif /* AFS_OSF_ENV */
59 #include "afs/sysincludes.h"
60 #include "afsincludes.h"
63 #include "rx_kmutex.h"
64 #include "rx_kernel.h"
68 #include "rx_globals.h"
70 #define AFSOP_STOP_RXCALLBACK 210 /* Stop CALLBACK process */
71 #define AFSOP_STOP_AFS 211 /* Stop AFS process */
72 #define AFSOP_STOP_BKG 212 /* Stop BKG process */
74 extern afs_int32 afs_termState;
76 #include "sys/lockl.h"
77 #include "sys/lock_def.h"
78 #endif /* AFS_AIX41_ENV */
79 # include "rxgen_consts.h"
81 # include <sys/types.h>
86 # include <afs/afsutil.h>
88 # include <sys/socket.h>
89 # include <sys/file.h>
91 # include <sys/stat.h>
92 # include <netinet/in.h>
93 # include <sys/time.h>
103 # include "rx_user.h"
104 # include "rx_clock.h"
105 # include "rx_queue.h"
106 # include "rx_globals.h"
107 # include "rx_trace.h"
108 # include <afs/rxgen_consts.h>
111 int (*registerProgram) () = 0;
112 int (*swapNameProgram) () = 0;
114 /* Local static routines */
115 static void rxi_DestroyConnectionNoLock(register struct rx_connection *conn);
116 #ifdef RX_ENABLE_LOCKS
117 static void rxi_SetAcksInTransmitQueue(register struct rx_call *call);
120 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
122 afs_int32 rxi_start_aborted; /* rxi_start awoke after rxi_Send in error. */
123 afs_int32 rxi_start_in_error;
125 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
128 * rxi_rpc_peer_stat_cnt counts the total number of peer stat structures
129 * currently allocated within rx. This number is used to allocate the
130 * memory required to return the statistics when queried.
133 static unsigned int rxi_rpc_peer_stat_cnt;
136 * rxi_rpc_process_stat_cnt counts the total number of local process stat
137 * structures currently allocated within rx. The number is used to allocate
138 * the memory required to return the statistics when queried.
141 static unsigned int rxi_rpc_process_stat_cnt;
143 #if !defined(offsetof)
144 #include <stddef.h> /* for definition of offsetof() */
147 #ifdef AFS_PTHREAD_ENV
151 * Use procedural initialization of mutexes/condition variables
155 extern pthread_mutex_t rx_stats_mutex;
156 extern pthread_mutex_t rxkad_stats_mutex;
157 extern pthread_mutex_t des_init_mutex;
158 extern pthread_mutex_t des_random_mutex;
159 extern pthread_mutex_t rx_clock_mutex;
160 extern pthread_mutex_t rxi_connCacheMutex;
161 extern pthread_mutex_t rx_event_mutex;
162 extern pthread_mutex_t osi_malloc_mutex;
163 extern pthread_mutex_t event_handler_mutex;
164 extern pthread_mutex_t listener_mutex;
165 extern pthread_mutex_t rx_if_init_mutex;
166 extern pthread_mutex_t rx_if_mutex;
167 extern pthread_mutex_t rxkad_client_uid_mutex;
168 extern pthread_mutex_t rxkad_random_mutex;
170 extern pthread_cond_t rx_event_handler_cond;
171 extern pthread_cond_t rx_listener_cond;
173 static pthread_mutex_t epoch_mutex;
174 static pthread_mutex_t rx_init_mutex;
175 static pthread_mutex_t rx_debug_mutex;
178 rxi_InitPthread(void)
180 assert(pthread_mutex_init(&rx_clock_mutex, (const pthread_mutexattr_t *)0)
182 assert(pthread_mutex_init(&rx_stats_mutex, (const pthread_mutexattr_t *)0)
184 assert(pthread_mutex_init
185 (&rxi_connCacheMutex, (const pthread_mutexattr_t *)0) == 0);
186 assert(pthread_mutex_init(&rx_init_mutex, (const pthread_mutexattr_t *)0)
188 assert(pthread_mutex_init(&epoch_mutex, (const pthread_mutexattr_t *)0) ==
190 assert(pthread_mutex_init(&rx_event_mutex, (const pthread_mutexattr_t *)0)
192 assert(pthread_mutex_init(&des_init_mutex, (const pthread_mutexattr_t *)0)
194 assert(pthread_mutex_init
195 (&des_random_mutex, (const pthread_mutexattr_t *)0) == 0);
196 assert(pthread_mutex_init
197 (&osi_malloc_mutex, (const pthread_mutexattr_t *)0) == 0);
198 assert(pthread_mutex_init
199 (&event_handler_mutex, (const pthread_mutexattr_t *)0) == 0);
200 assert(pthread_mutex_init(&listener_mutex, (const pthread_mutexattr_t *)0)
202 assert(pthread_mutex_init
203 (&rx_if_init_mutex, (const pthread_mutexattr_t *)0) == 0);
204 assert(pthread_mutex_init(&rx_if_mutex, (const pthread_mutexattr_t *)0) ==
206 assert(pthread_mutex_init
207 (&rxkad_client_uid_mutex, (const pthread_mutexattr_t *)0) == 0);
208 assert(pthread_mutex_init
209 (&rxkad_random_mutex, (const pthread_mutexattr_t *)0) == 0);
210 assert(pthread_mutex_init
211 (&rxkad_stats_mutex, (const pthread_mutexattr_t *)0) == 0);
212 assert(pthread_mutex_init(&rx_debug_mutex, (const pthread_mutexattr_t *)0)
215 assert(pthread_cond_init
216 (&rx_event_handler_cond, (const pthread_condattr_t *)0) == 0);
217 assert(pthread_cond_init(&rx_listener_cond, (const pthread_condattr_t *)0)
219 assert(pthread_key_create(&rx_thread_id_key, NULL) == 0);
220 assert(pthread_key_create(&rx_ts_info_key, NULL) == 0);
223 pthread_once_t rx_once_init = PTHREAD_ONCE_INIT;
224 #define INIT_PTHREAD_LOCKS \
225 assert(pthread_once(&rx_once_init, rxi_InitPthread)==0)
227 * The rx_stats_mutex mutex protects the following global variables:
232 * rxi_lowConnRefCount
233 * rxi_lowPeerRefCount
242 #define INIT_PTHREAD_LOCKS
246 /* Variables for handling the minProcs implementation. availProcs gives the
247 * number of threads available in the pool at this moment (not counting dudes
248 * executing right now). totalMin gives the total number of procs required
249 * for handling all minProcs requests. minDeficit is a dynamic variable
250 * tracking the # of procs required to satisfy all of the remaining minProcs
252 * For fine grain locking to work, the quota check and the reservation of
253 * a server thread has to come while rxi_availProcs and rxi_minDeficit
254 * are locked. To this end, the code has been modified under #ifdef
255 * RX_ENABLE_LOCKS so that quota checks and reservation occur at the
256 * same time. A new function, ReturnToServerPool() returns the allocation.
258 * A call can be on several queue's (but only one at a time). When
259 * rxi_ResetCall wants to remove the call from a queue, it has to ensure
260 * that no one else is touching the queue. To this end, we store the address
261 * of the queue lock in the call structure (under the call lock) when we
262 * put the call on a queue, and we clear the call_queue_lock when the
263 * call is removed from a queue (once the call lock has been obtained).
264 * This allows rxi_ResetCall to safely synchronize with others wishing
265 * to manipulate the queue.
268 #ifdef RX_ENABLE_LOCKS
269 static afs_kmutex_t rx_rpc_stats;
270 void rxi_StartUnlocked();
273 /* We keep a "last conn pointer" in rxi_FindConnection. The odds are
274 ** pretty good that the next packet coming in is from the same connection
275 ** as the last packet, since we're send multiple packets in a transmit window.
277 struct rx_connection *rxLastConn = 0;
279 #ifdef RX_ENABLE_LOCKS
280 /* The locking hierarchy for rx fine grain locking is composed of these
283 * rx_connHashTable_lock - synchronizes conn creation, rx_connHashTable access
284 * conn_call_lock - used to synchonize rx_EndCall and rx_NewCall
285 * call->lock - locks call data fields.
286 * These are independent of each other:
287 * rx_freeCallQueue_lock
292 * serverQueueEntry->lock
294 * rx_peerHashTable_lock - locked under rx_connHashTable_lock
295 * peer->lock - locks peer data fields.
296 * conn_data_lock - that more than one thread is not updating a conn data
297 * field at the same time.
305 * Do we need a lock to protect the peer field in the conn structure?
306 * conn->peer was previously a constant for all intents and so has no
307 * lock protecting this field. The multihomed client delta introduced
308 * a RX code change : change the peer field in the connection structure
309 * to that remote inetrface from which the last packet for this
310 * connection was sent out. This may become an issue if further changes
313 #define SET_CALL_QUEUE_LOCK(C, L) (C)->call_queue_lock = (L)
314 #define CLEAR_CALL_QUEUE_LOCK(C) (C)->call_queue_lock = NULL
316 /* rxdb_fileID is used to identify the lock location, along with line#. */
317 static int rxdb_fileID = RXDB_FILE_RX;
318 #endif /* RX_LOCKS_DB */
319 #else /* RX_ENABLE_LOCKS */
320 #define SET_CALL_QUEUE_LOCK(C, L)
321 #define CLEAR_CALL_QUEUE_LOCK(C)
322 #endif /* RX_ENABLE_LOCKS */
323 struct rx_serverQueueEntry *rx_waitForPacket = 0;
324 struct rx_serverQueueEntry *rx_waitingForPacket = 0;
326 /* ------------Exported Interfaces------------- */
328 /* This function allows rxkad to set the epoch to a suitably random number
329 * which rx_NewConnection will use in the future. The principle purpose is to
330 * get rxnull connections to use the same epoch as the rxkad connections do, at
331 * least once the first rxkad connection is established. This is important now
332 * that the host/port addresses aren't used in FindConnection: the uniqueness
333 * of epoch/cid matters and the start time won't do. */
335 #ifdef AFS_PTHREAD_ENV
337 * This mutex protects the following global variables:
341 #define LOCK_EPOCH assert(pthread_mutex_lock(&epoch_mutex)==0)
342 #define UNLOCK_EPOCH assert(pthread_mutex_unlock(&epoch_mutex)==0)
346 #endif /* AFS_PTHREAD_ENV */
349 rx_SetEpoch(afs_uint32 epoch)
356 /* Initialize rx. A port number may be mentioned, in which case this
357 * becomes the default port number for any service installed later.
358 * If 0 is provided for the port number, a random port will be chosen
359 * by the kernel. Whether this will ever overlap anything in
360 * /etc/services is anybody's guess... Returns 0 on success, -1 on
362 static int rxinit_status = 1;
363 #ifdef AFS_PTHREAD_ENV
365 * This mutex protects the following global variables:
369 #define LOCK_RX_INIT assert(pthread_mutex_lock(&rx_init_mutex)==0)
370 #define UNLOCK_RX_INIT assert(pthread_mutex_unlock(&rx_init_mutex)==0)
373 #define UNLOCK_RX_INIT
377 rx_InitHost(u_int host, u_int port)
384 char *htable, *ptable;
387 #if defined(AFS_DJGPP_ENV) && !defined(DEBUG)
388 __djgpp_set_quiet_socket(1);
395 if (rxinit_status == 0) {
396 tmp_status = rxinit_status;
398 return tmp_status; /* Already started; return previous error code. */
401 if (afs_winsockInit() < 0)
407 * Initialize anything necessary to provide a non-premptive threading
410 rxi_InitializeThreadSupport();
413 /* Allocate and initialize a socket for client and perhaps server
416 rx_socket = rxi_GetHostUDPSocket(host, (u_short) port);
417 if (rx_socket == OSI_NULLSOCKET) {
421 #ifdef RX_ENABLE_LOCKS
424 #endif /* RX_LOCKS_DB */
425 MUTEX_INIT(&rx_stats_mutex, "rx_stats_mutex", MUTEX_DEFAULT, 0);
426 MUTEX_INIT(&rx_rpc_stats, "rx_rpc_stats", MUTEX_DEFAULT, 0);
427 MUTEX_INIT(&rx_freePktQ_lock, "rx_freePktQ_lock", MUTEX_DEFAULT, 0);
428 MUTEX_INIT(&freeSQEList_lock, "freeSQEList lock", MUTEX_DEFAULT, 0);
429 MUTEX_INIT(&rx_freeCallQueue_lock, "rx_freeCallQueue_lock", MUTEX_DEFAULT,
431 CV_INIT(&rx_waitingForPackets_cv, "rx_waitingForPackets_cv", CV_DEFAULT,
433 MUTEX_INIT(&rx_peerHashTable_lock, "rx_peerHashTable_lock", MUTEX_DEFAULT,
435 MUTEX_INIT(&rx_connHashTable_lock, "rx_connHashTable_lock", MUTEX_DEFAULT,
437 MUTEX_INIT(&rx_serverPool_lock, "rx_serverPool_lock", MUTEX_DEFAULT, 0);
439 MUTEX_INIT(&rxi_keyCreate_lock, "rxi_keyCreate_lock", MUTEX_DEFAULT, 0);
441 #if defined(KERNEL) && defined(AFS_HPUX110_ENV)
443 rx_sleepLock = alloc_spinlock(LAST_HELD_ORDER - 10, "rx_sleepLock");
444 #endif /* KERNEL && AFS_HPUX110_ENV */
445 #else /* RX_ENABLE_LOCKS */
446 #if defined(KERNEL) && defined(AFS_GLOBAL_SUNLOCK) && !defined(AFS_HPUX_ENV) && !defined(AFS_OBSD_ENV)
447 mutex_init(&afs_rxglobal_lock, "afs_rxglobal_lock", MUTEX_DEFAULT, NULL);
448 #endif /* AFS_GLOBAL_SUNLOCK */
449 #endif /* RX_ENABLE_LOCKS */
452 rx_connDeadTime = 12;
453 rx_tranquil = 0; /* reset flag */
454 memset((char *)&rx_stats, 0, sizeof(struct rx_stats));
456 osi_Alloc(rx_hashTableSize * sizeof(struct rx_connection *));
457 PIN(htable, rx_hashTableSize * sizeof(struct rx_connection *)); /* XXXXX */
458 memset(htable, 0, rx_hashTableSize * sizeof(struct rx_connection *));
459 ptable = (char *)osi_Alloc(rx_hashTableSize * sizeof(struct rx_peer *));
460 PIN(ptable, rx_hashTableSize * sizeof(struct rx_peer *)); /* XXXXX */
461 memset(ptable, 0, rx_hashTableSize * sizeof(struct rx_peer *));
463 /* Malloc up a bunch of packets & buffers */
465 queue_Init(&rx_freePacketQueue);
466 rxi_NeedMorePackets = FALSE;
467 #ifdef RX_ENABLE_TSFPQ
468 rx_nPackets = 0; /* in TSFPQ version, rx_nPackets is managed by rxi_MorePackets* */
469 rxi_MorePacketsTSFPQ(rx_extraPackets + RX_MAX_QUOTA + 2, RX_TS_FPQ_FLUSH_GLOBAL, 0);
470 #else /* RX_ENABLE_TSFPQ */
471 rx_nPackets = rx_extraPackets + RX_MAX_QUOTA + 2; /* fudge */
472 rxi_MorePackets(rx_nPackets);
473 #endif /* RX_ENABLE_TSFPQ */
480 #if defined(AFS_NT40_ENV) && !defined(AFS_PTHREAD_ENV)
481 tv.tv_sec = clock_now.sec;
482 tv.tv_usec = clock_now.usec;
483 srand((unsigned int)tv.tv_usec);
490 #if defined(KERNEL) && !defined(UKERNEL)
491 /* Really, this should never happen in a real kernel */
494 struct sockaddr_in addr;
495 int addrlen = sizeof(addr);
496 if (getsockname((int)rx_socket, (struct sockaddr *)&addr, &addrlen)) {
500 rx_port = addr.sin_port;
503 rx_stats.minRtt.sec = 9999999;
505 rx_SetEpoch(tv.tv_sec | 0x80000000);
507 rx_SetEpoch(tv.tv_sec); /* Start time of this package, rxkad
508 * will provide a randomer value. */
510 MUTEX_ENTER(&rx_stats_mutex);
511 rxi_dataQuota += rx_extraQuota; /* + extra pkts caller asked to rsrv */
512 MUTEX_EXIT(&rx_stats_mutex);
513 /* *Slightly* random start time for the cid. This is just to help
514 * out with the hashing function at the peer */
515 rx_nextCid = ((tv.tv_sec ^ tv.tv_usec) << RX_CIDSHIFT);
516 rx_connHashTable = (struct rx_connection **)htable;
517 rx_peerHashTable = (struct rx_peer **)ptable;
519 rx_lastAckDelay.sec = 0;
520 rx_lastAckDelay.usec = 400000; /* 400 milliseconds */
521 rx_hardAckDelay.sec = 0;
522 rx_hardAckDelay.usec = 100000; /* 100 milliseconds */
523 rx_softAckDelay.sec = 0;
524 rx_softAckDelay.usec = 100000; /* 100 milliseconds */
526 rxevent_Init(20, rxi_ReScheduleEvents);
528 /* Initialize various global queues */
529 queue_Init(&rx_idleServerQueue);
530 queue_Init(&rx_incomingCallQueue);
531 queue_Init(&rx_freeCallQueue);
533 #if defined(AFS_NT40_ENV) && !defined(KERNEL)
534 /* Initialize our list of usable IP addresses. */
538 /* Start listener process (exact function is dependent on the
539 * implementation environment--kernel or user space) */
543 tmp_status = rxinit_status = 0;
551 return rx_InitHost(htonl(INADDR_ANY), port);
554 /* called with unincremented nRequestsRunning to see if it is OK to start
555 * a new thread in this service. Could be "no" for two reasons: over the
556 * max quota, or would prevent others from reaching their min quota.
558 #ifdef RX_ENABLE_LOCKS
559 /* This verion of QuotaOK reserves quota if it's ok while the
560 * rx_serverPool_lock is held. Return quota using ReturnToServerPool().
563 QuotaOK(register struct rx_service *aservice)
565 /* check if over max quota */
566 if (aservice->nRequestsRunning >= aservice->maxProcs) {
570 /* under min quota, we're OK */
571 /* otherwise, can use only if there are enough to allow everyone
572 * to go to their min quota after this guy starts.
574 MUTEX_ENTER(&rx_stats_mutex);
575 if ((aservice->nRequestsRunning < aservice->minProcs)
576 || (rxi_availProcs > rxi_minDeficit)) {
577 aservice->nRequestsRunning++;
578 /* just started call in minProcs pool, need fewer to maintain
580 if (aservice->nRequestsRunning <= aservice->minProcs)
583 MUTEX_EXIT(&rx_stats_mutex);
586 MUTEX_EXIT(&rx_stats_mutex);
592 ReturnToServerPool(register struct rx_service *aservice)
594 aservice->nRequestsRunning--;
595 MUTEX_ENTER(&rx_stats_mutex);
596 if (aservice->nRequestsRunning < aservice->minProcs)
599 MUTEX_EXIT(&rx_stats_mutex);
602 #else /* RX_ENABLE_LOCKS */
604 QuotaOK(register struct rx_service *aservice)
607 /* under min quota, we're OK */
608 if (aservice->nRequestsRunning < aservice->minProcs)
611 /* check if over max quota */
612 if (aservice->nRequestsRunning >= aservice->maxProcs)
615 /* otherwise, can use only if there are enough to allow everyone
616 * to go to their min quota after this guy starts.
618 if (rxi_availProcs > rxi_minDeficit)
622 #endif /* RX_ENABLE_LOCKS */
625 /* Called by rx_StartServer to start up lwp's to service calls.
626 NExistingProcs gives the number of procs already existing, and which
627 therefore needn't be created. */
629 rxi_StartServerProcs(int nExistingProcs)
631 register struct rx_service *service;
636 /* For each service, reserve N processes, where N is the "minimum"
637 * number of processes that MUST be able to execute a request in parallel,
638 * at any time, for that process. Also compute the maximum difference
639 * between any service's maximum number of processes that can run
640 * (i.e. the maximum number that ever will be run, and a guarantee
641 * that this number will run if other services aren't running), and its
642 * minimum number. The result is the extra number of processes that
643 * we need in order to provide the latter guarantee */
644 for (i = 0; i < RX_MAX_SERVICES; i++) {
646 service = rx_services[i];
647 if (service == (struct rx_service *)0)
649 nProcs += service->minProcs;
650 diff = service->maxProcs - service->minProcs;
654 nProcs += maxdiff; /* Extra processes needed to allow max number requested to run in any given service, under good conditions */
655 nProcs -= nExistingProcs; /* Subtract the number of procs that were previously created for use as server procs */
656 #ifdef RX_ENABLE_TSFPQ
657 rx_TSFPQMaxProcs += nProcs;
658 RX_TS_FPQ_COMPUTE_LIMITS;
659 #endif /* RX_ENABLE_TSFPQ */
660 for (i = 0; i < nProcs; i++) {
661 rxi_StartServerProc(rx_ServerProc, rx_stackSize);
667 /* This routine is only required on Windows */
669 rx_StartClientThread(void)
671 #ifdef AFS_PTHREAD_ENV
673 pid = (int) pthread_self();
674 #endif /* AFS_PTHREAD_ENV */
675 #ifdef RX_ENABLE_TSFPQ
677 RX_TS_FPQ_COMPUTE_LIMITS;
678 #endif /* RX_ENABLE_TSFPQ */
680 #endif /* AFS_NT40_ENV */
682 /* This routine must be called if any services are exported. If the
683 * donateMe flag is set, the calling process is donated to the server
686 rx_StartServer(int donateMe)
688 register struct rx_service *service;
694 /* Start server processes, if necessary (exact function is dependent
695 * on the implementation environment--kernel or user space). DonateMe
696 * will be 1 if there is 1 pre-existing proc, i.e. this one. In this
697 * case, one less new proc will be created rx_StartServerProcs.
699 rxi_StartServerProcs(donateMe);
701 /* count up the # of threads in minProcs, and add set the min deficit to
702 * be that value, too.
704 for (i = 0; i < RX_MAX_SERVICES; i++) {
705 service = rx_services[i];
706 if (service == (struct rx_service *)0)
708 MUTEX_ENTER(&rx_stats_mutex);
709 rxi_totalMin += service->minProcs;
710 /* below works even if a thread is running, since minDeficit would
711 * still have been decremented and later re-incremented.
713 rxi_minDeficit += service->minProcs;
714 MUTEX_EXIT(&rx_stats_mutex);
717 /* Turn on reaping of idle server connections */
718 rxi_ReapConnections();
727 #ifdef AFS_PTHREAD_ENV
729 pid = (pid_t) pthread_self();
730 #else /* AFS_PTHREAD_ENV */
732 LWP_CurrentProcess(&pid);
733 #endif /* AFS_PTHREAD_ENV */
735 sprintf(name, "srv_%d", ++nProcs);
737 (*registerProgram) (pid, name);
739 #endif /* AFS_NT40_ENV */
740 rx_ServerProc(); /* Never returns */
745 /* Create a new client connection to the specified service, using the
746 * specified security object to implement the security model for this
748 struct rx_connection *
749 rx_NewConnection(register afs_uint32 shost, u_short sport, u_short sservice,
750 register struct rx_securityClass *securityObject,
751 int serviceSecurityIndex)
755 register struct rx_connection *conn;
760 dpf(("rx_NewConnection(host %x, port %u, service %u, securityObject %x, serviceSecurityIndex %d)\n", shost, sport, sservice, securityObject, serviceSecurityIndex));
762 /* Vasilsi said: "NETPRI protects Cid and Alloc", but can this be true in
763 * the case of kmem_alloc? */
764 conn = rxi_AllocConnection();
765 #ifdef RX_ENABLE_LOCKS
766 MUTEX_INIT(&conn->conn_call_lock, "conn call lock", MUTEX_DEFAULT, 0);
767 MUTEX_INIT(&conn->conn_data_lock, "conn call lock", MUTEX_DEFAULT, 0);
768 CV_INIT(&conn->conn_call_cv, "conn call cv", CV_DEFAULT, 0);
771 MUTEX_ENTER(&rx_connHashTable_lock);
772 cid = (rx_nextCid += RX_MAXCALLS);
773 conn->type = RX_CLIENT_CONNECTION;
775 conn->epoch = rx_epoch;
776 conn->peer = rxi_FindPeer(shost, sport, 0, 1);
777 conn->serviceId = sservice;
778 conn->securityObject = securityObject;
779 /* This doesn't work in all compilers with void (they're buggy), so fake it
781 conn->securityData = (VOID *) 0;
782 conn->securityIndex = serviceSecurityIndex;
783 rx_SetConnDeadTime(conn, rx_connDeadTime);
784 conn->ackRate = RX_FAST_ACK_RATE;
786 conn->specific = NULL;
787 conn->challengeEvent = NULL;
788 conn->delayedAbortEvent = NULL;
789 conn->abortCount = 0;
792 RXS_NewConnection(securityObject, conn);
794 CONN_HASH(shost, sport, conn->cid, conn->epoch, RX_CLIENT_CONNECTION);
796 conn->refCount++; /* no lock required since only this thread knows... */
797 conn->next = rx_connHashTable[hashindex];
798 rx_connHashTable[hashindex] = conn;
799 MUTEX_ENTER(&rx_stats_mutex);
800 rx_stats.nClientConns++;
801 MUTEX_EXIT(&rx_stats_mutex);
803 MUTEX_EXIT(&rx_connHashTable_lock);
809 rx_SetConnDeadTime(register struct rx_connection *conn, register int seconds)
811 /* The idea is to set the dead time to a value that allows several
812 * keepalives to be dropped without timing out the connection. */
813 conn->secondsUntilDead = MAX(seconds, 6);
814 conn->secondsUntilPing = conn->secondsUntilDead / 6;
817 int rxi_lowPeerRefCount = 0;
818 int rxi_lowConnRefCount = 0;
821 * Cleanup a connection that was destroyed in rxi_DestroyConnectioNoLock.
822 * NOTE: must not be called with rx_connHashTable_lock held.
825 rxi_CleanupConnection(struct rx_connection *conn)
827 /* Notify the service exporter, if requested, that this connection
828 * is being destroyed */
829 if (conn->type == RX_SERVER_CONNECTION && conn->service->destroyConnProc)
830 (*conn->service->destroyConnProc) (conn);
832 /* Notify the security module that this connection is being destroyed */
833 RXS_DestroyConnection(conn->securityObject, conn);
835 /* If this is the last connection using the rx_peer struct, set its
836 * idle time to now. rxi_ReapConnections will reap it if it's still
837 * idle (refCount == 0) after rx_idlePeerTime (60 seconds) have passed.
839 MUTEX_ENTER(&rx_peerHashTable_lock);
840 if (conn->peer->refCount < 2) {
841 conn->peer->idleWhen = clock_Sec();
842 if (conn->peer->refCount < 1) {
843 conn->peer->refCount = 1;
844 MUTEX_ENTER(&rx_stats_mutex);
845 rxi_lowPeerRefCount++;
846 MUTEX_EXIT(&rx_stats_mutex);
849 conn->peer->refCount--;
850 MUTEX_EXIT(&rx_peerHashTable_lock);
852 MUTEX_ENTER(&rx_stats_mutex);
853 if (conn->type == RX_SERVER_CONNECTION)
854 rx_stats.nServerConns--;
856 rx_stats.nClientConns--;
857 MUTEX_EXIT(&rx_stats_mutex);
860 if (conn->specific) {
862 for (i = 0; i < conn->nSpecific; i++) {
863 if (conn->specific[i] && rxi_keyCreate_destructor[i])
864 (*rxi_keyCreate_destructor[i]) (conn->specific[i]);
865 conn->specific[i] = NULL;
867 free(conn->specific);
869 conn->specific = NULL;
873 MUTEX_DESTROY(&conn->conn_call_lock);
874 MUTEX_DESTROY(&conn->conn_data_lock);
875 CV_DESTROY(&conn->conn_call_cv);
877 rxi_FreeConnection(conn);
880 /* Destroy the specified connection */
882 rxi_DestroyConnection(register struct rx_connection *conn)
884 MUTEX_ENTER(&rx_connHashTable_lock);
885 rxi_DestroyConnectionNoLock(conn);
886 /* conn should be at the head of the cleanup list */
887 if (conn == rx_connCleanup_list) {
888 rx_connCleanup_list = rx_connCleanup_list->next;
889 MUTEX_EXIT(&rx_connHashTable_lock);
890 rxi_CleanupConnection(conn);
892 #ifdef RX_ENABLE_LOCKS
894 MUTEX_EXIT(&rx_connHashTable_lock);
896 #endif /* RX_ENABLE_LOCKS */
900 rxi_DestroyConnectionNoLock(register struct rx_connection *conn)
902 register struct rx_connection **conn_ptr;
903 register int havecalls = 0;
904 struct rx_packet *packet;
911 MUTEX_ENTER(&conn->conn_data_lock);
912 if (conn->refCount > 0)
915 MUTEX_ENTER(&rx_stats_mutex);
916 rxi_lowConnRefCount++;
917 MUTEX_EXIT(&rx_stats_mutex);
920 if ((conn->refCount > 0) || (conn->flags & RX_CONN_BUSY)) {
921 /* Busy; wait till the last guy before proceeding */
922 MUTEX_EXIT(&conn->conn_data_lock);
927 /* If the client previously called rx_NewCall, but it is still
928 * waiting, treat this as a running call, and wait to destroy the
929 * connection later when the call completes. */
930 if ((conn->type == RX_CLIENT_CONNECTION)
931 && (conn->flags & RX_CONN_MAKECALL_WAITING)) {
932 conn->flags |= RX_CONN_DESTROY_ME;
933 MUTEX_EXIT(&conn->conn_data_lock);
937 MUTEX_EXIT(&conn->conn_data_lock);
939 /* Check for extant references to this connection */
940 for (i = 0; i < RX_MAXCALLS; i++) {
941 register struct rx_call *call = conn->call[i];
944 if (conn->type == RX_CLIENT_CONNECTION) {
945 MUTEX_ENTER(&call->lock);
946 if (call->delayedAckEvent) {
947 /* Push the final acknowledgment out now--there
948 * won't be a subsequent call to acknowledge the
949 * last reply packets */
950 rxevent_Cancel(call->delayedAckEvent, call,
951 RX_CALL_REFCOUNT_DELAY);
952 if (call->state == RX_STATE_PRECALL
953 || call->state == RX_STATE_ACTIVE) {
954 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
956 rxi_AckAll(NULL, call, 0);
959 MUTEX_EXIT(&call->lock);
963 #ifdef RX_ENABLE_LOCKS
965 if (MUTEX_TRYENTER(&conn->conn_data_lock)) {
966 MUTEX_EXIT(&conn->conn_data_lock);
968 /* Someone is accessing a packet right now. */
972 #endif /* RX_ENABLE_LOCKS */
975 /* Don't destroy the connection if there are any call
976 * structures still in use */
977 MUTEX_ENTER(&conn->conn_data_lock);
978 conn->flags |= RX_CONN_DESTROY_ME;
979 MUTEX_EXIT(&conn->conn_data_lock);
984 if (conn->delayedAbortEvent) {
985 rxevent_Cancel(conn->delayedAbortEvent, (struct rx_call *)0, 0);
986 packet = rxi_AllocPacket(RX_PACKET_CLASS_SPECIAL);
988 MUTEX_ENTER(&conn->conn_data_lock);
989 rxi_SendConnectionAbort(conn, packet, 0, 1);
990 MUTEX_EXIT(&conn->conn_data_lock);
991 rxi_FreePacket(packet);
995 /* Remove from connection hash table before proceeding */
997 &rx_connHashTable[CONN_HASH
998 (peer->host, peer->port, conn->cid, conn->epoch,
1000 for (; *conn_ptr; conn_ptr = &(*conn_ptr)->next) {
1001 if (*conn_ptr == conn) {
1002 *conn_ptr = conn->next;
1006 /* if the conn that we are destroying was the last connection, then we
1007 * clear rxLastConn as well */
1008 if (rxLastConn == conn)
1011 /* Make sure the connection is completely reset before deleting it. */
1012 /* get rid of pending events that could zap us later */
1013 if (conn->challengeEvent)
1014 rxevent_Cancel(conn->challengeEvent, (struct rx_call *)0, 0);
1015 if (conn->checkReachEvent)
1016 rxevent_Cancel(conn->checkReachEvent, (struct rx_call *)0, 0);
1018 /* Add the connection to the list of destroyed connections that
1019 * need to be cleaned up. This is necessary to avoid deadlocks
1020 * in the routines we call to inform others that this connection is
1021 * being destroyed. */
1022 conn->next = rx_connCleanup_list;
1023 rx_connCleanup_list = conn;
1026 /* Externally available version */
1028 rx_DestroyConnection(register struct rx_connection *conn)
1033 rxi_DestroyConnection(conn);
1038 rx_GetConnection(register struct rx_connection *conn)
1043 MUTEX_ENTER(&conn->conn_data_lock);
1045 MUTEX_EXIT(&conn->conn_data_lock);
1049 /* Start a new rx remote procedure call, on the specified connection.
1050 * If wait is set to 1, wait for a free call channel; otherwise return
1051 * 0. Maxtime gives the maximum number of seconds this call may take,
1052 * after rx_MakeCall returns. After this time interval, a call to any
1053 * of rx_SendData, rx_ReadData, etc. will fail with RX_CALL_TIMEOUT.
1054 * For fine grain locking, we hold the conn_call_lock in order to
1055 * to ensure that we don't get signalle after we found a call in an active
1056 * state and before we go to sleep.
1059 rx_NewCall(register struct rx_connection *conn)
1062 register struct rx_call *call;
1063 struct clock queueTime;
1067 dpf(("rx_MakeCall(conn %x)\n", conn));
1070 clock_GetTime(&queueTime);
1071 MUTEX_ENTER(&conn->conn_call_lock);
1074 * Check if there are others waiting for a new call.
1075 * If so, let them go first to avoid starving them.
1076 * This is a fairly simple scheme, and might not be
1077 * a complete solution for large numbers of waiters.
1079 if (conn->makeCallWaiters) {
1080 #ifdef RX_ENABLE_LOCKS
1081 CV_WAIT(&conn->conn_call_cv, &conn->conn_call_lock);
1088 for (i = 0; i < RX_MAXCALLS; i++) {
1089 call = conn->call[i];
1091 MUTEX_ENTER(&call->lock);
1092 if (call->state == RX_STATE_DALLY) {
1093 rxi_ResetCall(call, 0);
1094 (*call->callNumber)++;
1097 MUTEX_EXIT(&call->lock);
1099 call = rxi_NewCall(conn, i);
1103 if (i < RX_MAXCALLS) {
1106 MUTEX_ENTER(&conn->conn_data_lock);
1107 conn->flags |= RX_CONN_MAKECALL_WAITING;
1108 MUTEX_EXIT(&conn->conn_data_lock);
1110 conn->makeCallWaiters++;
1111 #ifdef RX_ENABLE_LOCKS
1112 CV_WAIT(&conn->conn_call_cv, &conn->conn_call_lock);
1116 conn->makeCallWaiters--;
1119 * Wake up anyone else who might be giving us a chance to
1120 * run (see code above that avoids resource starvation).
1122 #ifdef RX_ENABLE_LOCKS
1123 CV_BROADCAST(&conn->conn_call_cv);
1128 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
1130 /* Client is initially in send mode */
1131 call->state = RX_STATE_ACTIVE;
1132 call->mode = RX_MODE_SENDING;
1134 /* remember start time for call in case we have hard dead time limit */
1135 call->queueTime = queueTime;
1136 clock_GetTime(&call->startTime);
1137 hzero(call->bytesSent);
1138 hzero(call->bytesRcvd);
1140 /* Turn on busy protocol. */
1141 rxi_KeepAliveOn(call);
1143 MUTEX_EXIT(&call->lock);
1144 MUTEX_EXIT(&conn->conn_call_lock);
1147 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
1148 /* Now, if TQ wasn't cleared earlier, do it now. */
1149 MUTEX_ENTER(&call->lock);
1150 while (call->flags & RX_CALL_TQ_BUSY) {
1151 call->flags |= RX_CALL_TQ_WAIT;
1152 #ifdef RX_ENABLE_LOCKS
1153 CV_WAIT(&call->cv_tq, &call->lock);
1154 #else /* RX_ENABLE_LOCKS */
1155 osi_rxSleep(&call->tq);
1156 #endif /* RX_ENABLE_LOCKS */
1158 if (call->flags & RX_CALL_TQ_CLEARME) {
1159 rxi_ClearTransmitQueue(call, 0);
1160 queue_Init(&call->tq);
1162 MUTEX_EXIT(&call->lock);
1163 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
1169 rxi_HasActiveCalls(register struct rx_connection *aconn)
1172 register struct rx_call *tcall;
1176 for (i = 0; i < RX_MAXCALLS; i++) {
1177 if ((tcall = aconn->call[i])) {
1178 if ((tcall->state == RX_STATE_ACTIVE)
1179 || (tcall->state == RX_STATE_PRECALL)) {
1190 rxi_GetCallNumberVector(register struct rx_connection *aconn,
1191 register afs_int32 * aint32s)
1194 register struct rx_call *tcall;
1198 for (i = 0; i < RX_MAXCALLS; i++) {
1199 if ((tcall = aconn->call[i]) && (tcall->state == RX_STATE_DALLY))
1200 aint32s[i] = aconn->callNumber[i] + 1;
1202 aint32s[i] = aconn->callNumber[i];
1209 rxi_SetCallNumberVector(register struct rx_connection *aconn,
1210 register afs_int32 * aint32s)
1213 register struct rx_call *tcall;
1217 for (i = 0; i < RX_MAXCALLS; i++) {
1218 if ((tcall = aconn->call[i]) && (tcall->state == RX_STATE_DALLY))
1219 aconn->callNumber[i] = aint32s[i] - 1;
1221 aconn->callNumber[i] = aint32s[i];
1227 /* Advertise a new service. A service is named locally by a UDP port
1228 * number plus a 16-bit service id. Returns (struct rx_service *) 0
1231 char *serviceName; Name for identification purposes (e.g. the
1232 service name might be used for probing for
1235 rx_NewService(u_short port, u_short serviceId, char *serviceName,
1236 struct rx_securityClass **securityObjects, int nSecurityObjects,
1237 afs_int32(*serviceProc) (struct rx_call * acall))
1239 osi_socket socket = OSI_NULLSOCKET;
1240 register struct rx_service *tservice;
1246 if (serviceId == 0) {
1248 "rx_NewService: service id for service %s is not non-zero.\n",
1255 "rx_NewService: A non-zero port must be specified on this call if a non-zero port was not provided at Rx initialization (service %s).\n",
1263 tservice = rxi_AllocService();
1265 for (i = 0; i < RX_MAX_SERVICES; i++) {
1266 register struct rx_service *service = rx_services[i];
1268 if (port == service->servicePort) {
1269 if (service->serviceId == serviceId) {
1270 /* The identical service has already been
1271 * installed; if the caller was intending to
1272 * change the security classes used by this
1273 * service, he/she loses. */
1275 "rx_NewService: tried to install service %s with service id %d, which is already in use for service %s\n",
1276 serviceName, serviceId, service->serviceName);
1278 rxi_FreeService(tservice);
1281 /* Different service, same port: re-use the socket
1282 * which is bound to the same port */
1283 socket = service->socket;
1286 if (socket == OSI_NULLSOCKET) {
1287 /* If we don't already have a socket (from another
1288 * service on same port) get a new one */
1289 socket = rxi_GetHostUDPSocket(htonl(INADDR_ANY), port);
1290 if (socket == OSI_NULLSOCKET) {
1292 rxi_FreeService(tservice);
1297 service->socket = socket;
1298 service->servicePort = port;
1299 service->serviceId = serviceId;
1300 service->serviceName = serviceName;
1301 service->nSecurityObjects = nSecurityObjects;
1302 service->securityObjects = securityObjects;
1303 service->minProcs = 0;
1304 service->maxProcs = 1;
1305 service->idleDeadTime = 60;
1306 service->connDeadTime = rx_connDeadTime;
1307 service->executeRequestProc = serviceProc;
1308 service->checkReach = 0;
1309 rx_services[i] = service; /* not visible until now */
1315 rxi_FreeService(tservice);
1316 (osi_Msg "rx_NewService: cannot support > %d services\n",
1321 /* Generic request processing loop. This routine should be called
1322 * by the implementation dependent rx_ServerProc. If socketp is
1323 * non-null, it will be set to the file descriptor that this thread
1324 * is now listening on. If socketp is null, this routine will never
1327 rxi_ServerProc(int threadID, struct rx_call *newcall, osi_socket * socketp)
1329 register struct rx_call *call;
1330 register afs_int32 code;
1331 register struct rx_service *tservice = NULL;
1338 call = rx_GetCall(threadID, tservice, socketp);
1339 if (socketp && *socketp != OSI_NULLSOCKET) {
1340 /* We are now a listener thread */
1345 /* if server is restarting( typically smooth shutdown) then do not
1346 * allow any new calls.
1349 if (rx_tranquil && (call != NULL)) {
1353 MUTEX_ENTER(&call->lock);
1355 rxi_CallError(call, RX_RESTARTING);
1356 rxi_SendCallAbort(call, (struct rx_packet *)0, 0, 0);
1358 MUTEX_EXIT(&call->lock);
1362 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
1363 #ifdef RX_ENABLE_LOCKS
1365 #endif /* RX_ENABLE_LOCKS */
1366 afs_termState = AFSOP_STOP_AFS;
1367 afs_osi_Wakeup(&afs_termState);
1368 #ifdef RX_ENABLE_LOCKS
1370 #endif /* RX_ENABLE_LOCKS */
1375 tservice = call->conn->service;
1377 if (tservice->beforeProc)
1378 (*tservice->beforeProc) (call);
1380 code = call->conn->service->executeRequestProc(call);
1382 if (tservice->afterProc)
1383 (*tservice->afterProc) (call, code);
1385 rx_EndCall(call, code);
1386 MUTEX_ENTER(&rx_stats_mutex);
1388 MUTEX_EXIT(&rx_stats_mutex);
1394 rx_WakeupServerProcs(void)
1396 struct rx_serverQueueEntry *np, *tqp;
1400 MUTEX_ENTER(&rx_serverPool_lock);
1402 #ifdef RX_ENABLE_LOCKS
1403 if (rx_waitForPacket)
1404 CV_BROADCAST(&rx_waitForPacket->cv);
1405 #else /* RX_ENABLE_LOCKS */
1406 if (rx_waitForPacket)
1407 osi_rxWakeup(rx_waitForPacket);
1408 #endif /* RX_ENABLE_LOCKS */
1409 MUTEX_ENTER(&freeSQEList_lock);
1410 for (np = rx_FreeSQEList; np; np = tqp) {
1411 tqp = *(struct rx_serverQueueEntry **)np;
1412 #ifdef RX_ENABLE_LOCKS
1413 CV_BROADCAST(&np->cv);
1414 #else /* RX_ENABLE_LOCKS */
1416 #endif /* RX_ENABLE_LOCKS */
1418 MUTEX_EXIT(&freeSQEList_lock);
1419 for (queue_Scan(&rx_idleServerQueue, np, tqp, rx_serverQueueEntry)) {
1420 #ifdef RX_ENABLE_LOCKS
1421 CV_BROADCAST(&np->cv);
1422 #else /* RX_ENABLE_LOCKS */
1424 #endif /* RX_ENABLE_LOCKS */
1426 MUTEX_EXIT(&rx_serverPool_lock);
1431 * One thing that seems to happen is that all the server threads get
1432 * tied up on some empty or slow call, and then a whole bunch of calls
1433 * arrive at once, using up the packet pool, so now there are more
1434 * empty calls. The most critical resources here are server threads
1435 * and the free packet pool. The "doreclaim" code seems to help in
1436 * general. I think that eventually we arrive in this state: there
1437 * are lots of pending calls which do have all their packets present,
1438 * so they won't be reclaimed, are multi-packet calls, so they won't
1439 * be scheduled until later, and thus are tying up most of the free
1440 * packet pool for a very long time.
1442 * 1. schedule multi-packet calls if all the packets are present.
1443 * Probably CPU-bound operation, useful to return packets to pool.
1444 * Do what if there is a full window, but the last packet isn't here?
1445 * 3. preserve one thread which *only* runs "best" calls, otherwise
1446 * it sleeps and waits for that type of call.
1447 * 4. Don't necessarily reserve a whole window for each thread. In fact,
1448 * the current dataquota business is badly broken. The quota isn't adjusted
1449 * to reflect how many packets are presently queued for a running call.
1450 * So, when we schedule a queued call with a full window of packets queued
1451 * up for it, that *should* free up a window full of packets for other 2d-class
1452 * calls to be able to use from the packet pool. But it doesn't.
1454 * NB. Most of the time, this code doesn't run -- since idle server threads
1455 * sit on the idle server queue and are assigned by "...ReceivePacket" as soon
1456 * as a new call arrives.
1458 /* Sleep until a call arrives. Returns a pointer to the call, ready
1459 * for an rx_Read. */
1460 #ifdef RX_ENABLE_LOCKS
1462 rx_GetCall(int tno, struct rx_service *cur_service, osi_socket * socketp)
1464 struct rx_serverQueueEntry *sq;
1465 register struct rx_call *call = (struct rx_call *)0;
1466 struct rx_service *service = NULL;
1469 MUTEX_ENTER(&freeSQEList_lock);
1471 if ((sq = rx_FreeSQEList)) {
1472 rx_FreeSQEList = *(struct rx_serverQueueEntry **)sq;
1473 MUTEX_EXIT(&freeSQEList_lock);
1474 } else { /* otherwise allocate a new one and return that */
1475 MUTEX_EXIT(&freeSQEList_lock);
1476 sq = (struct rx_serverQueueEntry *)
1477 rxi_Alloc(sizeof(struct rx_serverQueueEntry));
1478 MUTEX_INIT(&sq->lock, "server Queue lock", MUTEX_DEFAULT, 0);
1479 CV_INIT(&sq->cv, "server Queue lock", CV_DEFAULT, 0);
1482 MUTEX_ENTER(&rx_serverPool_lock);
1483 if (cur_service != NULL) {
1484 ReturnToServerPool(cur_service);
1487 if (queue_IsNotEmpty(&rx_incomingCallQueue)) {
1488 register struct rx_call *tcall, *ncall, *choice2 = NULL;
1490 /* Scan for eligible incoming calls. A call is not eligible
1491 * if the maximum number of calls for its service type are
1492 * already executing */
1493 /* One thread will process calls FCFS (to prevent starvation),
1494 * while the other threads may run ahead looking for calls which
1495 * have all their input data available immediately. This helps
1496 * keep threads from blocking, waiting for data from the client. */
1497 for (queue_Scan(&rx_incomingCallQueue, tcall, ncall, rx_call)) {
1498 service = tcall->conn->service;
1499 if (!QuotaOK(service)) {
1502 if (tno == rxi_fcfs_thread_num
1503 || !tcall->queue_item_header.next) {
1504 /* If we're the fcfs thread , then we'll just use
1505 * this call. If we haven't been able to find an optimal
1506 * choice, and we're at the end of the list, then use a
1507 * 2d choice if one has been identified. Otherwise... */
1508 call = (choice2 ? choice2 : tcall);
1509 service = call->conn->service;
1510 } else if (!queue_IsEmpty(&tcall->rq)) {
1511 struct rx_packet *rp;
1512 rp = queue_First(&tcall->rq, rx_packet);
1513 if (rp->header.seq == 1) {
1515 || (rp->header.flags & RX_LAST_PACKET)) {
1517 } else if (rxi_2dchoice && !choice2
1518 && !(tcall->flags & RX_CALL_CLEARED)
1519 && (tcall->rprev > rxi_HardAckRate)) {
1528 ReturnToServerPool(service);
1535 MUTEX_EXIT(&rx_serverPool_lock);
1536 MUTEX_ENTER(&call->lock);
1538 if (call->flags & RX_CALL_WAIT_PROC) {
1539 call->flags &= ~RX_CALL_WAIT_PROC;
1540 MUTEX_ENTER(&rx_stats_mutex);
1542 MUTEX_EXIT(&rx_stats_mutex);
1545 if (call->state != RX_STATE_PRECALL || call->error) {
1546 MUTEX_EXIT(&call->lock);
1547 MUTEX_ENTER(&rx_serverPool_lock);
1548 ReturnToServerPool(service);
1553 if (queue_IsEmpty(&call->rq)
1554 || queue_First(&call->rq, rx_packet)->header.seq != 1)
1555 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
1557 CLEAR_CALL_QUEUE_LOCK(call);
1560 /* If there are no eligible incoming calls, add this process
1561 * to the idle server queue, to wait for one */
1565 *socketp = OSI_NULLSOCKET;
1567 sq->socketp = socketp;
1568 queue_Append(&rx_idleServerQueue, sq);
1569 #ifndef AFS_AIX41_ENV
1570 rx_waitForPacket = sq;
1572 rx_waitingForPacket = sq;
1573 #endif /* AFS_AIX41_ENV */
1575 CV_WAIT(&sq->cv, &rx_serverPool_lock);
1577 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
1578 MUTEX_EXIT(&rx_serverPool_lock);
1579 return (struct rx_call *)0;
1582 } while (!(call = sq->newcall)
1583 && !(socketp && *socketp != OSI_NULLSOCKET));
1584 MUTEX_EXIT(&rx_serverPool_lock);
1586 MUTEX_ENTER(&call->lock);
1592 MUTEX_ENTER(&freeSQEList_lock);
1593 *(struct rx_serverQueueEntry **)sq = rx_FreeSQEList;
1594 rx_FreeSQEList = sq;
1595 MUTEX_EXIT(&freeSQEList_lock);
1598 clock_GetTime(&call->startTime);
1599 call->state = RX_STATE_ACTIVE;
1600 call->mode = RX_MODE_RECEIVING;
1601 #ifdef RX_KERNEL_TRACE
1602 if (ICL_SETACTIVE(afs_iclSetp)) {
1603 int glockOwner = ISAFS_GLOCK();
1606 afs_Trace3(afs_iclSetp, CM_TRACE_WASHERE, ICL_TYPE_STRING,
1607 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
1614 rxi_calltrace(RX_CALL_START, call);
1615 dpf(("rx_GetCall(port=%d, service=%d) ==> call %x\n",
1616 call->conn->service->servicePort, call->conn->service->serviceId,
1619 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
1620 MUTEX_EXIT(&call->lock);
1622 dpf(("rx_GetCall(socketp=0x%x, *socketp=0x%x)\n", socketp, *socketp));
1627 #else /* RX_ENABLE_LOCKS */
1629 rx_GetCall(int tno, struct rx_service *cur_service, osi_socket * socketp)
1631 struct rx_serverQueueEntry *sq;
1632 register struct rx_call *call = (struct rx_call *)0, *choice2;
1633 struct rx_service *service = NULL;
1637 MUTEX_ENTER(&freeSQEList_lock);
1639 if ((sq = rx_FreeSQEList)) {
1640 rx_FreeSQEList = *(struct rx_serverQueueEntry **)sq;
1641 MUTEX_EXIT(&freeSQEList_lock);
1642 } else { /* otherwise allocate a new one and return that */
1643 MUTEX_EXIT(&freeSQEList_lock);
1644 sq = (struct rx_serverQueueEntry *)
1645 rxi_Alloc(sizeof(struct rx_serverQueueEntry));
1646 MUTEX_INIT(&sq->lock, "server Queue lock", MUTEX_DEFAULT, 0);
1647 CV_INIT(&sq->cv, "server Queue lock", CV_DEFAULT, 0);
1649 MUTEX_ENTER(&sq->lock);
1651 if (cur_service != NULL) {
1652 cur_service->nRequestsRunning--;
1653 if (cur_service->nRequestsRunning < cur_service->minProcs)
1657 if (queue_IsNotEmpty(&rx_incomingCallQueue)) {
1658 register struct rx_call *tcall, *ncall;
1659 /* Scan for eligible incoming calls. A call is not eligible
1660 * if the maximum number of calls for its service type are
1661 * already executing */
1662 /* One thread will process calls FCFS (to prevent starvation),
1663 * while the other threads may run ahead looking for calls which
1664 * have all their input data available immediately. This helps
1665 * keep threads from blocking, waiting for data from the client. */
1666 choice2 = (struct rx_call *)0;
1667 for (queue_Scan(&rx_incomingCallQueue, tcall, ncall, rx_call)) {
1668 service = tcall->conn->service;
1669 if (QuotaOK(service)) {
1670 if (tno == rxi_fcfs_thread_num
1671 || !tcall->queue_item_header.next) {
1672 /* If we're the fcfs thread, then we'll just use
1673 * this call. If we haven't been able to find an optimal
1674 * choice, and we're at the end of the list, then use a
1675 * 2d choice if one has been identified. Otherwise... */
1676 call = (choice2 ? choice2 : tcall);
1677 service = call->conn->service;
1678 } else if (!queue_IsEmpty(&tcall->rq)) {
1679 struct rx_packet *rp;
1680 rp = queue_First(&tcall->rq, rx_packet);
1681 if (rp->header.seq == 1
1683 || (rp->header.flags & RX_LAST_PACKET))) {
1685 } else if (rxi_2dchoice && !choice2
1686 && !(tcall->flags & RX_CALL_CLEARED)
1687 && (tcall->rprev > rxi_HardAckRate)) {
1700 /* we can't schedule a call if there's no data!!! */
1701 /* send an ack if there's no data, if we're missing the
1702 * first packet, or we're missing something between first
1703 * and last -- there's a "hole" in the incoming data. */
1704 if (queue_IsEmpty(&call->rq)
1705 || queue_First(&call->rq, rx_packet)->header.seq != 1
1706 || call->rprev != queue_Last(&call->rq, rx_packet)->header.seq)
1707 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
1709 call->flags &= (~RX_CALL_WAIT_PROC);
1710 service->nRequestsRunning++;
1711 /* just started call in minProcs pool, need fewer to maintain
1713 if (service->nRequestsRunning <= service->minProcs)
1717 /* MUTEX_EXIT(&call->lock); */
1719 /* If there are no eligible incoming calls, add this process
1720 * to the idle server queue, to wait for one */
1723 *socketp = OSI_NULLSOCKET;
1725 sq->socketp = socketp;
1726 queue_Append(&rx_idleServerQueue, sq);
1730 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
1732 rxi_Free(sq, sizeof(struct rx_serverQueueEntry));
1733 return (struct rx_call *)0;
1736 } while (!(call = sq->newcall)
1737 && !(socketp && *socketp != OSI_NULLSOCKET));
1739 MUTEX_EXIT(&sq->lock);
1741 MUTEX_ENTER(&freeSQEList_lock);
1742 *(struct rx_serverQueueEntry **)sq = rx_FreeSQEList;
1743 rx_FreeSQEList = sq;
1744 MUTEX_EXIT(&freeSQEList_lock);
1747 clock_GetTime(&call->startTime);
1748 call->state = RX_STATE_ACTIVE;
1749 call->mode = RX_MODE_RECEIVING;
1750 #ifdef RX_KERNEL_TRACE
1751 if (ICL_SETACTIVE(afs_iclSetp)) {
1752 int glockOwner = ISAFS_GLOCK();
1755 afs_Trace3(afs_iclSetp, CM_TRACE_WASHERE, ICL_TYPE_STRING,
1756 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
1763 rxi_calltrace(RX_CALL_START, call);
1764 dpf(("rx_GetCall(port=%d, service=%d) ==> call %x\n",
1765 call->conn->service->servicePort, call->conn->service->serviceId,
1768 dpf(("rx_GetCall(socketp=0x%x, *socketp=0x%x)\n", socketp, *socketp));
1775 #endif /* RX_ENABLE_LOCKS */
1779 /* Establish a procedure to be called when a packet arrives for a
1780 * call. This routine will be called at most once after each call,
1781 * and will also be called if there is an error condition on the or
1782 * the call is complete. Used by multi rx to build a selection
1783 * function which determines which of several calls is likely to be a
1784 * good one to read from.
1785 * NOTE: the way this is currently implemented it is probably only a
1786 * good idea to (1) use it immediately after a newcall (clients only)
1787 * and (2) only use it once. Other uses currently void your warranty
1790 rx_SetArrivalProc(register struct rx_call *call,
1791 register void (*proc) (register struct rx_call * call,
1793 register int index),
1794 register VOID * handle, register int arg)
1796 call->arrivalProc = proc;
1797 call->arrivalProcHandle = handle;
1798 call->arrivalProcArg = arg;
1801 /* Call is finished (possibly prematurely). Return rc to the peer, if
1802 * appropriate, and return the final error code from the conversation
1806 rx_EndCall(register struct rx_call *call, afs_int32 rc)
1808 register struct rx_connection *conn = call->conn;
1809 register struct rx_service *service;
1810 register struct rx_packet *tp; /* Temporary packet pointer */
1811 register struct rx_packet *nxp; /* Next packet pointer, for queue_Scan */
1815 dpf(("rx_EndCall(call %x)\n", call));
1818 MUTEX_ENTER(&call->lock);
1820 if (rc == 0 && call->error == 0) {
1821 call->abortCode = 0;
1822 call->abortCount = 0;
1825 call->arrivalProc = (void (*)())0;
1826 if (rc && call->error == 0) {
1827 rxi_CallError(call, rc);
1828 /* Send an abort message to the peer if this error code has
1829 * only just been set. If it was set previously, assume the
1830 * peer has already been sent the error code or will request it
1832 rxi_SendCallAbort(call, (struct rx_packet *)0, 0, 0);
1834 if (conn->type == RX_SERVER_CONNECTION) {
1835 /* Make sure reply or at least dummy reply is sent */
1836 if (call->mode == RX_MODE_RECEIVING) {
1837 rxi_WriteProc(call, 0, 0);
1839 if (call->mode == RX_MODE_SENDING) {
1840 rxi_FlushWrite(call);
1842 service = conn->service;
1843 rxi_calltrace(RX_CALL_END, call);
1844 /* Call goes to hold state until reply packets are acknowledged */
1845 if (call->tfirst + call->nSoftAcked < call->tnext) {
1846 call->state = RX_STATE_HOLD;
1848 call->state = RX_STATE_DALLY;
1849 rxi_ClearTransmitQueue(call, 0);
1850 rxevent_Cancel(call->resendEvent, call, RX_CALL_REFCOUNT_RESEND);
1851 rxevent_Cancel(call->keepAliveEvent, call,
1852 RX_CALL_REFCOUNT_ALIVE);
1854 } else { /* Client connection */
1856 /* Make sure server receives input packets, in the case where
1857 * no reply arguments are expected */
1858 if ((call->mode == RX_MODE_SENDING)
1859 || (call->mode == RX_MODE_RECEIVING && call->rnext == 1)) {
1860 (void)rxi_ReadProc(call, &dummy, 1);
1863 /* If we had an outstanding delayed ack, be nice to the server
1864 * and force-send it now.
1866 if (call->delayedAckEvent) {
1867 rxevent_Cancel(call->delayedAckEvent, call,
1868 RX_CALL_REFCOUNT_DELAY);
1869 call->delayedAckEvent = NULL;
1870 rxi_SendDelayedAck(NULL, call, NULL);
1873 /* We need to release the call lock since it's lower than the
1874 * conn_call_lock and we don't want to hold the conn_call_lock
1875 * over the rx_ReadProc call. The conn_call_lock needs to be held
1876 * here for the case where rx_NewCall is perusing the calls on
1877 * the connection structure. We don't want to signal until
1878 * rx_NewCall is in a stable state. Otherwise, rx_NewCall may
1879 * have checked this call, found it active and by the time it
1880 * goes to sleep, will have missed the signal.
1882 MUTEX_EXIT(&call->lock);
1883 MUTEX_ENTER(&conn->conn_call_lock);
1884 MUTEX_ENTER(&call->lock);
1885 MUTEX_ENTER(&conn->conn_data_lock);
1886 conn->flags |= RX_CONN_BUSY;
1887 if (conn->flags & RX_CONN_MAKECALL_WAITING) {
1888 conn->flags &= (~RX_CONN_MAKECALL_WAITING);
1889 MUTEX_EXIT(&conn->conn_data_lock);
1890 #ifdef RX_ENABLE_LOCKS
1891 CV_BROADCAST(&conn->conn_call_cv);
1896 #ifdef RX_ENABLE_LOCKS
1898 MUTEX_EXIT(&conn->conn_data_lock);
1900 #endif /* RX_ENABLE_LOCKS */
1901 call->state = RX_STATE_DALLY;
1903 error = call->error;
1905 /* currentPacket, nLeft, and NFree must be zeroed here, because
1906 * ResetCall cannot: ResetCall may be called at splnet(), in the
1907 * kernel version, and may interrupt the macros rx_Read or
1908 * rx_Write, which run at normal priority for efficiency. */
1909 if (call->currentPacket) {
1910 rxi_FreePacket(call->currentPacket);
1911 call->currentPacket = (struct rx_packet *)0;
1912 call->nLeft = call->nFree = call->curlen = 0;
1914 call->nLeft = call->nFree = call->curlen = 0;
1916 /* Free any packets from the last call to ReadvProc/WritevProc */
1917 for (queue_Scan(&call->iovq, tp, nxp, rx_packet)) {
1922 CALL_RELE(call, RX_CALL_REFCOUNT_BEGIN);
1923 MUTEX_EXIT(&call->lock);
1924 if (conn->type == RX_CLIENT_CONNECTION) {
1925 MUTEX_EXIT(&conn->conn_call_lock);
1926 conn->flags &= ~RX_CONN_BUSY;
1930 * Map errors to the local host's errno.h format.
1932 error = ntoh_syserr_conv(error);
1936 #if !defined(KERNEL)
1938 /* Call this routine when shutting down a server or client (especially
1939 * clients). This will allow Rx to gracefully garbage collect server
1940 * connections, and reduce the number of retries that a server might
1941 * make to a dead client.
1942 * This is not quite right, since some calls may still be ongoing and
1943 * we can't lock them to destroy them. */
1947 register struct rx_connection **conn_ptr, **conn_end;
1951 if (rxinit_status == 1) {
1953 return; /* Already shutdown. */
1955 rxi_DeleteCachedConnections();
1956 if (rx_connHashTable) {
1957 MUTEX_ENTER(&rx_connHashTable_lock);
1958 for (conn_ptr = &rx_connHashTable[0], conn_end =
1959 &rx_connHashTable[rx_hashTableSize]; conn_ptr < conn_end;
1961 struct rx_connection *conn, *next;
1962 for (conn = *conn_ptr; conn; conn = next) {
1964 if (conn->type == RX_CLIENT_CONNECTION) {
1965 /* MUTEX_ENTER(&conn->conn_data_lock); when used in kernel */
1967 /* MUTEX_EXIT(&conn->conn_data_lock); when used in kernel */
1968 #ifdef RX_ENABLE_LOCKS
1969 rxi_DestroyConnectionNoLock(conn);
1970 #else /* RX_ENABLE_LOCKS */
1971 rxi_DestroyConnection(conn);
1972 #endif /* RX_ENABLE_LOCKS */
1976 #ifdef RX_ENABLE_LOCKS
1977 while (rx_connCleanup_list) {
1978 struct rx_connection *conn;
1979 conn = rx_connCleanup_list;
1980 rx_connCleanup_list = rx_connCleanup_list->next;
1981 MUTEX_EXIT(&rx_connHashTable_lock);
1982 rxi_CleanupConnection(conn);
1983 MUTEX_ENTER(&rx_connHashTable_lock);
1985 MUTEX_EXIT(&rx_connHashTable_lock);
1986 #endif /* RX_ENABLE_LOCKS */
1995 /* if we wakeup packet waiter too often, can get in loop with two
1996 AllocSendPackets each waking each other up (from ReclaimPacket calls) */
1998 rxi_PacketsUnWait(void)
2000 if (!rx_waitingForPackets) {
2004 if (rxi_OverQuota(RX_PACKET_CLASS_SEND)) {
2005 return; /* still over quota */
2008 rx_waitingForPackets = 0;
2009 #ifdef RX_ENABLE_LOCKS
2010 CV_BROADCAST(&rx_waitingForPackets_cv);
2012 osi_rxWakeup(&rx_waitingForPackets);
2018 /* ------------------Internal interfaces------------------------- */
2020 /* Return this process's service structure for the
2021 * specified socket and service */
2023 rxi_FindService(register osi_socket socket, register u_short serviceId)
2025 register struct rx_service **sp;
2026 for (sp = &rx_services[0]; *sp; sp++) {
2027 if ((*sp)->serviceId == serviceId && (*sp)->socket == socket)
2033 /* Allocate a call structure, for the indicated channel of the
2034 * supplied connection. The mode and state of the call must be set by
2035 * the caller. Returns the call with mutex locked. */
2037 rxi_NewCall(register struct rx_connection *conn, register int channel)
2039 register struct rx_call *call;
2040 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2041 register struct rx_call *cp; /* Call pointer temp */
2042 register struct rx_call *nxp; /* Next call pointer, for queue_Scan */
2043 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2045 /* Grab an existing call structure, or allocate a new one.
2046 * Existing call structures are assumed to have been left reset by
2048 MUTEX_ENTER(&rx_freeCallQueue_lock);
2050 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2052 * EXCEPT that the TQ might not yet be cleared out.
2053 * Skip over those with in-use TQs.
2056 for (queue_Scan(&rx_freeCallQueue, cp, nxp, rx_call)) {
2057 if (!(cp->flags & RX_CALL_TQ_BUSY)) {
2063 #else /* AFS_GLOBAL_RXLOCK_KERNEL */
2064 if (queue_IsNotEmpty(&rx_freeCallQueue)) {
2065 call = queue_First(&rx_freeCallQueue, rx_call);
2066 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2068 MUTEX_ENTER(&rx_stats_mutex);
2069 rx_stats.nFreeCallStructs--;
2070 MUTEX_EXIT(&rx_stats_mutex);
2071 MUTEX_EXIT(&rx_freeCallQueue_lock);
2072 MUTEX_ENTER(&call->lock);
2073 CLEAR_CALL_QUEUE_LOCK(call);
2074 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2075 /* Now, if TQ wasn't cleared earlier, do it now. */
2076 if (call->flags & RX_CALL_TQ_CLEARME) {
2077 rxi_ClearTransmitQueue(call, 0);
2078 queue_Init(&call->tq);
2080 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2081 /* Bind the call to its connection structure */
2083 rxi_ResetCall(call, 1);
2085 call = (struct rx_call *)rxi_Alloc(sizeof(struct rx_call));
2087 MUTEX_EXIT(&rx_freeCallQueue_lock);
2088 MUTEX_INIT(&call->lock, "call lock", MUTEX_DEFAULT, NULL);
2089 MUTEX_ENTER(&call->lock);
2090 CV_INIT(&call->cv_twind, "call twind", CV_DEFAULT, 0);
2091 CV_INIT(&call->cv_rq, "call rq", CV_DEFAULT, 0);
2092 CV_INIT(&call->cv_tq, "call tq", CV_DEFAULT, 0);
2094 MUTEX_ENTER(&rx_stats_mutex);
2095 rx_stats.nCallStructs++;
2096 MUTEX_EXIT(&rx_stats_mutex);
2097 /* Initialize once-only items */
2098 queue_Init(&call->tq);
2099 queue_Init(&call->rq);
2100 queue_Init(&call->iovq);
2101 /* Bind the call to its connection structure (prereq for reset) */
2103 rxi_ResetCall(call, 1);
2105 call->channel = channel;
2106 call->callNumber = &conn->callNumber[channel];
2107 /* Note that the next expected call number is retained (in
2108 * conn->callNumber[i]), even if we reallocate the call structure
2110 conn->call[channel] = call;
2111 /* if the channel's never been used (== 0), we should start at 1, otherwise
2112 * the call number is valid from the last time this channel was used */
2113 if (*call->callNumber == 0)
2114 *call->callNumber = 1;
2119 /* A call has been inactive long enough that so we can throw away
2120 * state, including the call structure, which is placed on the call
2122 * Call is locked upon entry.
2123 * haveCTLock set if called from rxi_ReapConnections
2125 #ifdef RX_ENABLE_LOCKS
2127 rxi_FreeCall(register struct rx_call *call, int haveCTLock)
2128 #else /* RX_ENABLE_LOCKS */
2130 rxi_FreeCall(register struct rx_call *call)
2131 #endif /* RX_ENABLE_LOCKS */
2133 register int channel = call->channel;
2134 register struct rx_connection *conn = call->conn;
2137 if (call->state == RX_STATE_DALLY || call->state == RX_STATE_HOLD)
2138 (*call->callNumber)++;
2139 rxi_ResetCall(call, 0);
2140 call->conn->call[channel] = (struct rx_call *)0;
2142 MUTEX_ENTER(&rx_freeCallQueue_lock);
2143 SET_CALL_QUEUE_LOCK(call, &rx_freeCallQueue_lock);
2144 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2145 /* A call may be free even though its transmit queue is still in use.
2146 * Since we search the call list from head to tail, put busy calls at
2147 * the head of the list, and idle calls at the tail.
2149 if (call->flags & RX_CALL_TQ_BUSY)
2150 queue_Prepend(&rx_freeCallQueue, call);
2152 queue_Append(&rx_freeCallQueue, call);
2153 #else /* AFS_GLOBAL_RXLOCK_KERNEL */
2154 queue_Append(&rx_freeCallQueue, call);
2155 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2156 MUTEX_ENTER(&rx_stats_mutex);
2157 rx_stats.nFreeCallStructs++;
2158 MUTEX_EXIT(&rx_stats_mutex);
2160 MUTEX_EXIT(&rx_freeCallQueue_lock);
2162 /* Destroy the connection if it was previously slated for
2163 * destruction, i.e. the Rx client code previously called
2164 * rx_DestroyConnection (client connections), or
2165 * rxi_ReapConnections called the same routine (server
2166 * connections). Only do this, however, if there are no
2167 * outstanding calls. Note that for fine grain locking, there appears
2168 * to be a deadlock in that rxi_FreeCall has a call locked and
2169 * DestroyConnectionNoLock locks each call in the conn. But note a
2170 * few lines up where we have removed this call from the conn.
2171 * If someone else destroys a connection, they either have no
2172 * call lock held or are going through this section of code.
2174 if (conn->flags & RX_CONN_DESTROY_ME) {
2175 MUTEX_ENTER(&conn->conn_data_lock);
2177 MUTEX_EXIT(&conn->conn_data_lock);
2178 #ifdef RX_ENABLE_LOCKS
2180 rxi_DestroyConnectionNoLock(conn);
2182 rxi_DestroyConnection(conn);
2183 #else /* RX_ENABLE_LOCKS */
2184 rxi_DestroyConnection(conn);
2185 #endif /* RX_ENABLE_LOCKS */
2189 afs_int32 rxi_Alloccnt = 0, rxi_Allocsize = 0;
2191 rxi_Alloc(register size_t size)
2195 MUTEX_ENTER(&rx_stats_mutex);
2197 rxi_Allocsize += size;
2198 MUTEX_EXIT(&rx_stats_mutex);
2200 p = (char *)osi_Alloc(size);
2203 osi_Panic("rxi_Alloc error");
2209 rxi_Free(void *addr, register size_t size)
2211 MUTEX_ENTER(&rx_stats_mutex);
2213 rxi_Allocsize -= size;
2214 MUTEX_EXIT(&rx_stats_mutex);
2216 osi_Free(addr, size);
2219 /* Find the peer process represented by the supplied (host,port)
2220 * combination. If there is no appropriate active peer structure, a
2221 * new one will be allocated and initialized
2222 * The origPeer, if set, is a pointer to a peer structure on which the
2223 * refcount will be be decremented. This is used to replace the peer
2224 * structure hanging off a connection structure */
2226 rxi_FindPeer(register afs_uint32 host, register u_short port,
2227 struct rx_peer *origPeer, int create)
2229 register struct rx_peer *pp;
2231 hashIndex = PEER_HASH(host, port);
2232 MUTEX_ENTER(&rx_peerHashTable_lock);
2233 for (pp = rx_peerHashTable[hashIndex]; pp; pp = pp->next) {
2234 if ((pp->host == host) && (pp->port == port))
2239 pp = rxi_AllocPeer(); /* This bzero's *pp */
2240 pp->host = host; /* set here or in InitPeerParams is zero */
2242 MUTEX_INIT(&pp->peer_lock, "peer_lock", MUTEX_DEFAULT, 0);
2243 queue_Init(&pp->congestionQueue);
2244 queue_Init(&pp->rpcStats);
2245 pp->next = rx_peerHashTable[hashIndex];
2246 rx_peerHashTable[hashIndex] = pp;
2247 rxi_InitPeerParams(pp);
2248 MUTEX_ENTER(&rx_stats_mutex);
2249 rx_stats.nPeerStructs++;
2250 MUTEX_EXIT(&rx_stats_mutex);
2257 origPeer->refCount--;
2258 MUTEX_EXIT(&rx_peerHashTable_lock);
2263 /* Find the connection at (host, port) started at epoch, and with the
2264 * given connection id. Creates the server connection if necessary.
2265 * The type specifies whether a client connection or a server
2266 * connection is desired. In both cases, (host, port) specify the
2267 * peer's (host, pair) pair. Client connections are not made
2268 * automatically by this routine. The parameter socket gives the
2269 * socket descriptor on which the packet was received. This is used,
2270 * in the case of server connections, to check that *new* connections
2271 * come via a valid (port, serviceId). Finally, the securityIndex
2272 * parameter must match the existing index for the connection. If a
2273 * server connection is created, it will be created using the supplied
2274 * index, if the index is valid for this service */
2275 struct rx_connection *
2276 rxi_FindConnection(osi_socket socket, register afs_int32 host,
2277 register u_short port, u_short serviceId, afs_uint32 cid,
2278 afs_uint32 epoch, int type, u_int securityIndex)
2280 int hashindex, flag;
2281 register struct rx_connection *conn;
2282 hashindex = CONN_HASH(host, port, cid, epoch, type);
2283 MUTEX_ENTER(&rx_connHashTable_lock);
2284 rxLastConn ? (conn = rxLastConn, flag = 0) : (conn =
2285 rx_connHashTable[hashindex],
2288 if ((conn->type == type) && ((cid & RX_CIDMASK) == conn->cid)
2289 && (epoch == conn->epoch)) {
2290 register struct rx_peer *pp = conn->peer;
2291 if (securityIndex != conn->securityIndex) {
2292 /* this isn't supposed to happen, but someone could forge a packet
2293 * like this, and there seems to be some CM bug that makes this
2294 * happen from time to time -- in which case, the fileserver
2296 MUTEX_EXIT(&rx_connHashTable_lock);
2297 return (struct rx_connection *)0;
2299 if (pp->host == host && pp->port == port)
2301 if (type == RX_CLIENT_CONNECTION && pp->port == port)
2303 /* So what happens when it's a callback connection? */
2304 if ( /*type == RX_CLIENT_CONNECTION && */
2305 (conn->epoch & 0x80000000))
2309 /* the connection rxLastConn that was used the last time is not the
2310 ** one we are looking for now. Hence, start searching in the hash */
2312 conn = rx_connHashTable[hashindex];
2317 struct rx_service *service;
2318 if (type == RX_CLIENT_CONNECTION) {
2319 MUTEX_EXIT(&rx_connHashTable_lock);
2320 return (struct rx_connection *)0;
2322 service = rxi_FindService(socket, serviceId);
2323 if (!service || (securityIndex >= service->nSecurityObjects)
2324 || (service->securityObjects[securityIndex] == 0)) {
2325 MUTEX_EXIT(&rx_connHashTable_lock);
2326 return (struct rx_connection *)0;
2328 conn = rxi_AllocConnection(); /* This bzero's the connection */
2329 MUTEX_INIT(&conn->conn_call_lock, "conn call lock", MUTEX_DEFAULT, 0);
2330 MUTEX_INIT(&conn->conn_data_lock, "conn data lock", MUTEX_DEFAULT, 0);
2331 CV_INIT(&conn->conn_call_cv, "conn call cv", CV_DEFAULT, 0);
2332 conn->next = rx_connHashTable[hashindex];
2333 rx_connHashTable[hashindex] = conn;
2334 conn->peer = rxi_FindPeer(host, port, 0, 1);
2335 conn->type = RX_SERVER_CONNECTION;
2336 conn->lastSendTime = clock_Sec(); /* don't GC immediately */
2337 conn->epoch = epoch;
2338 conn->cid = cid & RX_CIDMASK;
2339 /* conn->serial = conn->lastSerial = 0; */
2340 /* conn->timeout = 0; */
2341 conn->ackRate = RX_FAST_ACK_RATE;
2342 conn->service = service;
2343 conn->serviceId = serviceId;
2344 conn->securityIndex = securityIndex;
2345 conn->securityObject = service->securityObjects[securityIndex];
2346 conn->nSpecific = 0;
2347 conn->specific = NULL;
2348 rx_SetConnDeadTime(conn, service->connDeadTime);
2349 rx_SetConnIdleDeadTime(conn, service->idleDeadTime);
2350 /* Notify security object of the new connection */
2351 RXS_NewConnection(conn->securityObject, conn);
2352 /* XXXX Connection timeout? */
2353 if (service->newConnProc)
2354 (*service->newConnProc) (conn);
2355 MUTEX_ENTER(&rx_stats_mutex);
2356 rx_stats.nServerConns++;
2357 MUTEX_EXIT(&rx_stats_mutex);
2360 MUTEX_ENTER(&conn->conn_data_lock);
2362 MUTEX_EXIT(&conn->conn_data_lock);
2364 rxLastConn = conn; /* store this connection as the last conn used */
2365 MUTEX_EXIT(&rx_connHashTable_lock);
2369 /* There are two packet tracing routines available for testing and monitoring
2370 * Rx. One is called just after every packet is received and the other is
2371 * called just before every packet is sent. Received packets, have had their
2372 * headers decoded, and packets to be sent have not yet had their headers
2373 * encoded. Both take two parameters: a pointer to the packet and a sockaddr
2374 * containing the network address. Both can be modified. The return value, if
2375 * non-zero, indicates that the packet should be dropped. */
2377 int (*rx_justReceived) () = 0;
2378 int (*rx_almostSent) () = 0;
2380 /* A packet has been received off the interface. Np is the packet, socket is
2381 * the socket number it was received from (useful in determining which service
2382 * this packet corresponds to), and (host, port) reflect the host,port of the
2383 * sender. This call returns the packet to the caller if it is finished with
2384 * it, rather than de-allocating it, just as a small performance hack */
2387 rxi_ReceivePacket(register struct rx_packet *np, osi_socket socket,
2388 afs_uint32 host, u_short port, int *tnop,
2389 struct rx_call **newcallp)
2391 register struct rx_call *call;
2392 register struct rx_connection *conn;
2394 afs_uint32 currentCallNumber;
2400 struct rx_packet *tnp;
2403 /* We don't print out the packet until now because (1) the time may not be
2404 * accurate enough until now in the lwp implementation (rx_Listener only gets
2405 * the time after the packet is read) and (2) from a protocol point of view,
2406 * this is the first time the packet has been seen */
2407 packetType = (np->header.type > 0 && np->header.type < RX_N_PACKET_TYPES)
2408 ? rx_packetTypes[np->header.type - 1] : "*UNKNOWN*";
2409 dpf(("R %d %s: %x.%d.%d.%d.%d.%d.%d flags %d, packet %x",
2410 np->header.serial, packetType, host, port, np->header.serviceId,
2411 np->header.epoch, np->header.cid, np->header.callNumber,
2412 np->header.seq, np->header.flags, np));
2415 if (np->header.type == RX_PACKET_TYPE_VERSION) {
2416 return rxi_ReceiveVersionPacket(np, socket, host, port, 1);
2419 if (np->header.type == RX_PACKET_TYPE_DEBUG) {
2420 return rxi_ReceiveDebugPacket(np, socket, host, port, 1);
2423 /* If an input tracer function is defined, call it with the packet and
2424 * network address. Note this function may modify its arguments. */
2425 if (rx_justReceived) {
2426 struct sockaddr_in addr;
2428 addr.sin_family = AF_INET;
2429 addr.sin_port = port;
2430 addr.sin_addr.s_addr = host;
2431 #ifdef STRUCT_SOCKADDR_HAS_SA_LEN
2432 addr.sin_len = sizeof(addr);
2433 #endif /* AFS_OSF_ENV */
2434 drop = (*rx_justReceived) (np, &addr);
2435 /* drop packet if return value is non-zero */
2438 port = addr.sin_port; /* in case fcn changed addr */
2439 host = addr.sin_addr.s_addr;
2443 /* If packet was not sent by the client, then *we* must be the client */
2444 type = ((np->header.flags & RX_CLIENT_INITIATED) != RX_CLIENT_INITIATED)
2445 ? RX_CLIENT_CONNECTION : RX_SERVER_CONNECTION;
2447 /* Find the connection (or fabricate one, if we're the server & if
2448 * necessary) associated with this packet */
2450 rxi_FindConnection(socket, host, port, np->header.serviceId,
2451 np->header.cid, np->header.epoch, type,
2452 np->header.securityIndex);
2455 /* If no connection found or fabricated, just ignore the packet.
2456 * (An argument could be made for sending an abort packet for
2461 MUTEX_ENTER(&conn->conn_data_lock);
2462 if (conn->maxSerial < np->header.serial)
2463 conn->maxSerial = np->header.serial;
2464 MUTEX_EXIT(&conn->conn_data_lock);
2466 /* If the connection is in an error state, send an abort packet and ignore
2467 * the incoming packet */
2469 /* Don't respond to an abort packet--we don't want loops! */
2470 MUTEX_ENTER(&conn->conn_data_lock);
2471 if (np->header.type != RX_PACKET_TYPE_ABORT)
2472 np = rxi_SendConnectionAbort(conn, np, 1, 0);
2474 MUTEX_EXIT(&conn->conn_data_lock);
2478 /* Check for connection-only requests (i.e. not call specific). */
2479 if (np->header.callNumber == 0) {
2480 switch (np->header.type) {
2481 case RX_PACKET_TYPE_ABORT:
2482 /* What if the supplied error is zero? */
2483 rxi_ConnectionError(conn, ntohl(rx_GetInt32(np, 0)));
2484 MUTEX_ENTER(&conn->conn_data_lock);
2486 MUTEX_EXIT(&conn->conn_data_lock);
2488 case RX_PACKET_TYPE_CHALLENGE:
2489 tnp = rxi_ReceiveChallengePacket(conn, np, 1);
2490 MUTEX_ENTER(&conn->conn_data_lock);
2492 MUTEX_EXIT(&conn->conn_data_lock);
2494 case RX_PACKET_TYPE_RESPONSE:
2495 tnp = rxi_ReceiveResponsePacket(conn, np, 1);
2496 MUTEX_ENTER(&conn->conn_data_lock);
2498 MUTEX_EXIT(&conn->conn_data_lock);
2500 case RX_PACKET_TYPE_PARAMS:
2501 case RX_PACKET_TYPE_PARAMS + 1:
2502 case RX_PACKET_TYPE_PARAMS + 2:
2503 /* ignore these packet types for now */
2504 MUTEX_ENTER(&conn->conn_data_lock);
2506 MUTEX_EXIT(&conn->conn_data_lock);
2511 /* Should not reach here, unless the peer is broken: send an
2513 rxi_ConnectionError(conn, RX_PROTOCOL_ERROR);
2514 MUTEX_ENTER(&conn->conn_data_lock);
2515 tnp = rxi_SendConnectionAbort(conn, np, 1, 0);
2517 MUTEX_EXIT(&conn->conn_data_lock);
2522 channel = np->header.cid & RX_CHANNELMASK;
2523 call = conn->call[channel];
2524 #ifdef RX_ENABLE_LOCKS
2526 MUTEX_ENTER(&call->lock);
2527 /* Test to see if call struct is still attached to conn. */
2528 if (call != conn->call[channel]) {
2530 MUTEX_EXIT(&call->lock);
2531 if (type == RX_SERVER_CONNECTION) {
2532 call = conn->call[channel];
2533 /* If we started with no call attached and there is one now,
2534 * another thread is also running this routine and has gotten
2535 * the connection channel. We should drop this packet in the tests
2536 * below. If there was a call on this connection and it's now
2537 * gone, then we'll be making a new call below.
2538 * If there was previously a call and it's now different then
2539 * the old call was freed and another thread running this routine
2540 * has created a call on this channel. One of these two threads
2541 * has a packet for the old call and the code below handles those
2545 MUTEX_ENTER(&call->lock);
2547 /* This packet can't be for this call. If the new call address is
2548 * 0 then no call is running on this channel. If there is a call
2549 * then, since this is a client connection we're getting data for
2550 * it must be for the previous call.
2552 MUTEX_ENTER(&rx_stats_mutex);
2553 rx_stats.spuriousPacketsRead++;
2554 MUTEX_EXIT(&rx_stats_mutex);
2555 MUTEX_ENTER(&conn->conn_data_lock);
2557 MUTEX_EXIT(&conn->conn_data_lock);
2562 currentCallNumber = conn->callNumber[channel];
2564 if (type == RX_SERVER_CONNECTION) { /* We're the server */
2565 if (np->header.callNumber < currentCallNumber) {
2566 MUTEX_ENTER(&rx_stats_mutex);
2567 rx_stats.spuriousPacketsRead++;
2568 MUTEX_EXIT(&rx_stats_mutex);
2569 #ifdef RX_ENABLE_LOCKS
2571 MUTEX_EXIT(&call->lock);
2573 MUTEX_ENTER(&conn->conn_data_lock);
2575 MUTEX_EXIT(&conn->conn_data_lock);
2579 MUTEX_ENTER(&conn->conn_call_lock);
2580 call = rxi_NewCall(conn, channel);
2581 MUTEX_EXIT(&conn->conn_call_lock);
2582 *call->callNumber = np->header.callNumber;
2583 call->state = RX_STATE_PRECALL;
2584 clock_GetTime(&call->queueTime);
2585 hzero(call->bytesSent);
2586 hzero(call->bytesRcvd);
2587 rxi_KeepAliveOn(call);
2588 } else if (np->header.callNumber != currentCallNumber) {
2589 /* Wait until the transmit queue is idle before deciding
2590 * whether to reset the current call. Chances are that the
2591 * call will be in ether DALLY or HOLD state once the TQ_BUSY
2594 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2595 while ((call->state == RX_STATE_ACTIVE)
2596 && (call->flags & RX_CALL_TQ_BUSY)) {
2597 call->flags |= RX_CALL_TQ_WAIT;
2598 #ifdef RX_ENABLE_LOCKS
2599 CV_WAIT(&call->cv_tq, &call->lock);
2600 #else /* RX_ENABLE_LOCKS */
2601 osi_rxSleep(&call->tq);
2602 #endif /* RX_ENABLE_LOCKS */
2604 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2605 /* If the new call cannot be taken right now send a busy and set
2606 * the error condition in this call, so that it terminates as
2607 * quickly as possible */
2608 if (call->state == RX_STATE_ACTIVE) {
2609 struct rx_packet *tp;
2611 rxi_CallError(call, RX_CALL_DEAD);
2612 tp = rxi_SendSpecial(call, conn, np, RX_PACKET_TYPE_BUSY,
2614 MUTEX_EXIT(&call->lock);
2615 MUTEX_ENTER(&conn->conn_data_lock);
2617 MUTEX_EXIT(&conn->conn_data_lock);
2620 rxi_ResetCall(call, 0);
2621 *call->callNumber = np->header.callNumber;
2622 call->state = RX_STATE_PRECALL;
2623 clock_GetTime(&call->queueTime);
2624 hzero(call->bytesSent);
2625 hzero(call->bytesRcvd);
2627 * If the number of queued calls exceeds the overload
2628 * threshold then abort this call.
2630 if ((rx_BusyThreshold > 0) && (rx_nWaiting > rx_BusyThreshold)) {
2631 struct rx_packet *tp;
2633 rxi_CallError(call, rx_BusyError);
2634 tp = rxi_SendCallAbort(call, np, 1, 0);
2635 MUTEX_EXIT(&call->lock);
2636 MUTEX_ENTER(&conn->conn_data_lock);
2638 MUTEX_EXIT(&conn->conn_data_lock);
2639 MUTEX_ENTER(&rx_stats_mutex);
2641 MUTEX_EXIT(&rx_stats_mutex);
2644 rxi_KeepAliveOn(call);
2646 /* Continuing call; do nothing here. */
2648 } else { /* we're the client */
2649 /* Ignore all incoming acknowledgements for calls in DALLY state */
2650 if (call && (call->state == RX_STATE_DALLY)
2651 && (np->header.type == RX_PACKET_TYPE_ACK)) {
2652 MUTEX_ENTER(&rx_stats_mutex);
2653 rx_stats.ignorePacketDally++;
2654 MUTEX_EXIT(&rx_stats_mutex);
2655 #ifdef RX_ENABLE_LOCKS
2657 MUTEX_EXIT(&call->lock);
2660 MUTEX_ENTER(&conn->conn_data_lock);
2662 MUTEX_EXIT(&conn->conn_data_lock);
2666 /* Ignore anything that's not relevant to the current call. If there
2667 * isn't a current call, then no packet is relevant. */
2668 if (!call || (np->header.callNumber != currentCallNumber)) {
2669 MUTEX_ENTER(&rx_stats_mutex);
2670 rx_stats.spuriousPacketsRead++;
2671 MUTEX_EXIT(&rx_stats_mutex);
2672 #ifdef RX_ENABLE_LOCKS
2674 MUTEX_EXIT(&call->lock);
2677 MUTEX_ENTER(&conn->conn_data_lock);
2679 MUTEX_EXIT(&conn->conn_data_lock);
2682 /* If the service security object index stamped in the packet does not
2683 * match the connection's security index, ignore the packet */
2684 if (np->header.securityIndex != conn->securityIndex) {
2685 #ifdef RX_ENABLE_LOCKS
2686 MUTEX_EXIT(&call->lock);
2688 MUTEX_ENTER(&conn->conn_data_lock);
2690 MUTEX_EXIT(&conn->conn_data_lock);
2694 /* If we're receiving the response, then all transmit packets are
2695 * implicitly acknowledged. Get rid of them. */
2696 if (np->header.type == RX_PACKET_TYPE_DATA) {
2697 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2698 /* XXX Hack. Because we must release the global rx lock when
2699 * sending packets (osi_NetSend) we drop all acks while we're
2700 * traversing the tq in rxi_Start sending packets out because
2701 * packets may move to the freePacketQueue as result of being here!
2702 * So we drop these packets until we're safely out of the
2703 * traversing. Really ugly!
2704 * For fine grain RX locking, we set the acked field in the
2705 * packets and let rxi_Start remove them from the transmit queue.
2707 if (call->flags & RX_CALL_TQ_BUSY) {
2708 #ifdef RX_ENABLE_LOCKS
2709 rxi_SetAcksInTransmitQueue(call);
2712 return np; /* xmitting; drop packet */
2715 rxi_ClearTransmitQueue(call, 0);
2717 #else /* AFS_GLOBAL_RXLOCK_KERNEL */
2718 rxi_ClearTransmitQueue(call, 0);
2719 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2721 if (np->header.type == RX_PACKET_TYPE_ACK) {
2722 /* now check to see if this is an ack packet acknowledging that the
2723 * server actually *lost* some hard-acked data. If this happens we
2724 * ignore this packet, as it may indicate that the server restarted in
2725 * the middle of a call. It is also possible that this is an old ack
2726 * packet. We don't abort the connection in this case, because this
2727 * *might* just be an old ack packet. The right way to detect a server
2728 * restart in the midst of a call is to notice that the server epoch
2730 /* XXX I'm not sure this is exactly right, since tfirst **IS**
2731 * XXX unacknowledged. I think that this is off-by-one, but
2732 * XXX I don't dare change it just yet, since it will
2733 * XXX interact badly with the server-restart detection
2734 * XXX code in receiveackpacket. */
2735 if (ntohl(rx_GetInt32(np, FIRSTACKOFFSET)) < call->tfirst) {
2736 MUTEX_ENTER(&rx_stats_mutex);
2737 rx_stats.spuriousPacketsRead++;
2738 MUTEX_EXIT(&rx_stats_mutex);
2739 MUTEX_EXIT(&call->lock);
2740 MUTEX_ENTER(&conn->conn_data_lock);
2742 MUTEX_EXIT(&conn->conn_data_lock);
2746 } /* else not a data packet */
2749 osirx_AssertMine(&call->lock, "rxi_ReceivePacket middle");
2750 /* Set remote user defined status from packet */
2751 call->remoteStatus = np->header.userStatus;
2753 /* Note the gap between the expected next packet and the actual
2754 * packet that arrived, when the new packet has a smaller serial number
2755 * than expected. Rioses frequently reorder packets all by themselves,
2756 * so this will be quite important with very large window sizes.
2757 * Skew is checked against 0 here to avoid any dependence on the type of
2758 * inPacketSkew (which may be unsigned). In C, -1 > (unsigned) 0 is always
2760 * The inPacketSkew should be a smoothed running value, not just a maximum. MTUXXX
2761 * see CalculateRoundTripTime for an example of how to keep smoothed values.
2762 * I think using a beta of 1/8 is probably appropriate. 93.04.21
2764 MUTEX_ENTER(&conn->conn_data_lock);
2765 skew = conn->lastSerial - np->header.serial;
2766 conn->lastSerial = np->header.serial;
2767 MUTEX_EXIT(&conn->conn_data_lock);
2769 register struct rx_peer *peer;
2771 if (skew > peer->inPacketSkew) {
2772 dpf(("*** In skew changed from %d to %d\n", peer->inPacketSkew,
2774 peer->inPacketSkew = skew;
2778 /* Now do packet type-specific processing */
2779 switch (np->header.type) {
2780 case RX_PACKET_TYPE_DATA:
2781 np = rxi_ReceiveDataPacket(call, np, 1, socket, host, port, tnop,
2784 case RX_PACKET_TYPE_ACK:
2785 /* Respond immediately to ack packets requesting acknowledgement
2787 if (np->header.flags & RX_REQUEST_ACK) {
2789 (void)rxi_SendCallAbort(call, 0, 1, 0);
2791 (void)rxi_SendAck(call, 0, np->header.serial,
2792 RX_ACK_PING_RESPONSE, 1);
2794 np = rxi_ReceiveAckPacket(call, np, 1);
2796 case RX_PACKET_TYPE_ABORT:
2797 /* An abort packet: reset the connection, passing the error up to
2799 /* What if error is zero? */
2800 rxi_CallError(call, ntohl(*(afs_int32 *) rx_DataOf(np)));
2802 case RX_PACKET_TYPE_BUSY:
2805 case RX_PACKET_TYPE_ACKALL:
2806 /* All packets acknowledged, so we can drop all packets previously
2807 * readied for sending */
2808 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2809 /* XXX Hack. We because we can't release the global rx lock when
2810 * sending packets (osi_NetSend) we drop all ack pkts while we're
2811 * traversing the tq in rxi_Start sending packets out because
2812 * packets may move to the freePacketQueue as result of being
2813 * here! So we drop these packets until we're safely out of the
2814 * traversing. Really ugly!
2815 * For fine grain RX locking, we set the acked field in the packets
2816 * and let rxi_Start remove the packets from the transmit queue.
2818 if (call->flags & RX_CALL_TQ_BUSY) {
2819 #ifdef RX_ENABLE_LOCKS
2820 rxi_SetAcksInTransmitQueue(call);
2822 #else /* RX_ENABLE_LOCKS */
2824 return np; /* xmitting; drop packet */
2825 #endif /* RX_ENABLE_LOCKS */
2827 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2828 rxi_ClearTransmitQueue(call, 0);
2831 /* Should not reach here, unless the peer is broken: send an abort
2833 rxi_CallError(call, RX_PROTOCOL_ERROR);
2834 np = rxi_SendCallAbort(call, np, 1, 0);
2837 /* Note when this last legitimate packet was received, for keep-alive
2838 * processing. Note, we delay getting the time until now in the hope that
2839 * the packet will be delivered to the user before any get time is required
2840 * (if not, then the time won't actually be re-evaluated here). */
2841 call->lastReceiveTime = clock_Sec();
2842 MUTEX_EXIT(&call->lock);
2843 MUTEX_ENTER(&conn->conn_data_lock);
2845 MUTEX_EXIT(&conn->conn_data_lock);
2849 /* return true if this is an "interesting" connection from the point of view
2850 of someone trying to debug the system */
2852 rxi_IsConnInteresting(struct rx_connection *aconn)
2855 register struct rx_call *tcall;
2857 if (aconn->flags & (RX_CONN_MAKECALL_WAITING | RX_CONN_DESTROY_ME))
2859 for (i = 0; i < RX_MAXCALLS; i++) {
2860 tcall = aconn->call[i];
2862 if ((tcall->state == RX_STATE_PRECALL)
2863 || (tcall->state == RX_STATE_ACTIVE))
2865 if ((tcall->mode == RX_MODE_SENDING)
2866 || (tcall->mode == RX_MODE_RECEIVING))
2874 /* if this is one of the last few packets AND it wouldn't be used by the
2875 receiving call to immediately satisfy a read request, then drop it on
2876 the floor, since accepting it might prevent a lock-holding thread from
2877 making progress in its reading. If a call has been cleared while in
2878 the precall state then ignore all subsequent packets until the call
2879 is assigned to a thread. */
2882 TooLow(struct rx_packet *ap, struct rx_call *acall)
2885 MUTEX_ENTER(&rx_stats_mutex);
2886 if (((ap->header.seq != 1) && (acall->flags & RX_CALL_CLEARED)
2887 && (acall->state == RX_STATE_PRECALL))
2888 || ((rx_nFreePackets < rxi_dataQuota + 2)
2889 && !((ap->header.seq < acall->rnext + rx_initSendWindow)
2890 && (acall->flags & RX_CALL_READER_WAIT)))) {
2893 MUTEX_EXIT(&rx_stats_mutex);
2899 rxi_CheckReachEvent(struct rxevent *event, struct rx_connection *conn,
2900 struct rx_call *acall)
2902 struct rx_call *call = acall;
2906 MUTEX_ENTER(&conn->conn_data_lock);
2907 conn->checkReachEvent = NULL;
2908 waiting = conn->flags & RX_CONN_ATTACHWAIT;
2911 MUTEX_EXIT(&conn->conn_data_lock);
2915 MUTEX_ENTER(&conn->conn_call_lock);
2916 MUTEX_ENTER(&conn->conn_data_lock);
2917 for (i = 0; i < RX_MAXCALLS; i++) {
2918 struct rx_call *tc = conn->call[i];
2919 if (tc && tc->state == RX_STATE_PRECALL) {
2925 /* Indicate that rxi_CheckReachEvent is no longer running by
2926 * clearing the flag. Must be atomic under conn_data_lock to
2927 * avoid a new call slipping by: rxi_CheckConnReach holds
2928 * conn_data_lock while checking RX_CONN_ATTACHWAIT.
2930 conn->flags &= ~RX_CONN_ATTACHWAIT;
2931 MUTEX_EXIT(&conn->conn_data_lock);
2932 MUTEX_EXIT(&conn->conn_call_lock);
2937 MUTEX_ENTER(&call->lock);
2938 rxi_SendAck(call, NULL, 0, RX_ACK_PING, 0);
2940 MUTEX_EXIT(&call->lock);
2942 clock_GetTime(&when);
2943 when.sec += RX_CHECKREACH_TIMEOUT;
2944 MUTEX_ENTER(&conn->conn_data_lock);
2945 if (!conn->checkReachEvent) {
2947 conn->checkReachEvent =
2948 rxevent_Post(&when, rxi_CheckReachEvent, conn, NULL);
2950 MUTEX_EXIT(&conn->conn_data_lock);
2956 rxi_CheckConnReach(struct rx_connection *conn, struct rx_call *call)
2958 struct rx_service *service = conn->service;
2959 struct rx_peer *peer = conn->peer;
2960 afs_uint32 now, lastReach;
2962 if (service->checkReach == 0)
2966 MUTEX_ENTER(&peer->peer_lock);
2967 lastReach = peer->lastReachTime;
2968 MUTEX_EXIT(&peer->peer_lock);
2969 if (now - lastReach < RX_CHECKREACH_TTL)
2972 MUTEX_ENTER(&conn->conn_data_lock);
2973 if (conn->flags & RX_CONN_ATTACHWAIT) {
2974 MUTEX_EXIT(&conn->conn_data_lock);
2977 conn->flags |= RX_CONN_ATTACHWAIT;
2978 MUTEX_EXIT(&conn->conn_data_lock);
2979 if (!conn->checkReachEvent)
2980 rxi_CheckReachEvent(NULL, conn, call);
2985 /* try to attach call, if authentication is complete */
2987 TryAttach(register struct rx_call *acall, register osi_socket socket,
2988 register int *tnop, register struct rx_call **newcallp,
2991 struct rx_connection *conn = acall->conn;
2993 if (conn->type == RX_SERVER_CONNECTION
2994 && acall->state == RX_STATE_PRECALL) {
2995 /* Don't attach until we have any req'd. authentication. */
2996 if (RXS_CheckAuthentication(conn->securityObject, conn) == 0) {
2997 if (reachOverride || rxi_CheckConnReach(conn, acall) == 0)
2998 rxi_AttachServerProc(acall, socket, tnop, newcallp);
2999 /* Note: this does not necessarily succeed; there
3000 * may not any proc available
3003 rxi_ChallengeOn(acall->conn);
3008 /* A data packet has been received off the interface. This packet is
3009 * appropriate to the call (the call is in the right state, etc.). This
3010 * routine can return a packet to the caller, for re-use */
3013 rxi_ReceiveDataPacket(register struct rx_call *call,
3014 register struct rx_packet *np, int istack,
3015 osi_socket socket, afs_uint32 host, u_short port,
3016 int *tnop, struct rx_call **newcallp)
3018 int ackNeeded = 0; /* 0 means no, otherwise ack_reason */
3022 afs_uint32 seq, serial, flags;
3024 struct rx_packet *tnp;
3026 MUTEX_ENTER(&rx_stats_mutex);
3027 rx_stats.dataPacketsRead++;
3028 MUTEX_EXIT(&rx_stats_mutex);
3031 /* If there are no packet buffers, drop this new packet, unless we can find
3032 * packet buffers from inactive calls */
3034 && (rxi_OverQuota(RX_PACKET_CLASS_RECEIVE) || TooLow(np, call))) {
3035 MUTEX_ENTER(&rx_freePktQ_lock);
3036 rxi_NeedMorePackets = TRUE;
3037 MUTEX_EXIT(&rx_freePktQ_lock);
3038 MUTEX_ENTER(&rx_stats_mutex);
3039 rx_stats.noPacketBuffersOnRead++;
3040 MUTEX_EXIT(&rx_stats_mutex);
3041 call->rprev = np->header.serial;
3042 rxi_calltrace(RX_TRACE_DROP, call);
3043 dpf(("packet %x dropped on receipt - quota problems", np));
3045 rxi_ClearReceiveQueue(call);
3046 clock_GetTime(&when);
3047 clock_Add(&when, &rx_softAckDelay);
3048 if (!call->delayedAckEvent
3049 || clock_Gt(&call->delayedAckEvent->eventTime, &when)) {
3050 rxevent_Cancel(call->delayedAckEvent, call,
3051 RX_CALL_REFCOUNT_DELAY);
3052 CALL_HOLD(call, RX_CALL_REFCOUNT_DELAY);
3053 call->delayedAckEvent =
3054 rxevent_Post(&when, rxi_SendDelayedAck, call, 0);
3056 /* we've damaged this call already, might as well do it in. */
3062 * New in AFS 3.5, if the RX_JUMBO_PACKET flag is set then this
3063 * packet is one of several packets transmitted as a single
3064 * datagram. Do not send any soft or hard acks until all packets
3065 * in a jumbogram have been processed. Send negative acks right away.
3067 for (isFirst = 1, tnp = NULL; isFirst || tnp; isFirst = 0) {
3068 /* tnp is non-null when there are more packets in the
3069 * current jumbo gram */
3076 seq = np->header.seq;
3077 serial = np->header.serial;
3078 flags = np->header.flags;
3080 /* If the call is in an error state, send an abort message */
3082 return rxi_SendCallAbort(call, np, istack, 0);
3084 /* The RX_JUMBO_PACKET is set in all but the last packet in each
3085 * AFS 3.5 jumbogram. */
3086 if (flags & RX_JUMBO_PACKET) {
3087 tnp = rxi_SplitJumboPacket(np, host, port, isFirst);
3092 if (np->header.spare != 0) {
3093 MUTEX_ENTER(&call->conn->conn_data_lock);
3094 call->conn->flags |= RX_CONN_USING_PACKET_CKSUM;
3095 MUTEX_EXIT(&call->conn->conn_data_lock);
3098 /* The usual case is that this is the expected next packet */
3099 if (seq == call->rnext) {
3101 /* Check to make sure it is not a duplicate of one already queued */
3102 if (queue_IsNotEmpty(&call->rq)
3103 && queue_First(&call->rq, rx_packet)->header.seq == seq) {
3104 MUTEX_ENTER(&rx_stats_mutex);
3105 rx_stats.dupPacketsRead++;
3106 MUTEX_EXIT(&rx_stats_mutex);
3107 dpf(("packet %x dropped on receipt - duplicate", np));
3108 rxevent_Cancel(call->delayedAckEvent, call,
3109 RX_CALL_REFCOUNT_DELAY);
3110 np = rxi_SendAck(call, np, serial, RX_ACK_DUPLICATE, istack);
3116 /* It's the next packet. Stick it on the receive queue
3117 * for this call. Set newPackets to make sure we wake
3118 * the reader once all packets have been processed */
3119 queue_Prepend(&call->rq, np);
3121 np = NULL; /* We can't use this anymore */
3124 /* If an ack is requested then set a flag to make sure we
3125 * send an acknowledgement for this packet */
3126 if (flags & RX_REQUEST_ACK) {
3127 ackNeeded = RX_ACK_REQUESTED;
3130 /* Keep track of whether we have received the last packet */
3131 if (flags & RX_LAST_PACKET) {
3132 call->flags |= RX_CALL_HAVE_LAST;
3136 /* Check whether we have all of the packets for this call */
3137 if (call->flags & RX_CALL_HAVE_LAST) {
3138 afs_uint32 tseq; /* temporary sequence number */
3139 struct rx_packet *tp; /* Temporary packet pointer */
3140 struct rx_packet *nxp; /* Next pointer, for queue_Scan */
3142 for (tseq = seq, queue_Scan(&call->rq, tp, nxp, rx_packet)) {
3143 if (tseq != tp->header.seq)
3145 if (tp->header.flags & RX_LAST_PACKET) {
3146 call->flags |= RX_CALL_RECEIVE_DONE;
3153 /* Provide asynchronous notification for those who want it
3154 * (e.g. multi rx) */
3155 if (call->arrivalProc) {
3156 (*call->arrivalProc) (call, call->arrivalProcHandle,
3157 call->arrivalProcArg);
3158 call->arrivalProc = (void (*)())0;
3161 /* Update last packet received */
3164 /* If there is no server process serving this call, grab
3165 * one, if available. We only need to do this once. If a
3166 * server thread is available, this thread becomes a server
3167 * thread and the server thread becomes a listener thread. */
3169 TryAttach(call, socket, tnop, newcallp, 0);
3172 /* This is not the expected next packet. */
3174 /* Determine whether this is a new or old packet, and if it's
3175 * a new one, whether it fits into the current receive window.
3176 * Also figure out whether the packet was delivered in sequence.
3177 * We use the prev variable to determine whether the new packet
3178 * is the successor of its immediate predecessor in the
3179 * receive queue, and the missing flag to determine whether
3180 * any of this packets predecessors are missing. */
3182 afs_uint32 prev; /* "Previous packet" sequence number */
3183 struct rx_packet *tp; /* Temporary packet pointer */
3184 struct rx_packet *nxp; /* Next pointer, for queue_Scan */
3185 int missing; /* Are any predecessors missing? */
3187 /* If the new packet's sequence number has been sent to the
3188 * application already, then this is a duplicate */
3189 if (seq < call->rnext) {
3190 MUTEX_ENTER(&rx_stats_mutex);
3191 rx_stats.dupPacketsRead++;
3192 MUTEX_EXIT(&rx_stats_mutex);
3193 rxevent_Cancel(call->delayedAckEvent, call,
3194 RX_CALL_REFCOUNT_DELAY);
3195 np = rxi_SendAck(call, np, serial, RX_ACK_DUPLICATE, istack);
3201 /* If the sequence number is greater than what can be
3202 * accomodated by the current window, then send a negative
3203 * acknowledge and drop the packet */
3204 if ((call->rnext + call->rwind) <= seq) {
3205 rxevent_Cancel(call->delayedAckEvent, call,
3206 RX_CALL_REFCOUNT_DELAY);
3207 np = rxi_SendAck(call, np, serial, RX_ACK_EXCEEDS_WINDOW,
3214 /* Look for the packet in the queue of old received packets */
3215 for (prev = call->rnext - 1, missing =
3216 0, queue_Scan(&call->rq, tp, nxp, rx_packet)) {
3217 /*Check for duplicate packet */
3218 if (seq == tp->header.seq) {
3219 MUTEX_ENTER(&rx_stats_mutex);
3220 rx_stats.dupPacketsRead++;
3221 MUTEX_EXIT(&rx_stats_mutex);
3222 rxevent_Cancel(call->delayedAckEvent, call,
3223 RX_CALL_REFCOUNT_DELAY);
3224 np = rxi_SendAck(call, np, serial, RX_ACK_DUPLICATE,
3230 /* If we find a higher sequence packet, break out and
3231 * insert the new packet here. */
3232 if (seq < tp->header.seq)
3234 /* Check for missing packet */
3235 if (tp->header.seq != prev + 1) {
3239 prev = tp->header.seq;
3242 /* Keep track of whether we have received the last packet. */
3243 if (flags & RX_LAST_PACKET) {
3244 call->flags |= RX_CALL_HAVE_LAST;
3247 /* It's within the window: add it to the the receive queue.
3248 * tp is left by the previous loop either pointing at the
3249 * packet before which to insert the new packet, or at the
3250 * queue head if the queue is empty or the packet should be
3252 queue_InsertBefore(tp, np);
3256 /* Check whether we have all of the packets for this call */
3257 if ((call->flags & RX_CALL_HAVE_LAST)
3258 && !(call->flags & RX_CALL_RECEIVE_DONE)) {
3259 afs_uint32 tseq; /* temporary sequence number */
3262 call->rnext, queue_Scan(&call->rq, tp, nxp, rx_packet)) {
3263 if (tseq != tp->header.seq)
3265 if (tp->header.flags & RX_LAST_PACKET) {
3266 call->flags |= RX_CALL_RECEIVE_DONE;
3273 /* We need to send an ack of the packet is out of sequence,
3274 * or if an ack was requested by the peer. */
3275 if (seq != prev + 1 || missing || (flags & RX_REQUEST_ACK)) {
3276 ackNeeded = RX_ACK_OUT_OF_SEQUENCE;
3279 /* Acknowledge the last packet for each call */
3280 if (flags & RX_LAST_PACKET) {
3291 * If the receiver is waiting for an iovec, fill the iovec
3292 * using the data from the receive queue */
3293 if (call->flags & RX_CALL_IOVEC_WAIT) {
3294 didHardAck = rxi_FillReadVec(call, serial);
3295 /* the call may have been aborted */
3304 /* Wakeup the reader if any */
3305 if ((call->flags & RX_CALL_READER_WAIT)
3306 && (!(call->flags & RX_CALL_IOVEC_WAIT) || !(call->iovNBytes)
3307 || (call->iovNext >= call->iovMax)
3308 || (call->flags & RX_CALL_RECEIVE_DONE))) {
3309 call->flags &= ~RX_CALL_READER_WAIT;
3310 #ifdef RX_ENABLE_LOCKS
3311 CV_BROADCAST(&call->cv_rq);
3313 osi_rxWakeup(&call->rq);
3319 * Send an ack when requested by the peer, or once every
3320 * rxi_SoftAckRate packets until the last packet has been
3321 * received. Always send a soft ack for the last packet in
3322 * the server's reply. */
3324 rxevent_Cancel(call->delayedAckEvent, call, RX_CALL_REFCOUNT_DELAY);
3325 np = rxi_SendAck(call, np, serial, ackNeeded, istack);
3326 } else if (call->nSoftAcks > (u_short) rxi_SoftAckRate) {
3327 rxevent_Cancel(call->delayedAckEvent, call, RX_CALL_REFCOUNT_DELAY);
3328 np = rxi_SendAck(call, np, serial, RX_ACK_IDLE, istack);
3329 } else if (call->nSoftAcks) {
3330 clock_GetTime(&when);
3331 if (haveLast && !(flags & RX_CLIENT_INITIATED)) {
3332 clock_Add(&when, &rx_lastAckDelay);
3334 clock_Add(&when, &rx_softAckDelay);
3336 if (!call->delayedAckEvent
3337 || clock_Gt(&call->delayedAckEvent->eventTime, &when)) {
3338 rxevent_Cancel(call->delayedAckEvent, call,
3339 RX_CALL_REFCOUNT_DELAY);
3340 CALL_HOLD(call, RX_CALL_REFCOUNT_DELAY);
3341 call->delayedAckEvent =
3342 rxevent_Post(&when, rxi_SendDelayedAck, call, 0);
3344 } else if (call->flags & RX_CALL_RECEIVE_DONE) {
3345 rxevent_Cancel(call->delayedAckEvent, call, RX_CALL_REFCOUNT_DELAY);
3352 static void rxi_ComputeRate();
3356 rxi_UpdatePeerReach(struct rx_connection *conn, struct rx_call *acall)
3358 struct rx_peer *peer = conn->peer;
3360 MUTEX_ENTER(&peer->peer_lock);
3361 peer->lastReachTime = clock_Sec();
3362 MUTEX_EXIT(&peer->peer_lock);
3364 MUTEX_ENTER(&conn->conn_data_lock);
3365 if (conn->flags & RX_CONN_ATTACHWAIT) {
3368 conn->flags &= ~RX_CONN_ATTACHWAIT;
3369 MUTEX_EXIT(&conn->conn_data_lock);
3371 for (i = 0; i < RX_MAXCALLS; i++) {
3372 struct rx_call *call = conn->call[i];
3375 MUTEX_ENTER(&call->lock);
3376 /* tnop can be null if newcallp is null */
3377 TryAttach(call, (osi_socket) - 1, NULL, NULL, 1);
3379 MUTEX_EXIT(&call->lock);
3383 MUTEX_EXIT(&conn->conn_data_lock);
3386 /* rxi_ComputePeerNetStats
3388 * Called exclusively by rxi_ReceiveAckPacket to compute network link
3389 * estimates (like RTT and throughput) based on ack packets. Caller
3390 * must ensure that the packet in question is the right one (i.e.
3391 * serial number matches).
3394 rxi_ComputePeerNetStats(struct rx_call *call, struct rx_packet *p,
3395 struct rx_ackPacket *ap, struct rx_packet *np)
3397 struct rx_peer *peer = call->conn->peer;
3399 /* Use RTT if not delayed by client. */
3400 if (ap->reason != RX_ACK_DELAY)
3401 rxi_ComputeRoundTripTime(p, &p->timeSent, peer);
3403 rxi_ComputeRate(peer, call, p, np, ap->reason);
3407 /* The real smarts of the whole thing. */
3409 rxi_ReceiveAckPacket(register struct rx_call *call, struct rx_packet *np,
3412 struct rx_ackPacket *ap;
3414 register struct rx_packet *tp;
3415 register struct rx_packet *nxp; /* Next packet pointer for queue_Scan */
3416 register struct rx_connection *conn = call->conn;
3417 struct rx_peer *peer = conn->peer;
3420 /* because there are CM's that are bogus, sending weird values for this. */
3421 afs_uint32 skew = 0;
3426 int newAckCount = 0;
3427 u_short maxMTU = 0; /* Set if peer supports AFS 3.4a jumbo datagrams */
3428 int maxDgramPackets = 0; /* Set if peer supports AFS 3.5 jumbo datagrams */
3430 MUTEX_ENTER(&rx_stats_mutex);
3431 rx_stats.ackPacketsRead++;
3432 MUTEX_EXIT(&rx_stats_mutex);
3433 ap = (struct rx_ackPacket *)rx_DataOf(np);
3434 nbytes = rx_Contiguous(np) - ((ap->acks) - (u_char *) ap);
3436 return np; /* truncated ack packet */
3438 /* depends on ack packet struct */
3439 nAcks = MIN((unsigned)nbytes, (unsigned)ap->nAcks);
3440 first = ntohl(ap->firstPacket);
3441 serial = ntohl(ap->serial);
3442 /* temporarily disabled -- needs to degrade over time
3443 * skew = ntohs(ap->maxSkew); */
3445 /* Ignore ack packets received out of order */
3446 if (first < call->tfirst) {
3450 if (np->header.flags & RX_SLOW_START_OK) {
3451 call->flags |= RX_CALL_SLOW_START_OK;
3454 if (ap->reason == RX_ACK_PING_RESPONSE)
3455 rxi_UpdatePeerReach(conn, call);
3460 "RACK: reason %x previous %u seq %u serial %u skew %d first %u",
3461 ap->reason, ntohl(ap->previousPacket),
3462 (unsigned int)np->header.seq, (unsigned int)serial,
3463 (unsigned int)skew, ntohl(ap->firstPacket));
3466 for (offset = 0; offset < nAcks; offset++)
3467 putc(ap->acks[offset] == RX_ACK_TYPE_NACK ? '-' : '*',
3474 /* Update the outgoing packet skew value to the latest value of
3475 * the peer's incoming packet skew value. The ack packet, of
3476 * course, could arrive out of order, but that won't affect things
3478 MUTEX_ENTER(&peer->peer_lock);
3479 peer->outPacketSkew = skew;
3481 /* Check for packets that no longer need to be transmitted, and
3482 * discard them. This only applies to packets positively
3483 * acknowledged as having been sent to the peer's upper level.
3484 * All other packets must be retained. So only packets with
3485 * sequence numbers < ap->firstPacket are candidates. */
3486 for (queue_Scan(&call->tq, tp, nxp, rx_packet)) {
3487 if (tp->header.seq >= first)
3489 call->tfirst = tp->header.seq + 1;
3491 && (tp->header.serial == serial || tp->firstSerial == serial))
3492 rxi_ComputePeerNetStats(call, tp, ap, np);
3493 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
3494 /* XXX Hack. Because we have to release the global rx lock when sending
3495 * packets (osi_NetSend) we drop all acks while we're traversing the tq
3496 * in rxi_Start sending packets out because packets may move to the
3497 * freePacketQueue as result of being here! So we drop these packets until
3498 * we're safely out of the traversing. Really ugly!
3499 * To make it even uglier, if we're using fine grain locking, we can
3500 * set the ack bits in the packets and have rxi_Start remove the packets
3501 * when it's done transmitting.
3503 if (!(tp->flags & RX_PKTFLAG_ACKED)) {
3506 if (call->flags & RX_CALL_TQ_BUSY) {
3507 #ifdef RX_ENABLE_LOCKS
3508 tp->flags |= RX_PKTFLAG_ACKED;
3509 call->flags |= RX_CALL_TQ_SOME_ACKED;
3510 #else /* RX_ENABLE_LOCKS */
3512 #endif /* RX_ENABLE_LOCKS */
3514 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
3517 rxi_FreePacket(tp); /* rxi_FreePacket mustn't wake up anyone, preemptively. */
3522 /* Give rate detector a chance to respond to ping requests */
3523 if (ap->reason == RX_ACK_PING_RESPONSE) {
3524 rxi_ComputeRate(peer, call, 0, np, ap->reason);
3528 /* N.B. we don't turn off any timers here. They'll go away by themselves, anyway */
3530 /* Now go through explicit acks/nacks and record the results in
3531 * the waiting packets. These are packets that can't be released
3532 * yet, even with a positive acknowledge. This positive
3533 * acknowledge only means the packet has been received by the
3534 * peer, not that it will be retained long enough to be sent to
3535 * the peer's upper level. In addition, reset the transmit timers
3536 * of any missing packets (those packets that must be missing
3537 * because this packet was out of sequence) */
3539 call->nSoftAcked = 0;
3540 for (missing = 0, queue_Scan(&call->tq, tp, nxp, rx_packet)) {
3541 /* Update round trip time if the ack was stimulated on receipt
3543 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
3544 #ifdef RX_ENABLE_LOCKS
3545 if (tp->header.seq >= first)
3546 #endif /* RX_ENABLE_LOCKS */
3547 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
3549 && (tp->header.serial == serial || tp->firstSerial == serial))
3550 rxi_ComputePeerNetStats(call, tp, ap, np);
3552 /* Set the acknowledge flag per packet based on the
3553 * information in the ack packet. An acknowlegded packet can
3554 * be downgraded when the server has discarded a packet it
3555 * soacked previously, or when an ack packet is received
3556 * out of sequence. */
3557 if (tp->header.seq < first) {
3558 /* Implicit ack information */
3559 if (!(tp->flags & RX_PKTFLAG_ACKED)) {
3562 tp->flags |= RX_PKTFLAG_ACKED;
3563 } else if (tp->header.seq < first + nAcks) {
3564 /* Explicit ack information: set it in the packet appropriately */
3565 if (ap->acks[tp->header.seq - first] == RX_ACK_TYPE_ACK) {
3566 if (!(tp->flags & RX_PKTFLAG_ACKED)) {
3568 tp->flags |= RX_PKTFLAG_ACKED;
3576 tp->flags &= ~RX_PKTFLAG_ACKED;
3580 tp->flags &= ~RX_PKTFLAG_ACKED;
3584 /* If packet isn't yet acked, and it has been transmitted at least
3585 * once, reset retransmit time using latest timeout
3586 * ie, this should readjust the retransmit timer for all outstanding
3587 * packets... So we don't just retransmit when we should know better*/
3589 if (!(tp->flags & RX_PKTFLAG_ACKED) && !clock_IsZero(&tp->retryTime)) {
3590 tp->retryTime = tp->timeSent;
3591 clock_Add(&tp->retryTime, &peer->timeout);
3592 /* shift by eight because one quarter-sec ~ 256 milliseconds */
3593 clock_Addmsec(&(tp->retryTime), ((afs_uint32) tp->backoff) << 8);
3597 /* If the window has been extended by this acknowledge packet,
3598 * then wakeup a sender waiting in alloc for window space, or try
3599 * sending packets now, if he's been sitting on packets due to
3600 * lack of window space */
3601 if (call->tnext < (call->tfirst + call->twind)) {
3602 #ifdef RX_ENABLE_LOCKS
3603 CV_SIGNAL(&call->cv_twind);
3605 if (call->flags & RX_CALL_WAIT_WINDOW_ALLOC) {
3606 call->flags &= ~RX_CALL_WAIT_WINDOW_ALLOC;
3607 osi_rxWakeup(&call->twind);
3610 if (call->flags & RX_CALL_WAIT_WINDOW_SEND) {
3611 call->flags &= ~RX_CALL_WAIT_WINDOW_SEND;
3615 /* if the ack packet has a receivelen field hanging off it,
3616 * update our state */
3617 if (np->length >= rx_AckDataSize(ap->nAcks) + 2 * sizeof(afs_int32)) {
3620 /* If the ack packet has a "recommended" size that is less than
3621 * what I am using now, reduce my size to match */
3622 rx_packetread(np, rx_AckDataSize(ap->nAcks) + sizeof(afs_int32),
3623 sizeof(afs_int32), &tSize);
3624 tSize = (afs_uint32) ntohl(tSize);
3625 peer->natMTU = rxi_AdjustIfMTU(MIN(tSize, peer->ifMTU));
3627 /* Get the maximum packet size to send to this peer */
3628 rx_packetread(np, rx_AckDataSize(ap->nAcks), sizeof(afs_int32),
3630 tSize = (afs_uint32) ntohl(tSize);
3631 tSize = (afs_uint32) MIN(tSize, rx_MyMaxSendSize);
3632 tSize = rxi_AdjustMaxMTU(peer->natMTU, tSize);
3634 /* sanity check - peer might have restarted with different params.
3635 * If peer says "send less", dammit, send less... Peer should never
3636 * be unable to accept packets of the size that prior AFS versions would
3637 * send without asking. */
3638 if (peer->maxMTU != tSize) {
3639 peer->maxMTU = tSize;
3640 peer->MTU = MIN(tSize, peer->MTU);
3641 call->MTU = MIN(call->MTU, tSize);
3645 if (np->length == rx_AckDataSize(ap->nAcks) + 3 * sizeof(afs_int32)) {
3648 rx_AckDataSize(ap->nAcks) + 2 * sizeof(afs_int32),
3649 sizeof(afs_int32), &tSize);
3650 tSize = (afs_uint32) ntohl(tSize); /* peer's receive window, if it's */
3651 if (tSize < call->twind) { /* smaller than our send */
3652 call->twind = tSize; /* window, we must send less... */
3653 call->ssthresh = MIN(call->twind, call->ssthresh);
3656 /* Only send jumbograms to 3.4a fileservers. 3.3a RX gets the
3657 * network MTU confused with the loopback MTU. Calculate the
3658 * maximum MTU here for use in the slow start code below.
3660 maxMTU = peer->maxMTU;
3661 /* Did peer restart with older RX version? */
3662 if (peer->maxDgramPackets > 1) {
3663 peer->maxDgramPackets = 1;
3665 } else if (np->length >=
3666 rx_AckDataSize(ap->nAcks) + 4 * sizeof(afs_int32)) {
3669 rx_AckDataSize(ap->nAcks) + 2 * sizeof(afs_int32),
3670 sizeof(afs_int32), &tSize);
3671 tSize = (afs_uint32) ntohl(tSize);
3673 * As of AFS 3.5 we set the send window to match the receive window.
3675 if (tSize < call->twind) {
3676 call->twind = tSize;
3677 call->ssthresh = MIN(call->twind, call->ssthresh);
3678 } else if (tSize > call->twind) {
3679 call->twind = tSize;
3683 * As of AFS 3.5, a jumbogram is more than one fixed size
3684 * packet transmitted in a single UDP datagram. If the remote
3685 * MTU is smaller than our local MTU then never send a datagram
3686 * larger than the natural MTU.