2 * Copyright 2000, International Business Machines Corporation and others.
5 * This software has been released under the terms of the IBM Public
6 * License. For details, see the LICENSE file in the top-level source
7 * directory or online at http://www.openafs.org/dl/license10.html
10 /* RX: Extended Remote Procedure Call */
12 #include <afsconfig.h>
14 #include "afs/param.h"
16 #include <afs/param.h>
23 #include "afs/sysincludes.h"
24 #include "afsincludes.h"
30 #include <net/net_globals.h>
31 #endif /* AFS_OSF_ENV */
32 #ifdef AFS_LINUX20_ENV
35 #include "netinet/in.h"
36 #include "afs/afs_args.h"
37 #include "afs/afs_osi.h"
38 #ifdef RX_KERNEL_TRACE
39 #include "rx_kcommon.h"
41 #if (defined(AFS_AUX_ENV) || defined(AFS_AIX_ENV))
45 #undef RXDEBUG /* turn off debugging */
47 #if defined(AFS_SGI_ENV)
48 #include "sys/debug.h"
57 #endif /* AFS_OSF_ENV */
59 #include "afs/sysincludes.h"
60 #include "afsincludes.h"
63 #include "rx_kmutex.h"
64 #include "rx_kernel.h"
68 #include "rx_globals.h"
70 #define AFSOP_STOP_RXCALLBACK 210 /* Stop CALLBACK process */
71 #define AFSOP_STOP_AFS 211 /* Stop AFS process */
72 #define AFSOP_STOP_BKG 212 /* Stop BKG process */
74 extern afs_int32 afs_termState;
76 #include "sys/lockl.h"
77 #include "sys/lock_def.h"
78 #endif /* AFS_AIX41_ENV */
79 # include "rxgen_consts.h"
81 # include <sys/types.h>
86 # include <afs/afsutil.h>
87 # include <WINNT\afsreg.h>
89 # include <sys/socket.h>
90 # include <sys/file.h>
92 # include <sys/stat.h>
93 # include <netinet/in.h>
94 # include <sys/time.h>
104 # include "rx_user.h"
105 # include "rx_clock.h"
106 # include "rx_queue.h"
107 # include "rx_globals.h"
108 # include "rx_trace.h"
109 # include <afs/rxgen_consts.h>
112 int (*registerProgram) () = 0;
113 int (*swapNameProgram) () = 0;
115 /* Local static routines */
116 static void rxi_DestroyConnectionNoLock(register struct rx_connection *conn);
117 #ifdef RX_ENABLE_LOCKS
118 static void rxi_SetAcksInTransmitQueue(register struct rx_call *call);
121 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
123 afs_int32 rxi_start_aborted; /* rxi_start awoke after rxi_Send in error. */
124 afs_int32 rxi_start_in_error;
126 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
129 * rxi_rpc_peer_stat_cnt counts the total number of peer stat structures
130 * currently allocated within rx. This number is used to allocate the
131 * memory required to return the statistics when queried.
134 static unsigned int rxi_rpc_peer_stat_cnt;
137 * rxi_rpc_process_stat_cnt counts the total number of local process stat
138 * structures currently allocated within rx. The number is used to allocate
139 * the memory required to return the statistics when queried.
142 static unsigned int rxi_rpc_process_stat_cnt;
144 #if !defined(offsetof)
145 #include <stddef.h> /* for definition of offsetof() */
148 #ifdef AFS_PTHREAD_ENV
152 * Use procedural initialization of mutexes/condition variables
156 extern pthread_mutex_t rx_stats_mutex;
157 extern pthread_mutex_t des_init_mutex;
158 extern pthread_mutex_t des_random_mutex;
159 extern pthread_mutex_t rx_clock_mutex;
160 extern pthread_mutex_t rxi_connCacheMutex;
161 extern pthread_mutex_t rx_event_mutex;
162 extern pthread_mutex_t osi_malloc_mutex;
163 extern pthread_mutex_t event_handler_mutex;
164 extern pthread_mutex_t listener_mutex;
165 extern pthread_mutex_t rx_if_init_mutex;
166 extern pthread_mutex_t rx_if_mutex;
167 extern pthread_mutex_t rxkad_client_uid_mutex;
168 extern pthread_mutex_t rxkad_random_mutex;
170 extern pthread_cond_t rx_event_handler_cond;
171 extern pthread_cond_t rx_listener_cond;
173 static pthread_mutex_t epoch_mutex;
174 static pthread_mutex_t rx_init_mutex;
175 static pthread_mutex_t rx_debug_mutex;
178 rxi_InitPthread(void)
180 assert(pthread_mutex_init(&rx_clock_mutex, (const pthread_mutexattr_t *)0)
182 assert(pthread_mutex_init(&rx_stats_mutex, (const pthread_mutexattr_t *)0)
184 assert(pthread_mutex_init
185 (&rxi_connCacheMutex, (const pthread_mutexattr_t *)0) == 0);
186 assert(pthread_mutex_init(&rx_init_mutex, (const pthread_mutexattr_t *)0)
188 assert(pthread_mutex_init(&epoch_mutex, (const pthread_mutexattr_t *)0) ==
190 assert(pthread_mutex_init(&rx_event_mutex, (const pthread_mutexattr_t *)0)
192 assert(pthread_mutex_init(&des_init_mutex, (const pthread_mutexattr_t *)0)
194 assert(pthread_mutex_init
195 (&des_random_mutex, (const pthread_mutexattr_t *)0) == 0);
196 assert(pthread_mutex_init
197 (&osi_malloc_mutex, (const pthread_mutexattr_t *)0) == 0);
198 assert(pthread_mutex_init
199 (&event_handler_mutex, (const pthread_mutexattr_t *)0) == 0);
200 assert(pthread_mutex_init(&listener_mutex, (const pthread_mutexattr_t *)0)
202 assert(pthread_mutex_init
203 (&rx_if_init_mutex, (const pthread_mutexattr_t *)0) == 0);
204 assert(pthread_mutex_init(&rx_if_mutex, (const pthread_mutexattr_t *)0) ==
206 assert(pthread_mutex_init
207 (&rxkad_client_uid_mutex, (const pthread_mutexattr_t *)0) == 0);
208 assert(pthread_mutex_init
209 (&rxkad_random_mutex, (const pthread_mutexattr_t *)0) == 0);
210 assert(pthread_mutex_init(&rx_debug_mutex, (const pthread_mutexattr_t *)0)
213 assert(pthread_cond_init
214 (&rx_event_handler_cond, (const pthread_condattr_t *)0) == 0);
215 assert(pthread_cond_init(&rx_listener_cond, (const pthread_condattr_t *)0)
217 assert(pthread_key_create(&rx_thread_id_key, NULL) == 0);
218 assert(pthread_key_create(&rx_ts_info_key, NULL) == 0);
220 rxkad_global_stats_init();
223 pthread_once_t rx_once_init = PTHREAD_ONCE_INIT;
224 #define INIT_PTHREAD_LOCKS \
225 assert(pthread_once(&rx_once_init, rxi_InitPthread)==0)
227 * The rx_stats_mutex mutex protects the following global variables:
232 * rxi_lowConnRefCount
233 * rxi_lowPeerRefCount
242 #define INIT_PTHREAD_LOCKS
246 /* Variables for handling the minProcs implementation. availProcs gives the
247 * number of threads available in the pool at this moment (not counting dudes
248 * executing right now). totalMin gives the total number of procs required
249 * for handling all minProcs requests. minDeficit is a dynamic variable
250 * tracking the # of procs required to satisfy all of the remaining minProcs
252 * For fine grain locking to work, the quota check and the reservation of
253 * a server thread has to come while rxi_availProcs and rxi_minDeficit
254 * are locked. To this end, the code has been modified under #ifdef
255 * RX_ENABLE_LOCKS so that quota checks and reservation occur at the
256 * same time. A new function, ReturnToServerPool() returns the allocation.
258 * A call can be on several queue's (but only one at a time). When
259 * rxi_ResetCall wants to remove the call from a queue, it has to ensure
260 * that no one else is touching the queue. To this end, we store the address
261 * of the queue lock in the call structure (under the call lock) when we
262 * put the call on a queue, and we clear the call_queue_lock when the
263 * call is removed from a queue (once the call lock has been obtained).
264 * This allows rxi_ResetCall to safely synchronize with others wishing
265 * to manipulate the queue.
268 #ifdef RX_ENABLE_LOCKS
269 static afs_kmutex_t rx_rpc_stats;
270 void rxi_StartUnlocked();
273 /* We keep a "last conn pointer" in rxi_FindConnection. The odds are
274 ** pretty good that the next packet coming in is from the same connection
275 ** as the last packet, since we're send multiple packets in a transmit window.
277 struct rx_connection *rxLastConn = 0;
279 #ifdef RX_ENABLE_LOCKS
280 /* The locking hierarchy for rx fine grain locking is composed of these
283 * rx_connHashTable_lock - synchronizes conn creation, rx_connHashTable access
284 * conn_call_lock - used to synchonize rx_EndCall and rx_NewCall
285 * call->lock - locks call data fields.
286 * These are independent of each other:
287 * rx_freeCallQueue_lock
292 * serverQueueEntry->lock
294 * rx_peerHashTable_lock - locked under rx_connHashTable_lock
295 * peer->lock - locks peer data fields.
296 * conn_data_lock - that more than one thread is not updating a conn data
297 * field at the same time.
305 * Do we need a lock to protect the peer field in the conn structure?
306 * conn->peer was previously a constant for all intents and so has no
307 * lock protecting this field. The multihomed client delta introduced
308 * a RX code change : change the peer field in the connection structure
309 * to that remote inetrface from which the last packet for this
310 * connection was sent out. This may become an issue if further changes
313 #define SET_CALL_QUEUE_LOCK(C, L) (C)->call_queue_lock = (L)
314 #define CLEAR_CALL_QUEUE_LOCK(C) (C)->call_queue_lock = NULL
316 /* rxdb_fileID is used to identify the lock location, along with line#. */
317 static int rxdb_fileID = RXDB_FILE_RX;
318 #endif /* RX_LOCKS_DB */
319 #else /* RX_ENABLE_LOCKS */
320 #define SET_CALL_QUEUE_LOCK(C, L)
321 #define CLEAR_CALL_QUEUE_LOCK(C)
322 #endif /* RX_ENABLE_LOCKS */
323 struct rx_serverQueueEntry *rx_waitForPacket = 0;
324 struct rx_serverQueueEntry *rx_waitingForPacket = 0;
326 /* ------------Exported Interfaces------------- */
328 /* This function allows rxkad to set the epoch to a suitably random number
329 * which rx_NewConnection will use in the future. The principle purpose is to
330 * get rxnull connections to use the same epoch as the rxkad connections do, at
331 * least once the first rxkad connection is established. This is important now
332 * that the host/port addresses aren't used in FindConnection: the uniqueness
333 * of epoch/cid matters and the start time won't do. */
335 #ifdef AFS_PTHREAD_ENV
337 * This mutex protects the following global variables:
341 #define LOCK_EPOCH assert(pthread_mutex_lock(&epoch_mutex)==0)
342 #define UNLOCK_EPOCH assert(pthread_mutex_unlock(&epoch_mutex)==0)
346 #endif /* AFS_PTHREAD_ENV */
349 rx_SetEpoch(afs_uint32 epoch)
356 /* Initialize rx. A port number may be mentioned, in which case this
357 * becomes the default port number for any service installed later.
358 * If 0 is provided for the port number, a random port will be chosen
359 * by the kernel. Whether this will ever overlap anything in
360 * /etc/services is anybody's guess... Returns 0 on success, -1 on
362 static int rxinit_status = 1;
363 #ifdef AFS_PTHREAD_ENV
365 * This mutex protects the following global variables:
369 #define LOCK_RX_INIT assert(pthread_mutex_lock(&rx_init_mutex)==0)
370 #define UNLOCK_RX_INIT assert(pthread_mutex_unlock(&rx_init_mutex)==0)
373 #define UNLOCK_RX_INIT
377 rx_InitHost(u_int host, u_int port)
384 char *htable, *ptable;
391 if (rxinit_status == 0) {
392 tmp_status = rxinit_status;
394 return tmp_status; /* Already started; return previous error code. */
400 if (afs_winsockInit() < 0)
406 * Initialize anything necessary to provide a non-premptive threading
409 rxi_InitializeThreadSupport();
412 /* Allocate and initialize a socket for client and perhaps server
415 rx_socket = rxi_GetHostUDPSocket(host, (u_short) port);
416 if (rx_socket == OSI_NULLSOCKET) {
420 #ifdef RX_ENABLE_LOCKS
423 #endif /* RX_LOCKS_DB */
424 MUTEX_INIT(&rx_stats_mutex, "rx_stats_mutex", MUTEX_DEFAULT, 0);
425 MUTEX_INIT(&rx_rpc_stats, "rx_rpc_stats", MUTEX_DEFAULT, 0);
426 MUTEX_INIT(&rx_freePktQ_lock, "rx_freePktQ_lock", MUTEX_DEFAULT, 0);
427 MUTEX_INIT(&freeSQEList_lock, "freeSQEList lock", MUTEX_DEFAULT, 0);
428 MUTEX_INIT(&rx_freeCallQueue_lock, "rx_freeCallQueue_lock", MUTEX_DEFAULT,
430 CV_INIT(&rx_waitingForPackets_cv, "rx_waitingForPackets_cv", CV_DEFAULT,
432 MUTEX_INIT(&rx_peerHashTable_lock, "rx_peerHashTable_lock", MUTEX_DEFAULT,
434 MUTEX_INIT(&rx_connHashTable_lock, "rx_connHashTable_lock", MUTEX_DEFAULT,
436 MUTEX_INIT(&rx_serverPool_lock, "rx_serverPool_lock", MUTEX_DEFAULT, 0);
438 MUTEX_INIT(&rxi_keyCreate_lock, "rxi_keyCreate_lock", MUTEX_DEFAULT, 0);
440 #if defined(KERNEL) && defined(AFS_HPUX110_ENV)
442 rx_sleepLock = alloc_spinlock(LAST_HELD_ORDER - 10, "rx_sleepLock");
443 #endif /* KERNEL && AFS_HPUX110_ENV */
444 #endif /* RX_ENABLE_LOCKS */
447 rx_connDeadTime = 12;
448 rx_tranquil = 0; /* reset flag */
449 memset((char *)&rx_stats, 0, sizeof(struct rx_stats));
451 osi_Alloc(rx_hashTableSize * sizeof(struct rx_connection *));
452 PIN(htable, rx_hashTableSize * sizeof(struct rx_connection *)); /* XXXXX */
453 memset(htable, 0, rx_hashTableSize * sizeof(struct rx_connection *));
454 ptable = (char *)osi_Alloc(rx_hashTableSize * sizeof(struct rx_peer *));
455 PIN(ptable, rx_hashTableSize * sizeof(struct rx_peer *)); /* XXXXX */
456 memset(ptable, 0, rx_hashTableSize * sizeof(struct rx_peer *));
458 /* Malloc up a bunch of packets & buffers */
460 queue_Init(&rx_freePacketQueue);
461 rxi_NeedMorePackets = FALSE;
462 #ifdef RX_ENABLE_TSFPQ
463 rx_nPackets = 0; /* in TSFPQ version, rx_nPackets is managed by rxi_MorePackets* */
464 rxi_MorePacketsTSFPQ(rx_extraPackets + RX_MAX_QUOTA + 2, RX_TS_FPQ_FLUSH_GLOBAL, 0);
465 #else /* RX_ENABLE_TSFPQ */
466 rx_nPackets = rx_extraPackets + RX_MAX_QUOTA + 2; /* fudge */
467 rxi_MorePackets(rx_nPackets);
468 #endif /* RX_ENABLE_TSFPQ */
475 #if defined(AFS_NT40_ENV) && !defined(AFS_PTHREAD_ENV)
476 tv.tv_sec = clock_now.sec;
477 tv.tv_usec = clock_now.usec;
478 srand((unsigned int)tv.tv_usec);
485 #if defined(KERNEL) && !defined(UKERNEL)
486 /* Really, this should never happen in a real kernel */
489 struct sockaddr_in addr;
490 int addrlen = sizeof(addr);
491 if (getsockname((int)rx_socket, (struct sockaddr *)&addr, &addrlen)) {
495 rx_port = addr.sin_port;
498 rx_stats.minRtt.sec = 9999999;
500 rx_SetEpoch(tv.tv_sec | 0x80000000);
502 rx_SetEpoch(tv.tv_sec); /* Start time of this package, rxkad
503 * will provide a randomer value. */
505 MUTEX_ENTER(&rx_stats_mutex);
506 rxi_dataQuota += rx_extraQuota; /* + extra pkts caller asked to rsrv */
507 MUTEX_EXIT(&rx_stats_mutex);
508 /* *Slightly* random start time for the cid. This is just to help
509 * out with the hashing function at the peer */
510 rx_nextCid = ((tv.tv_sec ^ tv.tv_usec) << RX_CIDSHIFT);
511 rx_connHashTable = (struct rx_connection **)htable;
512 rx_peerHashTable = (struct rx_peer **)ptable;
514 rx_lastAckDelay.sec = 0;
515 rx_lastAckDelay.usec = 400000; /* 400 milliseconds */
516 rx_hardAckDelay.sec = 0;
517 rx_hardAckDelay.usec = 100000; /* 100 milliseconds */
518 rx_softAckDelay.sec = 0;
519 rx_softAckDelay.usec = 100000; /* 100 milliseconds */
521 rxevent_Init(20, rxi_ReScheduleEvents);
523 /* Initialize various global queues */
524 queue_Init(&rx_idleServerQueue);
525 queue_Init(&rx_incomingCallQueue);
526 queue_Init(&rx_freeCallQueue);
528 #if defined(AFS_NT40_ENV) && !defined(KERNEL)
529 /* Initialize our list of usable IP addresses. */
533 /* Start listener process (exact function is dependent on the
534 * implementation environment--kernel or user space) */
538 tmp_status = rxinit_status = 0;
546 return rx_InitHost(htonl(INADDR_ANY), port);
549 /* called with unincremented nRequestsRunning to see if it is OK to start
550 * a new thread in this service. Could be "no" for two reasons: over the
551 * max quota, or would prevent others from reaching their min quota.
553 #ifdef RX_ENABLE_LOCKS
554 /* This verion of QuotaOK reserves quota if it's ok while the
555 * rx_serverPool_lock is held. Return quota using ReturnToServerPool().
558 QuotaOK(register struct rx_service *aservice)
560 /* check if over max quota */
561 if (aservice->nRequestsRunning >= aservice->maxProcs) {
565 /* under min quota, we're OK */
566 /* otherwise, can use only if there are enough to allow everyone
567 * to go to their min quota after this guy starts.
569 MUTEX_ENTER(&rx_stats_mutex);
570 if ((aservice->nRequestsRunning < aservice->minProcs)
571 || (rxi_availProcs > rxi_minDeficit)) {
572 aservice->nRequestsRunning++;
573 /* just started call in minProcs pool, need fewer to maintain
575 if (aservice->nRequestsRunning <= aservice->minProcs)
578 MUTEX_EXIT(&rx_stats_mutex);
581 MUTEX_EXIT(&rx_stats_mutex);
587 ReturnToServerPool(register struct rx_service *aservice)
589 aservice->nRequestsRunning--;
590 MUTEX_ENTER(&rx_stats_mutex);
591 if (aservice->nRequestsRunning < aservice->minProcs)
594 MUTEX_EXIT(&rx_stats_mutex);
597 #else /* RX_ENABLE_LOCKS */
599 QuotaOK(register struct rx_service *aservice)
602 /* under min quota, we're OK */
603 if (aservice->nRequestsRunning < aservice->minProcs)
606 /* check if over max quota */
607 if (aservice->nRequestsRunning >= aservice->maxProcs)
610 /* otherwise, can use only if there are enough to allow everyone
611 * to go to their min quota after this guy starts.
613 if (rxi_availProcs > rxi_minDeficit)
617 #endif /* RX_ENABLE_LOCKS */
620 /* Called by rx_StartServer to start up lwp's to service calls.
621 NExistingProcs gives the number of procs already existing, and which
622 therefore needn't be created. */
624 rxi_StartServerProcs(int nExistingProcs)
626 register struct rx_service *service;
631 /* For each service, reserve N processes, where N is the "minimum"
632 * number of processes that MUST be able to execute a request in parallel,
633 * at any time, for that process. Also compute the maximum difference
634 * between any service's maximum number of processes that can run
635 * (i.e. the maximum number that ever will be run, and a guarantee
636 * that this number will run if other services aren't running), and its
637 * minimum number. The result is the extra number of processes that
638 * we need in order to provide the latter guarantee */
639 for (i = 0; i < RX_MAX_SERVICES; i++) {
641 service = rx_services[i];
642 if (service == (struct rx_service *)0)
644 nProcs += service->minProcs;
645 diff = service->maxProcs - service->minProcs;
649 nProcs += maxdiff; /* Extra processes needed to allow max number requested to run in any given service, under good conditions */
650 nProcs -= nExistingProcs; /* Subtract the number of procs that were previously created for use as server procs */
651 for (i = 0; i < nProcs; i++) {
652 rxi_StartServerProc(rx_ServerProc, rx_stackSize);
658 /* This routine is only required on Windows */
660 rx_StartClientThread(void)
662 #ifdef AFS_PTHREAD_ENV
664 pid = (int) pthread_self();
665 #endif /* AFS_PTHREAD_ENV */
667 #endif /* AFS_NT40_ENV */
669 /* This routine must be called if any services are exported. If the
670 * donateMe flag is set, the calling process is donated to the server
673 rx_StartServer(int donateMe)
675 register struct rx_service *service;
681 /* Start server processes, if necessary (exact function is dependent
682 * on the implementation environment--kernel or user space). DonateMe
683 * will be 1 if there is 1 pre-existing proc, i.e. this one. In this
684 * case, one less new proc will be created rx_StartServerProcs.
686 rxi_StartServerProcs(donateMe);
688 /* count up the # of threads in minProcs, and add set the min deficit to
689 * be that value, too.
691 for (i = 0; i < RX_MAX_SERVICES; i++) {
692 service = rx_services[i];
693 if (service == (struct rx_service *)0)
695 MUTEX_ENTER(&rx_stats_mutex);
696 rxi_totalMin += service->minProcs;
697 /* below works even if a thread is running, since minDeficit would
698 * still have been decremented and later re-incremented.
700 rxi_minDeficit += service->minProcs;
701 MUTEX_EXIT(&rx_stats_mutex);
704 /* Turn on reaping of idle server connections */
705 rxi_ReapConnections();
714 #ifdef AFS_PTHREAD_ENV
716 pid = (pid_t) pthread_self();
717 #else /* AFS_PTHREAD_ENV */
719 LWP_CurrentProcess(&pid);
720 #endif /* AFS_PTHREAD_ENV */
722 sprintf(name, "srv_%d", ++nProcs);
724 (*registerProgram) (pid, name);
726 #endif /* AFS_NT40_ENV */
727 rx_ServerProc(); /* Never returns */
729 #ifdef RX_ENABLE_TSFPQ
730 /* no use leaving packets around in this thread's local queue if
731 * it isn't getting donated to the server thread pool.
733 rxi_FlushLocalPacketsTSFPQ();
734 #endif /* RX_ENABLE_TSFPQ */
738 /* Create a new client connection to the specified service, using the
739 * specified security object to implement the security model for this
741 struct rx_connection *
742 rx_NewConnection(register afs_uint32 shost, u_short sport, u_short sservice,
743 register struct rx_securityClass *securityObject,
744 int serviceSecurityIndex)
748 register struct rx_connection *conn;
753 dpf(("rx_NewConnection(host %x, port %u, service %u, securityObject %x, serviceSecurityIndex %d)\n", ntohl(shost), ntohs(sport), sservice, securityObject, serviceSecurityIndex));
755 /* Vasilsi said: "NETPRI protects Cid and Alloc", but can this be true in
756 * the case of kmem_alloc? */
757 conn = rxi_AllocConnection();
758 #ifdef RX_ENABLE_LOCKS
759 MUTEX_INIT(&conn->conn_call_lock, "conn call lock", MUTEX_DEFAULT, 0);
760 MUTEX_INIT(&conn->conn_data_lock, "conn call lock", MUTEX_DEFAULT, 0);
761 CV_INIT(&conn->conn_call_cv, "conn call cv", CV_DEFAULT, 0);
764 MUTEX_ENTER(&rx_connHashTable_lock);
765 cid = (rx_nextCid += RX_MAXCALLS);
766 conn->type = RX_CLIENT_CONNECTION;
768 conn->epoch = rx_epoch;
769 conn->peer = rxi_FindPeer(shost, sport, 0, 1);
770 conn->serviceId = sservice;
771 conn->securityObject = securityObject;
772 /* This doesn't work in all compilers with void (they're buggy), so fake it
774 conn->securityData = (VOID *) 0;
775 conn->securityIndex = serviceSecurityIndex;
776 rx_SetConnDeadTime(conn, rx_connDeadTime);
777 conn->ackRate = RX_FAST_ACK_RATE;
779 conn->specific = NULL;
780 conn->challengeEvent = NULL;
781 conn->delayedAbortEvent = NULL;
782 conn->abortCount = 0;
785 RXS_NewConnection(securityObject, conn);
787 CONN_HASH(shost, sport, conn->cid, conn->epoch, RX_CLIENT_CONNECTION);
789 conn->refCount++; /* no lock required since only this thread knows... */
790 conn->next = rx_connHashTable[hashindex];
791 rx_connHashTable[hashindex] = conn;
792 MUTEX_ENTER(&rx_stats_mutex);
793 rx_stats.nClientConns++;
794 MUTEX_EXIT(&rx_stats_mutex);
796 MUTEX_EXIT(&rx_connHashTable_lock);
802 rx_SetConnDeadTime(register struct rx_connection *conn, register int seconds)
804 /* The idea is to set the dead time to a value that allows several
805 * keepalives to be dropped without timing out the connection. */
806 conn->secondsUntilDead = MAX(seconds, 6);
807 conn->secondsUntilPing = conn->secondsUntilDead / 6;
810 int rxi_lowPeerRefCount = 0;
811 int rxi_lowConnRefCount = 0;
814 * Cleanup a connection that was destroyed in rxi_DestroyConnectioNoLock.
815 * NOTE: must not be called with rx_connHashTable_lock held.
818 rxi_CleanupConnection(struct rx_connection *conn)
820 /* Notify the service exporter, if requested, that this connection
821 * is being destroyed */
822 if (conn->type == RX_SERVER_CONNECTION && conn->service->destroyConnProc)
823 (*conn->service->destroyConnProc) (conn);
825 /* Notify the security module that this connection is being destroyed */
826 RXS_DestroyConnection(conn->securityObject, conn);
828 /* If this is the last connection using the rx_peer struct, set its
829 * idle time to now. rxi_ReapConnections will reap it if it's still
830 * idle (refCount == 0) after rx_idlePeerTime (60 seconds) have passed.
832 MUTEX_ENTER(&rx_peerHashTable_lock);
833 if (conn->peer->refCount < 2) {
834 conn->peer->idleWhen = clock_Sec();
835 if (conn->peer->refCount < 1) {
836 conn->peer->refCount = 1;
837 MUTEX_ENTER(&rx_stats_mutex);
838 rxi_lowPeerRefCount++;
839 MUTEX_EXIT(&rx_stats_mutex);
842 conn->peer->refCount--;
843 MUTEX_EXIT(&rx_peerHashTable_lock);
845 MUTEX_ENTER(&rx_stats_mutex);
846 if (conn->type == RX_SERVER_CONNECTION)
847 rx_stats.nServerConns--;
849 rx_stats.nClientConns--;
850 MUTEX_EXIT(&rx_stats_mutex);
853 if (conn->specific) {
855 for (i = 0; i < conn->nSpecific; i++) {
856 if (conn->specific[i] && rxi_keyCreate_destructor[i])
857 (*rxi_keyCreate_destructor[i]) (conn->specific[i]);
858 conn->specific[i] = NULL;
860 free(conn->specific);
862 conn->specific = NULL;
866 MUTEX_DESTROY(&conn->conn_call_lock);
867 MUTEX_DESTROY(&conn->conn_data_lock);
868 CV_DESTROY(&conn->conn_call_cv);
870 rxi_FreeConnection(conn);
873 /* Destroy the specified connection */
875 rxi_DestroyConnection(register struct rx_connection *conn)
877 MUTEX_ENTER(&rx_connHashTable_lock);
878 rxi_DestroyConnectionNoLock(conn);
879 /* conn should be at the head of the cleanup list */
880 if (conn == rx_connCleanup_list) {
881 rx_connCleanup_list = rx_connCleanup_list->next;
882 MUTEX_EXIT(&rx_connHashTable_lock);
883 rxi_CleanupConnection(conn);
885 #ifdef RX_ENABLE_LOCKS
887 MUTEX_EXIT(&rx_connHashTable_lock);
889 #endif /* RX_ENABLE_LOCKS */
893 rxi_DestroyConnectionNoLock(register struct rx_connection *conn)
895 register struct rx_connection **conn_ptr;
896 register int havecalls = 0;
897 struct rx_packet *packet;
904 MUTEX_ENTER(&conn->conn_data_lock);
905 if (conn->refCount > 0)
908 MUTEX_ENTER(&rx_stats_mutex);
909 rxi_lowConnRefCount++;
910 MUTEX_EXIT(&rx_stats_mutex);
913 if ((conn->refCount > 0) || (conn->flags & RX_CONN_BUSY)) {
914 /* Busy; wait till the last guy before proceeding */
915 MUTEX_EXIT(&conn->conn_data_lock);
920 /* If the client previously called rx_NewCall, but it is still
921 * waiting, treat this as a running call, and wait to destroy the
922 * connection later when the call completes. */
923 if ((conn->type == RX_CLIENT_CONNECTION)
924 && (conn->flags & RX_CONN_MAKECALL_WAITING)) {
925 conn->flags |= RX_CONN_DESTROY_ME;
926 MUTEX_EXIT(&conn->conn_data_lock);
930 MUTEX_EXIT(&conn->conn_data_lock);
932 /* Check for extant references to this connection */
933 for (i = 0; i < RX_MAXCALLS; i++) {
934 register struct rx_call *call = conn->call[i];
937 if (conn->type == RX_CLIENT_CONNECTION) {
938 MUTEX_ENTER(&call->lock);
939 if (call->delayedAckEvent) {
940 /* Push the final acknowledgment out now--there
941 * won't be a subsequent call to acknowledge the
942 * last reply packets */
943 rxevent_Cancel(call->delayedAckEvent, call,
944 RX_CALL_REFCOUNT_DELAY);
945 if (call->state == RX_STATE_PRECALL
946 || call->state == RX_STATE_ACTIVE) {
947 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
949 rxi_AckAll(NULL, call, 0);
952 MUTEX_EXIT(&call->lock);
956 #ifdef RX_ENABLE_LOCKS
958 if (MUTEX_TRYENTER(&conn->conn_data_lock)) {
959 MUTEX_EXIT(&conn->conn_data_lock);
961 /* Someone is accessing a packet right now. */
965 #endif /* RX_ENABLE_LOCKS */
968 /* Don't destroy the connection if there are any call
969 * structures still in use */
970 MUTEX_ENTER(&conn->conn_data_lock);
971 conn->flags |= RX_CONN_DESTROY_ME;
972 MUTEX_EXIT(&conn->conn_data_lock);
977 if (conn->delayedAbortEvent) {
978 rxevent_Cancel(conn->delayedAbortEvent, (struct rx_call *)0, 0);
979 packet = rxi_AllocPacket(RX_PACKET_CLASS_SPECIAL);
981 MUTEX_ENTER(&conn->conn_data_lock);
982 rxi_SendConnectionAbort(conn, packet, 0, 1);
983 MUTEX_EXIT(&conn->conn_data_lock);
984 rxi_FreePacket(packet);
988 /* Remove from connection hash table before proceeding */
990 &rx_connHashTable[CONN_HASH
991 (peer->host, peer->port, conn->cid, conn->epoch,
993 for (; *conn_ptr; conn_ptr = &(*conn_ptr)->next) {
994 if (*conn_ptr == conn) {
995 *conn_ptr = conn->next;
999 /* if the conn that we are destroying was the last connection, then we
1000 * clear rxLastConn as well */
1001 if (rxLastConn == conn)
1004 /* Make sure the connection is completely reset before deleting it. */
1005 /* get rid of pending events that could zap us later */
1006 if (conn->challengeEvent)
1007 rxevent_Cancel(conn->challengeEvent, (struct rx_call *)0, 0);
1008 if (conn->checkReachEvent)
1009 rxevent_Cancel(conn->checkReachEvent, (struct rx_call *)0, 0);
1011 /* Add the connection to the list of destroyed connections that
1012 * need to be cleaned up. This is necessary to avoid deadlocks
1013 * in the routines we call to inform others that this connection is
1014 * being destroyed. */
1015 conn->next = rx_connCleanup_list;
1016 rx_connCleanup_list = conn;
1019 /* Externally available version */
1021 rx_DestroyConnection(register struct rx_connection *conn)
1026 rxi_DestroyConnection(conn);
1031 rx_GetConnection(register struct rx_connection *conn)
1036 MUTEX_ENTER(&conn->conn_data_lock);
1038 MUTEX_EXIT(&conn->conn_data_lock);
1042 /* Wait for the transmit queue to no longer be busy.
1043 * requires the call->lock to be held */
1044 static void rxi_WaitforTQBusy(struct rx_call *call) {
1045 while (call->flags & RX_CALL_TQ_BUSY) {
1046 call->flags |= RX_CALL_TQ_WAIT;
1048 #ifdef RX_ENABLE_LOCKS
1049 osirx_AssertMine(&call->lock, "rxi_WaitforTQ lock");
1050 CV_WAIT(&call->cv_tq, &call->lock);
1051 #else /* RX_ENABLE_LOCKS */
1052 osi_rxSleep(&call->tq);
1053 #endif /* RX_ENABLE_LOCKS */
1055 if (call->tqWaiters == 0) {
1056 call->flags &= ~RX_CALL_TQ_WAIT;
1060 /* Start a new rx remote procedure call, on the specified connection.
1061 * If wait is set to 1, wait for a free call channel; otherwise return
1062 * 0. Maxtime gives the maximum number of seconds this call may take,
1063 * after rx_NewCall returns. After this time interval, a call to any
1064 * of rx_SendData, rx_ReadData, etc. will fail with RX_CALL_TIMEOUT.
1065 * For fine grain locking, we hold the conn_call_lock in order to
1066 * to ensure that we don't get signalle after we found a call in an active
1067 * state and before we go to sleep.
1070 rx_NewCall(register struct rx_connection *conn)
1073 register struct rx_call *call;
1074 struct clock queueTime;
1078 dpf(("rx_NewCall(conn %x)\n", conn));
1081 clock_GetTime(&queueTime);
1082 MUTEX_ENTER(&conn->conn_call_lock);
1085 * Check if there are others waiting for a new call.
1086 * If so, let them go first to avoid starving them.
1087 * This is a fairly simple scheme, and might not be
1088 * a complete solution for large numbers of waiters.
1090 * makeCallWaiters keeps track of the number of
1091 * threads waiting to make calls and the
1092 * RX_CONN_MAKECALL_WAITING flag bit is used to
1093 * indicate that there are indeed calls waiting.
1094 * The flag is set when the waiter is incremented.
1095 * It is only cleared in rx_EndCall when
1096 * makeCallWaiters is 0. This prevents us from
1097 * accidently destroying the connection while it
1098 * is potentially about to be used.
1100 MUTEX_ENTER(&conn->conn_data_lock);
1101 if (conn->makeCallWaiters) {
1102 conn->flags |= RX_CONN_MAKECALL_WAITING;
1103 conn->makeCallWaiters++;
1104 MUTEX_EXIT(&conn->conn_data_lock);
1106 #ifdef RX_ENABLE_LOCKS
1107 CV_WAIT(&conn->conn_call_cv, &conn->conn_call_lock);
1111 MUTEX_ENTER(&conn->conn_data_lock);
1112 conn->makeCallWaiters--;
1114 MUTEX_EXIT(&conn->conn_data_lock);
1117 for (i = 0; i < RX_MAXCALLS; i++) {
1118 call = conn->call[i];
1120 MUTEX_ENTER(&call->lock);
1121 if (call->state == RX_STATE_DALLY) {
1122 rxi_ResetCall(call, 0);
1123 (*call->callNumber)++;
1126 MUTEX_EXIT(&call->lock);
1128 call = rxi_NewCall(conn, i);
1132 if (i < RX_MAXCALLS) {
1135 MUTEX_ENTER(&conn->conn_data_lock);
1136 conn->flags |= RX_CONN_MAKECALL_WAITING;
1137 conn->makeCallWaiters++;
1138 MUTEX_EXIT(&conn->conn_data_lock);
1140 #ifdef RX_ENABLE_LOCKS
1141 CV_WAIT(&conn->conn_call_cv, &conn->conn_call_lock);
1145 MUTEX_ENTER(&conn->conn_data_lock);
1146 conn->makeCallWaiters--;
1147 MUTEX_EXIT(&conn->conn_data_lock);
1150 * Wake up anyone else who might be giving us a chance to
1151 * run (see code above that avoids resource starvation).
1153 #ifdef RX_ENABLE_LOCKS
1154 CV_BROADCAST(&conn->conn_call_cv);
1159 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
1161 /* Client is initially in send mode */
1162 call->state = RX_STATE_ACTIVE;
1163 call->error = conn->error;
1165 call->mode = RX_MODE_ERROR;
1167 call->mode = RX_MODE_SENDING;
1169 /* remember start time for call in case we have hard dead time limit */
1170 call->queueTime = queueTime;
1171 clock_GetTime(&call->startTime);
1172 hzero(call->bytesSent);
1173 hzero(call->bytesRcvd);
1175 /* Turn on busy protocol. */
1176 rxi_KeepAliveOn(call);
1178 MUTEX_EXIT(&call->lock);
1179 MUTEX_EXIT(&conn->conn_call_lock);
1182 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
1183 /* Now, if TQ wasn't cleared earlier, do it now. */
1184 MUTEX_ENTER(&call->lock);
1185 rxi_WaitforTQBusy(call);
1186 if (call->flags & RX_CALL_TQ_CLEARME) {
1187 rxi_ClearTransmitQueue(call, 0);
1188 queue_Init(&call->tq);
1190 MUTEX_EXIT(&call->lock);
1191 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
1193 dpf(("rx_NewCall(call %x)\n", call));
1198 rxi_HasActiveCalls(register struct rx_connection *aconn)
1201 register struct rx_call *tcall;
1205 for (i = 0; i < RX_MAXCALLS; i++) {
1206 if ((tcall = aconn->call[i])) {
1207 if ((tcall->state == RX_STATE_ACTIVE)
1208 || (tcall->state == RX_STATE_PRECALL)) {
1219 rxi_GetCallNumberVector(register struct rx_connection *aconn,
1220 register afs_int32 * aint32s)
1223 register struct rx_call *tcall;
1227 for (i = 0; i < RX_MAXCALLS; i++) {
1228 if ((tcall = aconn->call[i]) && (tcall->state == RX_STATE_DALLY))
1229 aint32s[i] = aconn->callNumber[i] + 1;
1231 aint32s[i] = aconn->callNumber[i];
1238 rxi_SetCallNumberVector(register struct rx_connection *aconn,
1239 register afs_int32 * aint32s)
1242 register struct rx_call *tcall;
1246 for (i = 0; i < RX_MAXCALLS; i++) {
1247 if ((tcall = aconn->call[i]) && (tcall->state == RX_STATE_DALLY))
1248 aconn->callNumber[i] = aint32s[i] - 1;
1250 aconn->callNumber[i] = aint32s[i];
1256 /* Advertise a new service. A service is named locally by a UDP port
1257 * number plus a 16-bit service id. Returns (struct rx_service *) 0
1260 char *serviceName; Name for identification purposes (e.g. the
1261 service name might be used for probing for
1264 rx_NewServiceHost(afs_uint32 host, u_short port, u_short serviceId,
1265 char *serviceName, struct rx_securityClass **securityObjects,
1266 int nSecurityObjects,
1267 afs_int32(*serviceProc) (struct rx_call * acall))
1269 osi_socket socket = OSI_NULLSOCKET;
1270 register struct rx_service *tservice;
1276 if (serviceId == 0) {
1278 "rx_NewService: service id for service %s is not non-zero.\n",
1285 "rx_NewService: A non-zero port must be specified on this call if a non-zero port was not provided at Rx initialization (service %s).\n",
1293 tservice = rxi_AllocService();
1295 for (i = 0; i < RX_MAX_SERVICES; i++) {
1296 register struct rx_service *service = rx_services[i];
1298 if (port == service->servicePort && host == service->serviceHost) {
1299 if (service->serviceId == serviceId) {
1300 /* The identical service has already been
1301 * installed; if the caller was intending to
1302 * change the security classes used by this
1303 * service, he/she loses. */
1305 "rx_NewService: tried to install service %s with service id %d, which is already in use for service %s\n",
1306 serviceName, serviceId, service->serviceName);
1308 rxi_FreeService(tservice);
1311 /* Different service, same port: re-use the socket
1312 * which is bound to the same port */
1313 socket = service->socket;
1316 if (socket == OSI_NULLSOCKET) {
1317 /* If we don't already have a socket (from another
1318 * service on same port) get a new one */
1319 socket = rxi_GetHostUDPSocket(htonl(INADDR_ANY), port);
1320 if (socket == OSI_NULLSOCKET) {
1322 rxi_FreeService(tservice);
1327 service->socket = socket;
1328 service->serviceHost = host;
1329 service->servicePort = port;
1330 service->serviceId = serviceId;
1331 service->serviceName = serviceName;
1332 service->nSecurityObjects = nSecurityObjects;
1333 service->securityObjects = securityObjects;
1334 service->minProcs = 0;
1335 service->maxProcs = 1;
1336 service->idleDeadTime = 60;
1337 service->connDeadTime = rx_connDeadTime;
1338 service->executeRequestProc = serviceProc;
1339 service->checkReach = 0;
1340 rx_services[i] = service; /* not visible until now */
1346 rxi_FreeService(tservice);
1347 (osi_Msg "rx_NewService: cannot support > %d services\n",
1353 rx_NewService(u_short port, u_short serviceId, char *serviceName,
1354 struct rx_securityClass **securityObjects, int nSecurityObjects,
1355 afs_int32(*serviceProc) (struct rx_call * acall))
1357 return rx_NewServiceHost(htonl(INADDR_ANY), port, serviceId, serviceName, securityObjects, nSecurityObjects, serviceProc);
1360 /* Generic request processing loop. This routine should be called
1361 * by the implementation dependent rx_ServerProc. If socketp is
1362 * non-null, it will be set to the file descriptor that this thread
1363 * is now listening on. If socketp is null, this routine will never
1366 rxi_ServerProc(int threadID, struct rx_call *newcall, osi_socket * socketp)
1368 register struct rx_call *call;
1369 register afs_int32 code;
1370 register struct rx_service *tservice = NULL;
1377 call = rx_GetCall(threadID, tservice, socketp);
1378 if (socketp && *socketp != OSI_NULLSOCKET) {
1379 /* We are now a listener thread */
1384 /* if server is restarting( typically smooth shutdown) then do not
1385 * allow any new calls.
1388 if (rx_tranquil && (call != NULL)) {
1392 MUTEX_ENTER(&call->lock);
1394 rxi_CallError(call, RX_RESTARTING);
1395 rxi_SendCallAbort(call, (struct rx_packet *)0, 0, 0);
1397 MUTEX_EXIT(&call->lock);
1401 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
1402 #ifdef RX_ENABLE_LOCKS
1404 #endif /* RX_ENABLE_LOCKS */
1405 afs_termState = AFSOP_STOP_AFS;
1406 afs_osi_Wakeup(&afs_termState);
1407 #ifdef RX_ENABLE_LOCKS
1409 #endif /* RX_ENABLE_LOCKS */
1414 tservice = call->conn->service;
1416 if (tservice->beforeProc)
1417 (*tservice->beforeProc) (call);
1419 code = call->conn->service->executeRequestProc(call);
1421 if (tservice->afterProc)
1422 (*tservice->afterProc) (call, code);
1424 rx_EndCall(call, code);
1425 MUTEX_ENTER(&rx_stats_mutex);
1427 MUTEX_EXIT(&rx_stats_mutex);
1433 rx_WakeupServerProcs(void)
1435 struct rx_serverQueueEntry *np, *tqp;
1439 MUTEX_ENTER(&rx_serverPool_lock);
1441 #ifdef RX_ENABLE_LOCKS
1442 if (rx_waitForPacket)
1443 CV_BROADCAST(&rx_waitForPacket->cv);
1444 #else /* RX_ENABLE_LOCKS */
1445 if (rx_waitForPacket)
1446 osi_rxWakeup(rx_waitForPacket);
1447 #endif /* RX_ENABLE_LOCKS */
1448 MUTEX_ENTER(&freeSQEList_lock);
1449 for (np = rx_FreeSQEList; np; np = tqp) {
1450 tqp = *(struct rx_serverQueueEntry **)np;
1451 #ifdef RX_ENABLE_LOCKS
1452 CV_BROADCAST(&np->cv);
1453 #else /* RX_ENABLE_LOCKS */
1455 #endif /* RX_ENABLE_LOCKS */
1457 MUTEX_EXIT(&freeSQEList_lock);
1458 for (queue_Scan(&rx_idleServerQueue, np, tqp, rx_serverQueueEntry)) {
1459 #ifdef RX_ENABLE_LOCKS
1460 CV_BROADCAST(&np->cv);
1461 #else /* RX_ENABLE_LOCKS */
1463 #endif /* RX_ENABLE_LOCKS */
1465 MUTEX_EXIT(&rx_serverPool_lock);
1470 * One thing that seems to happen is that all the server threads get
1471 * tied up on some empty or slow call, and then a whole bunch of calls
1472 * arrive at once, using up the packet pool, so now there are more
1473 * empty calls. The most critical resources here are server threads
1474 * and the free packet pool. The "doreclaim" code seems to help in
1475 * general. I think that eventually we arrive in this state: there
1476 * are lots of pending calls which do have all their packets present,
1477 * so they won't be reclaimed, are multi-packet calls, so they won't
1478 * be scheduled until later, and thus are tying up most of the free
1479 * packet pool for a very long time.
1481 * 1. schedule multi-packet calls if all the packets are present.
1482 * Probably CPU-bound operation, useful to return packets to pool.
1483 * Do what if there is a full window, but the last packet isn't here?
1484 * 3. preserve one thread which *only* runs "best" calls, otherwise
1485 * it sleeps and waits for that type of call.
1486 * 4. Don't necessarily reserve a whole window for each thread. In fact,
1487 * the current dataquota business is badly broken. The quota isn't adjusted
1488 * to reflect how many packets are presently queued for a running call.
1489 * So, when we schedule a queued call with a full window of packets queued
1490 * up for it, that *should* free up a window full of packets for other 2d-class
1491 * calls to be able to use from the packet pool. But it doesn't.
1493 * NB. Most of the time, this code doesn't run -- since idle server threads
1494 * sit on the idle server queue and are assigned by "...ReceivePacket" as soon
1495 * as a new call arrives.
1497 /* Sleep until a call arrives. Returns a pointer to the call, ready
1498 * for an rx_Read. */
1499 #ifdef RX_ENABLE_LOCKS
1501 rx_GetCall(int tno, struct rx_service *cur_service, osi_socket * socketp)
1503 struct rx_serverQueueEntry *sq;
1504 register struct rx_call *call = (struct rx_call *)0;
1505 struct rx_service *service = NULL;
1508 MUTEX_ENTER(&freeSQEList_lock);
1510 if ((sq = rx_FreeSQEList)) {
1511 rx_FreeSQEList = *(struct rx_serverQueueEntry **)sq;
1512 MUTEX_EXIT(&freeSQEList_lock);
1513 } else { /* otherwise allocate a new one and return that */
1514 MUTEX_EXIT(&freeSQEList_lock);
1515 sq = (struct rx_serverQueueEntry *)
1516 rxi_Alloc(sizeof(struct rx_serverQueueEntry));
1517 MUTEX_INIT(&sq->lock, "server Queue lock", MUTEX_DEFAULT, 0);
1518 CV_INIT(&sq->cv, "server Queue lock", CV_DEFAULT, 0);
1521 MUTEX_ENTER(&rx_serverPool_lock);
1522 if (cur_service != NULL) {
1523 ReturnToServerPool(cur_service);
1526 if (queue_IsNotEmpty(&rx_incomingCallQueue)) {
1527 register struct rx_call *tcall, *ncall, *choice2 = NULL;
1529 /* Scan for eligible incoming calls. A call is not eligible
1530 * if the maximum number of calls for its service type are
1531 * already executing */
1532 /* One thread will process calls FCFS (to prevent starvation),
1533 * while the other threads may run ahead looking for calls which
1534 * have all their input data available immediately. This helps
1535 * keep threads from blocking, waiting for data from the client. */
1536 for (queue_Scan(&rx_incomingCallQueue, tcall, ncall, rx_call)) {
1537 service = tcall->conn->service;
1538 if (!QuotaOK(service)) {
1541 if (tno == rxi_fcfs_thread_num
1542 || !tcall->queue_item_header.next) {
1543 /* If we're the fcfs thread , then we'll just use
1544 * this call. If we haven't been able to find an optimal
1545 * choice, and we're at the end of the list, then use a
1546 * 2d choice if one has been identified. Otherwise... */
1547 call = (choice2 ? choice2 : tcall);
1548 service = call->conn->service;
1549 } else if (!queue_IsEmpty(&tcall->rq)) {
1550 struct rx_packet *rp;
1551 rp = queue_First(&tcall->rq, rx_packet);
1552 if (rp->header.seq == 1) {
1554 || (rp->header.flags & RX_LAST_PACKET)) {
1556 } else if (rxi_2dchoice && !choice2
1557 && !(tcall->flags & RX_CALL_CLEARED)
1558 && (tcall->rprev > rxi_HardAckRate)) {
1567 ReturnToServerPool(service);
1574 MUTEX_EXIT(&rx_serverPool_lock);
1575 MUTEX_ENTER(&call->lock);
1577 if (call->flags & RX_CALL_WAIT_PROC) {
1578 call->flags &= ~RX_CALL_WAIT_PROC;
1579 MUTEX_ENTER(&rx_stats_mutex);
1581 MUTEX_EXIT(&rx_stats_mutex);
1584 if (call->state != RX_STATE_PRECALL || call->error) {
1585 MUTEX_EXIT(&call->lock);
1586 MUTEX_ENTER(&rx_serverPool_lock);
1587 ReturnToServerPool(service);
1592 if (queue_IsEmpty(&call->rq)
1593 || queue_First(&call->rq, rx_packet)->header.seq != 1)
1594 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
1596 CLEAR_CALL_QUEUE_LOCK(call);
1599 /* If there are no eligible incoming calls, add this process
1600 * to the idle server queue, to wait for one */
1604 *socketp = OSI_NULLSOCKET;
1606 sq->socketp = socketp;
1607 queue_Append(&rx_idleServerQueue, sq);
1608 #ifndef AFS_AIX41_ENV
1609 rx_waitForPacket = sq;
1611 rx_waitingForPacket = sq;
1612 #endif /* AFS_AIX41_ENV */
1614 CV_WAIT(&sq->cv, &rx_serverPool_lock);
1616 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
1617 MUTEX_EXIT(&rx_serverPool_lock);
1618 return (struct rx_call *)0;
1621 } while (!(call = sq->newcall)
1622 && !(socketp && *socketp != OSI_NULLSOCKET));
1623 MUTEX_EXIT(&rx_serverPool_lock);
1625 MUTEX_ENTER(&call->lock);
1631 MUTEX_ENTER(&freeSQEList_lock);
1632 *(struct rx_serverQueueEntry **)sq = rx_FreeSQEList;
1633 rx_FreeSQEList = sq;
1634 MUTEX_EXIT(&freeSQEList_lock);
1637 clock_GetTime(&call->startTime);
1638 call->state = RX_STATE_ACTIVE;
1639 call->mode = RX_MODE_RECEIVING;
1640 #ifdef RX_KERNEL_TRACE
1641 if (ICL_SETACTIVE(afs_iclSetp)) {
1642 int glockOwner = ISAFS_GLOCK();
1645 afs_Trace3(afs_iclSetp, CM_TRACE_WASHERE, ICL_TYPE_STRING,
1646 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
1653 rxi_calltrace(RX_CALL_START, call);
1654 dpf(("rx_GetCall(port=%d, service=%d) ==> call %x\n",
1655 call->conn->service->servicePort, call->conn->service->serviceId,
1658 CALL_HOLD(call, RX_CALL_REFCOUNT_BEGIN);
1659 MUTEX_EXIT(&call->lock);
1661 dpf(("rx_GetCall(socketp=0x%x, *socketp=0x%x)\n", socketp, *socketp));
1666 #else /* RX_ENABLE_LOCKS */
1668 rx_GetCall(int tno, struct rx_service *cur_service, osi_socket * socketp)
1670 struct rx_serverQueueEntry *sq;
1671 register struct rx_call *call = (struct rx_call *)0, *choice2;
1672 struct rx_service *service = NULL;
1676 MUTEX_ENTER(&freeSQEList_lock);
1678 if ((sq = rx_FreeSQEList)) {
1679 rx_FreeSQEList = *(struct rx_serverQueueEntry **)sq;
1680 MUTEX_EXIT(&freeSQEList_lock);
1681 } else { /* otherwise allocate a new one and return that */
1682 MUTEX_EXIT(&freeSQEList_lock);
1683 sq = (struct rx_serverQueueEntry *)
1684 rxi_Alloc(sizeof(struct rx_serverQueueEntry));
1685 MUTEX_INIT(&sq->lock, "server Queue lock", MUTEX_DEFAULT, 0);
1686 CV_INIT(&sq->cv, "server Queue lock", CV_DEFAULT, 0);
1688 MUTEX_ENTER(&sq->lock);
1690 if (cur_service != NULL) {
1691 cur_service->nRequestsRunning--;
1692 if (cur_service->nRequestsRunning < cur_service->minProcs)
1696 if (queue_IsNotEmpty(&rx_incomingCallQueue)) {
1697 register struct rx_call *tcall, *ncall;
1698 /* Scan for eligible incoming calls. A call is not eligible
1699 * if the maximum number of calls for its service type are
1700 * already executing */
1701 /* One thread will process calls FCFS (to prevent starvation),
1702 * while the other threads may run ahead looking for calls which
1703 * have all their input data available immediately. This helps
1704 * keep threads from blocking, waiting for data from the client. */
1705 choice2 = (struct rx_call *)0;
1706 for (queue_Scan(&rx_incomingCallQueue, tcall, ncall, rx_call)) {
1707 service = tcall->conn->service;
1708 if (QuotaOK(service)) {
1709 if (tno == rxi_fcfs_thread_num
1710 || !tcall->queue_item_header.next) {
1711 /* If we're the fcfs thread, then we'll just use
1712 * this call. If we haven't been able to find an optimal
1713 * choice, and we're at the end of the list, then use a
1714 * 2d choice if one has been identified. Otherwise... */
1715 call = (choice2 ? choice2 : tcall);
1716 service = call->conn->service;
1717 } else if (!queue_IsEmpty(&tcall->rq)) {
1718 struct rx_packet *rp;
1719 rp = queue_First(&tcall->rq, rx_packet);
1720 if (rp->header.seq == 1
1722 || (rp->header.flags & RX_LAST_PACKET))) {
1724 } else if (rxi_2dchoice && !choice2
1725 && !(tcall->flags & RX_CALL_CLEARED)
1726 && (tcall->rprev > rxi_HardAckRate)) {
1739 /* we can't schedule a call if there's no data!!! */
1740 /* send an ack if there's no data, if we're missing the
1741 * first packet, or we're missing something between first
1742 * and last -- there's a "hole" in the incoming data. */
1743 if (queue_IsEmpty(&call->rq)
1744 || queue_First(&call->rq, rx_packet)->header.seq != 1
1745 || call->rprev != queue_Last(&call->rq, rx_packet)->header.seq)
1746 rxi_SendAck(call, 0, 0, RX_ACK_DELAY, 0);
1748 call->flags &= (~RX_CALL_WAIT_PROC);
1749 service->nRequestsRunning++;
1750 /* just started call in minProcs pool, need fewer to maintain
1752 if (service->nRequestsRunning <= service->minProcs)
1756 /* MUTEX_EXIT(&call->lock); */
1758 /* If there are no eligible incoming calls, add this process
1759 * to the idle server queue, to wait for one */
1762 *socketp = OSI_NULLSOCKET;
1764 sq->socketp = socketp;
1765 queue_Append(&rx_idleServerQueue, sq);
1769 if (afs_termState == AFSOP_STOP_RXCALLBACK) {
1771 rxi_Free(sq, sizeof(struct rx_serverQueueEntry));
1772 return (struct rx_call *)0;
1775 } while (!(call = sq->newcall)
1776 && !(socketp && *socketp != OSI_NULLSOCKET));
1778 MUTEX_EXIT(&sq->lock);
1780 MUTEX_ENTER(&freeSQEList_lock);
1781 *(struct rx_serverQueueEntry **)sq = rx_FreeSQEList;
1782 rx_FreeSQEList = sq;
1783 MUTEX_EXIT(&freeSQEList_lock);
1786 clock_GetTime(&call->startTime);
1787 call->state = RX_STATE_ACTIVE;
1788 call->mode = RX_MODE_RECEIVING;
1789 #ifdef RX_KERNEL_TRACE
1790 if (ICL_SETACTIVE(afs_iclSetp)) {
1791 int glockOwner = ISAFS_GLOCK();
1794 afs_Trace3(afs_iclSetp, CM_TRACE_WASHERE, ICL_TYPE_STRING,
1795 __FILE__, ICL_TYPE_INT32, __LINE__, ICL_TYPE_POINTER,
1802 rxi_calltrace(RX_CALL_START, call);
1803 dpf(("rx_GetCall(port=%d, service=%d) ==> call %x\n",
1804 call->conn->service->servicePort, call->conn->service->serviceId,
1807 dpf(("rx_GetCall(socketp=0x%x, *socketp=0x%x)\n", socketp, *socketp));
1814 #endif /* RX_ENABLE_LOCKS */
1818 /* Establish a procedure to be called when a packet arrives for a
1819 * call. This routine will be called at most once after each call,
1820 * and will also be called if there is an error condition on the or
1821 * the call is complete. Used by multi rx to build a selection
1822 * function which determines which of several calls is likely to be a
1823 * good one to read from.
1824 * NOTE: the way this is currently implemented it is probably only a
1825 * good idea to (1) use it immediately after a newcall (clients only)
1826 * and (2) only use it once. Other uses currently void your warranty
1829 rx_SetArrivalProc(register struct rx_call *call,
1830 register void (*proc) (register struct rx_call * call,
1832 register int index),
1833 register VOID * handle, register int arg)
1835 call->arrivalProc = proc;
1836 call->arrivalProcHandle = handle;
1837 call->arrivalProcArg = arg;
1840 /* Call is finished (possibly prematurely). Return rc to the peer, if
1841 * appropriate, and return the final error code from the conversation
1845 rx_EndCall(register struct rx_call *call, afs_int32 rc)
1847 register struct rx_connection *conn = call->conn;
1848 register struct rx_service *service;
1854 dpf(("rx_EndCall(call %x rc %d error %d abortCode %d)\n", call, rc, call->error, call->abortCode));
1857 MUTEX_ENTER(&call->lock);
1859 if (rc == 0 && call->error == 0) {
1860 call->abortCode = 0;
1861 call->abortCount = 0;
1864 call->arrivalProc = (void (*)())0;
1865 if (rc && call->error == 0) {
1866 rxi_CallError(call, rc);
1867 /* Send an abort message to the peer if this error code has
1868 * only just been set. If it was set previously, assume the
1869 * peer has already been sent the error code or will request it
1871 rxi_SendCallAbort(call, (struct rx_packet *)0, 0, 0);
1873 if (conn->type == RX_SERVER_CONNECTION) {
1874 /* Make sure reply or at least dummy reply is sent */
1875 if (call->mode == RX_MODE_RECEIVING) {
1876 rxi_WriteProc(call, 0, 0);
1878 if (call->mode == RX_MODE_SENDING) {
1879 rxi_FlushWrite(call);
1881 service = conn->service;
1882 rxi_calltrace(RX_CALL_END, call);
1883 /* Call goes to hold state until reply packets are acknowledged */
1884 if (call->tfirst + call->nSoftAcked < call->tnext) {
1885 call->state = RX_STATE_HOLD;
1887 call->state = RX_STATE_DALLY;
1888 rxi_ClearTransmitQueue(call, 0);
1889 rxevent_Cancel(call->resendEvent, call, RX_CALL_REFCOUNT_RESEND);
1890 rxevent_Cancel(call->keepAliveEvent, call,
1891 RX_CALL_REFCOUNT_ALIVE);
1893 } else { /* Client connection */
1895 /* Make sure server receives input packets, in the case where
1896 * no reply arguments are expected */
1897 if ((call->mode == RX_MODE_SENDING)
1898 || (call->mode == RX_MODE_RECEIVING && call->rnext == 1)) {
1899 (void)rxi_ReadProc(call, &dummy, 1);
1902 /* If we had an outstanding delayed ack, be nice to the server
1903 * and force-send it now.
1905 if (call->delayedAckEvent) {
1906 rxevent_Cancel(call->delayedAckEvent, call,
1907 RX_CALL_REFCOUNT_DELAY);
1908 call->delayedAckEvent = NULL;
1909 rxi_SendDelayedAck(NULL, call, NULL);
1912 /* We need to release the call lock since it's lower than the
1913 * conn_call_lock and we don't want to hold the conn_call_lock
1914 * over the rx_ReadProc call. The conn_call_lock needs to be held
1915 * here for the case where rx_NewCall is perusing the calls on
1916 * the connection structure. We don't want to signal until
1917 * rx_NewCall is in a stable state. Otherwise, rx_NewCall may
1918 * have checked this call, found it active and by the time it
1919 * goes to sleep, will have missed the signal.
1921 * Do not clear the RX_CONN_MAKECALL_WAITING flag as long as
1922 * there are threads waiting to use the conn object.
1924 MUTEX_EXIT(&call->lock);
1925 MUTEX_ENTER(&conn->conn_call_lock);
1926 MUTEX_ENTER(&call->lock);
1927 MUTEX_ENTER(&conn->conn_data_lock);
1928 conn->flags |= RX_CONN_BUSY;
1929 if (conn->flags & RX_CONN_MAKECALL_WAITING) {
1930 if (conn->makeCallWaiters == 0)
1931 conn->flags &= (~RX_CONN_MAKECALL_WAITING);
1932 MUTEX_EXIT(&conn->conn_data_lock);
1933 #ifdef RX_ENABLE_LOCKS
1934 CV_BROADCAST(&conn->conn_call_cv);
1939 #ifdef RX_ENABLE_LOCKS
1941 MUTEX_EXIT(&conn->conn_data_lock);
1943 #endif /* RX_ENABLE_LOCKS */
1944 call->state = RX_STATE_DALLY;
1946 error = call->error;
1948 /* currentPacket, nLeft, and NFree must be zeroed here, because
1949 * ResetCall cannot: ResetCall may be called at splnet(), in the
1950 * kernel version, and may interrupt the macros rx_Read or
1951 * rx_Write, which run at normal priority for efficiency. */
1952 if (call->currentPacket) {
1953 queue_Prepend(&call->iovq, call->currentPacket);
1954 call->currentPacket = (struct rx_packet *)0;
1957 call->nLeft = call->nFree = call->curlen = 0;
1959 /* Free any packets from the last call to ReadvProc/WritevProc */
1960 rxi_FreePackets(0, &call->iovq);
1962 CALL_RELE(call, RX_CALL_REFCOUNT_BEGIN);
1963 MUTEX_EXIT(&call->lock);
1964 if (conn->type == RX_CLIENT_CONNECTION) {
1965 MUTEX_EXIT(&conn->conn_call_lock);
1966 conn->flags &= ~RX_CONN_BUSY;
1970 * Map errors to the local host's errno.h format.
1972 error = ntoh_syserr_conv(error);
1976 #if !defined(KERNEL)
1978 /* Call this routine when shutting down a server or client (especially
1979 * clients). This will allow Rx to gracefully garbage collect server
1980 * connections, and reduce the number of retries that a server might
1981 * make to a dead client.
1982 * This is not quite right, since some calls may still be ongoing and
1983 * we can't lock them to destroy them. */
1987 register struct rx_connection **conn_ptr, **conn_end;
1991 if (rxinit_status == 1) {
1993 return; /* Already shutdown. */
1995 rxi_DeleteCachedConnections();
1996 if (rx_connHashTable) {
1997 MUTEX_ENTER(&rx_connHashTable_lock);
1998 for (conn_ptr = &rx_connHashTable[0], conn_end =
1999 &rx_connHashTable[rx_hashTableSize]; conn_ptr < conn_end;
2001 struct rx_connection *conn, *next;
2002 for (conn = *conn_ptr; conn; conn = next) {
2004 if (conn->type == RX_CLIENT_CONNECTION) {
2005 /* MUTEX_ENTER(&conn->conn_data_lock); when used in kernel */
2007 /* MUTEX_EXIT(&conn->conn_data_lock); when used in kernel */
2008 #ifdef RX_ENABLE_LOCKS
2009 rxi_DestroyConnectionNoLock(conn);
2010 #else /* RX_ENABLE_LOCKS */
2011 rxi_DestroyConnection(conn);
2012 #endif /* RX_ENABLE_LOCKS */
2016 #ifdef RX_ENABLE_LOCKS
2017 while (rx_connCleanup_list) {
2018 struct rx_connection *conn;
2019 conn = rx_connCleanup_list;
2020 rx_connCleanup_list = rx_connCleanup_list->next;
2021 MUTEX_EXIT(&rx_connHashTable_lock);
2022 rxi_CleanupConnection(conn);
2023 MUTEX_ENTER(&rx_connHashTable_lock);
2025 MUTEX_EXIT(&rx_connHashTable_lock);
2026 #endif /* RX_ENABLE_LOCKS */
2031 afs_winsockCleanup();
2039 /* if we wakeup packet waiter too often, can get in loop with two
2040 AllocSendPackets each waking each other up (from ReclaimPacket calls) */
2042 rxi_PacketsUnWait(void)
2044 if (!rx_waitingForPackets) {
2048 if (rxi_OverQuota(RX_PACKET_CLASS_SEND)) {
2049 return; /* still over quota */
2052 rx_waitingForPackets = 0;
2053 #ifdef RX_ENABLE_LOCKS
2054 CV_BROADCAST(&rx_waitingForPackets_cv);
2056 osi_rxWakeup(&rx_waitingForPackets);
2062 /* ------------------Internal interfaces------------------------- */
2064 /* Return this process's service structure for the
2065 * specified socket and service */
2067 rxi_FindService(register osi_socket socket, register u_short serviceId)
2069 register struct rx_service **sp;
2070 for (sp = &rx_services[0]; *sp; sp++) {
2071 if ((*sp)->serviceId == serviceId && (*sp)->socket == socket)
2077 /* Allocate a call structure, for the indicated channel of the
2078 * supplied connection. The mode and state of the call must be set by
2079 * the caller. Returns the call with mutex locked. */
2081 rxi_NewCall(register struct rx_connection *conn, register int channel)
2083 register struct rx_call *call;
2084 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2085 register struct rx_call *cp; /* Call pointer temp */
2086 register struct rx_call *nxp; /* Next call pointer, for queue_Scan */
2087 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2089 dpf(("rxi_NewCall(conn %x, channel %d)\n", conn, channel));
2091 /* Grab an existing call structure, or allocate a new one.
2092 * Existing call structures are assumed to have been left reset by
2094 MUTEX_ENTER(&rx_freeCallQueue_lock);
2096 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2098 * EXCEPT that the TQ might not yet be cleared out.
2099 * Skip over those with in-use TQs.
2102 for (queue_Scan(&rx_freeCallQueue, cp, nxp, rx_call)) {
2103 if (!(cp->flags & RX_CALL_TQ_BUSY)) {
2109 #else /* AFS_GLOBAL_RXLOCK_KERNEL */
2110 if (queue_IsNotEmpty(&rx_freeCallQueue)) {
2111 call = queue_First(&rx_freeCallQueue, rx_call);
2112 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2114 MUTEX_ENTER(&rx_stats_mutex);
2115 rx_stats.nFreeCallStructs--;
2116 MUTEX_EXIT(&rx_stats_mutex);
2117 MUTEX_EXIT(&rx_freeCallQueue_lock);
2118 MUTEX_ENTER(&call->lock);
2119 CLEAR_CALL_QUEUE_LOCK(call);
2120 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2121 /* Now, if TQ wasn't cleared earlier, do it now. */
2122 if (call->flags & RX_CALL_TQ_CLEARME) {
2123 rxi_ClearTransmitQueue(call, 0);
2124 queue_Init(&call->tq);
2126 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2127 /* Bind the call to its connection structure */
2129 rxi_ResetCall(call, 1);
2131 call = (struct rx_call *)rxi_Alloc(sizeof(struct rx_call));
2133 MUTEX_EXIT(&rx_freeCallQueue_lock);
2134 MUTEX_INIT(&call->lock, "call lock", MUTEX_DEFAULT, NULL);
2135 MUTEX_ENTER(&call->lock);
2136 CV_INIT(&call->cv_twind, "call twind", CV_DEFAULT, 0);
2137 CV_INIT(&call->cv_rq, "call rq", CV_DEFAULT, 0);
2138 CV_INIT(&call->cv_tq, "call tq", CV_DEFAULT, 0);
2140 MUTEX_ENTER(&rx_stats_mutex);
2141 rx_stats.nCallStructs++;
2142 MUTEX_EXIT(&rx_stats_mutex);
2143 /* Initialize once-only items */
2144 queue_Init(&call->tq);
2145 queue_Init(&call->rq);
2146 queue_Init(&call->iovq);
2147 /* Bind the call to its connection structure (prereq for reset) */
2149 rxi_ResetCall(call, 1);
2151 call->channel = channel;
2152 call->callNumber = &conn->callNumber[channel];
2153 /* Note that the next expected call number is retained (in
2154 * conn->callNumber[i]), even if we reallocate the call structure
2156 conn->call[channel] = call;
2157 /* if the channel's never been used (== 0), we should start at 1, otherwise
2158 * the call number is valid from the last time this channel was used */
2159 if (*call->callNumber == 0)
2160 *call->callNumber = 1;
2165 /* A call has been inactive long enough that so we can throw away
2166 * state, including the call structure, which is placed on the call
2168 * Call is locked upon entry.
2169 * haveCTLock set if called from rxi_ReapConnections
2171 #ifdef RX_ENABLE_LOCKS
2173 rxi_FreeCall(register struct rx_call *call, int haveCTLock)
2174 #else /* RX_ENABLE_LOCKS */
2176 rxi_FreeCall(register struct rx_call *call)
2177 #endif /* RX_ENABLE_LOCKS */
2179 register int channel = call->channel;
2180 register struct rx_connection *conn = call->conn;
2183 if (call->state == RX_STATE_DALLY || call->state == RX_STATE_HOLD)
2184 (*call->callNumber)++;
2185 rxi_ResetCall(call, 0);
2186 call->conn->call[channel] = (struct rx_call *)0;
2188 MUTEX_ENTER(&rx_freeCallQueue_lock);
2189 SET_CALL_QUEUE_LOCK(call, &rx_freeCallQueue_lock);
2190 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2191 /* A call may be free even though its transmit queue is still in use.
2192 * Since we search the call list from head to tail, put busy calls at
2193 * the head of the list, and idle calls at the tail.
2195 if (call->flags & RX_CALL_TQ_BUSY)
2196 queue_Prepend(&rx_freeCallQueue, call);
2198 queue_Append(&rx_freeCallQueue, call);
2199 #else /* AFS_GLOBAL_RXLOCK_KERNEL */
2200 queue_Append(&rx_freeCallQueue, call);
2201 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2202 MUTEX_ENTER(&rx_stats_mutex);
2203 rx_stats.nFreeCallStructs++;
2204 MUTEX_EXIT(&rx_stats_mutex);
2206 MUTEX_EXIT(&rx_freeCallQueue_lock);
2208 /* Destroy the connection if it was previously slated for
2209 * destruction, i.e. the Rx client code previously called
2210 * rx_DestroyConnection (client connections), or
2211 * rxi_ReapConnections called the same routine (server
2212 * connections). Only do this, however, if there are no
2213 * outstanding calls. Note that for fine grain locking, there appears
2214 * to be a deadlock in that rxi_FreeCall has a call locked and
2215 * DestroyConnectionNoLock locks each call in the conn. But note a
2216 * few lines up where we have removed this call from the conn.
2217 * If someone else destroys a connection, they either have no
2218 * call lock held or are going through this section of code.
2220 if (conn->flags & RX_CONN_DESTROY_ME && !(conn->flags & RX_CONN_MAKECALL_WAITING)) {
2221 MUTEX_ENTER(&conn->conn_data_lock);
2223 MUTEX_EXIT(&conn->conn_data_lock);
2224 #ifdef RX_ENABLE_LOCKS
2226 rxi_DestroyConnectionNoLock(conn);
2228 rxi_DestroyConnection(conn);
2229 #else /* RX_ENABLE_LOCKS */
2230 rxi_DestroyConnection(conn);
2231 #endif /* RX_ENABLE_LOCKS */
2235 afs_int32 rxi_Alloccnt = 0, rxi_Allocsize = 0;
2237 rxi_Alloc(register size_t size)
2241 MUTEX_ENTER(&rx_stats_mutex);
2243 rxi_Allocsize += (afs_int32)size;
2244 MUTEX_EXIT(&rx_stats_mutex);
2246 p = (char *)osi_Alloc(size);
2249 osi_Panic("rxi_Alloc error");
2255 rxi_Free(void *addr, register size_t size)
2257 MUTEX_ENTER(&rx_stats_mutex);
2259 rxi_Allocsize -= (afs_int32)size;
2260 MUTEX_EXIT(&rx_stats_mutex);
2262 osi_Free(addr, size);
2265 /* Find the peer process represented by the supplied (host,port)
2266 * combination. If there is no appropriate active peer structure, a
2267 * new one will be allocated and initialized
2268 * The origPeer, if set, is a pointer to a peer structure on which the
2269 * refcount will be be decremented. This is used to replace the peer
2270 * structure hanging off a connection structure */
2272 rxi_FindPeer(register afs_uint32 host, register u_short port,
2273 struct rx_peer *origPeer, int create)
2275 register struct rx_peer *pp;
2277 hashIndex = PEER_HASH(host, port);
2278 MUTEX_ENTER(&rx_peerHashTable_lock);
2279 for (pp = rx_peerHashTable[hashIndex]; pp; pp = pp->next) {
2280 if ((pp->host == host) && (pp->port == port))
2285 pp = rxi_AllocPeer(); /* This bzero's *pp */
2286 pp->host = host; /* set here or in InitPeerParams is zero */
2288 MUTEX_INIT(&pp->peer_lock, "peer_lock", MUTEX_DEFAULT, 0);
2289 queue_Init(&pp->congestionQueue);
2290 queue_Init(&pp->rpcStats);
2291 pp->next = rx_peerHashTable[hashIndex];
2292 rx_peerHashTable[hashIndex] = pp;
2293 rxi_InitPeerParams(pp);
2294 MUTEX_ENTER(&rx_stats_mutex);
2295 rx_stats.nPeerStructs++;
2296 MUTEX_EXIT(&rx_stats_mutex);
2303 origPeer->refCount--;
2304 MUTEX_EXIT(&rx_peerHashTable_lock);
2309 /* Find the connection at (host, port) started at epoch, and with the
2310 * given connection id. Creates the server connection if necessary.
2311 * The type specifies whether a client connection or a server
2312 * connection is desired. In both cases, (host, port) specify the
2313 * peer's (host, pair) pair. Client connections are not made
2314 * automatically by this routine. The parameter socket gives the
2315 * socket descriptor on which the packet was received. This is used,
2316 * in the case of server connections, to check that *new* connections
2317 * come via a valid (port, serviceId). Finally, the securityIndex
2318 * parameter must match the existing index for the connection. If a
2319 * server connection is created, it will be created using the supplied
2320 * index, if the index is valid for this service */
2321 struct rx_connection *
2322 rxi_FindConnection(osi_socket socket, register afs_int32 host,
2323 register u_short port, u_short serviceId, afs_uint32 cid,
2324 afs_uint32 epoch, int type, u_int securityIndex)
2326 int hashindex, flag;
2327 register struct rx_connection *conn;
2328 hashindex = CONN_HASH(host, port, cid, epoch, type);
2329 MUTEX_ENTER(&rx_connHashTable_lock);
2330 rxLastConn ? (conn = rxLastConn, flag = 0) : (conn =
2331 rx_connHashTable[hashindex],
2334 if ((conn->type == type) && ((cid & RX_CIDMASK) == conn->cid)
2335 && (epoch == conn->epoch)) {
2336 register struct rx_peer *pp = conn->peer;
2337 if (securityIndex != conn->securityIndex) {
2338 /* this isn't supposed to happen, but someone could forge a packet
2339 * like this, and there seems to be some CM bug that makes this
2340 * happen from time to time -- in which case, the fileserver
2342 MUTEX_EXIT(&rx_connHashTable_lock);
2343 return (struct rx_connection *)0;
2345 if (pp->host == host && pp->port == port)
2347 if (type == RX_CLIENT_CONNECTION && pp->port == port)
2349 /* So what happens when it's a callback connection? */
2350 if ( /*type == RX_CLIENT_CONNECTION && */
2351 (conn->epoch & 0x80000000))
2355 /* the connection rxLastConn that was used the last time is not the
2356 ** one we are looking for now. Hence, start searching in the hash */
2358 conn = rx_connHashTable[hashindex];
2363 struct rx_service *service;
2364 if (type == RX_CLIENT_CONNECTION) {
2365 MUTEX_EXIT(&rx_connHashTable_lock);
2366 return (struct rx_connection *)0;
2368 service = rxi_FindService(socket, serviceId);
2369 if (!service || (securityIndex >= service->nSecurityObjects)
2370 || (service->securityObjects[securityIndex] == 0)) {
2371 MUTEX_EXIT(&rx_connHashTable_lock);
2372 return (struct rx_connection *)0;
2374 conn = rxi_AllocConnection(); /* This bzero's the connection */
2375 MUTEX_INIT(&conn->conn_call_lock, "conn call lock", MUTEX_DEFAULT, 0);
2376 MUTEX_INIT(&conn->conn_data_lock, "conn data lock", MUTEX_DEFAULT, 0);
2377 CV_INIT(&conn->conn_call_cv, "conn call cv", CV_DEFAULT, 0);
2378 conn->next = rx_connHashTable[hashindex];
2379 rx_connHashTable[hashindex] = conn;
2380 conn->peer = rxi_FindPeer(host, port, 0, 1);
2381 conn->type = RX_SERVER_CONNECTION;
2382 conn->lastSendTime = clock_Sec(); /* don't GC immediately */
2383 conn->epoch = epoch;
2384 conn->cid = cid & RX_CIDMASK;
2385 /* conn->serial = conn->lastSerial = 0; */
2386 /* conn->timeout = 0; */
2387 conn->ackRate = RX_FAST_ACK_RATE;
2388 conn->service = service;
2389 conn->serviceId = serviceId;
2390 conn->securityIndex = securityIndex;
2391 conn->securityObject = service->securityObjects[securityIndex];
2392 conn->nSpecific = 0;
2393 conn->specific = NULL;
2394 rx_SetConnDeadTime(conn, service->connDeadTime);
2395 rx_SetConnIdleDeadTime(conn, service->idleDeadTime);
2396 /* Notify security object of the new connection */
2397 RXS_NewConnection(conn->securityObject, conn);
2398 /* XXXX Connection timeout? */
2399 if (service->newConnProc)
2400 (*service->newConnProc) (conn);
2401 MUTEX_ENTER(&rx_stats_mutex);
2402 rx_stats.nServerConns++;
2403 MUTEX_EXIT(&rx_stats_mutex);
2406 MUTEX_ENTER(&conn->conn_data_lock);
2408 MUTEX_EXIT(&conn->conn_data_lock);
2410 rxLastConn = conn; /* store this connection as the last conn used */
2411 MUTEX_EXIT(&rx_connHashTable_lock);
2415 /* There are two packet tracing routines available for testing and monitoring
2416 * Rx. One is called just after every packet is received and the other is
2417 * called just before every packet is sent. Received packets, have had their
2418 * headers decoded, and packets to be sent have not yet had their headers
2419 * encoded. Both take two parameters: a pointer to the packet and a sockaddr
2420 * containing the network address. Both can be modified. The return value, if
2421 * non-zero, indicates that the packet should be dropped. */
2423 int (*rx_justReceived) () = 0;
2424 int (*rx_almostSent) () = 0;
2426 /* A packet has been received off the interface. Np is the packet, socket is
2427 * the socket number it was received from (useful in determining which service
2428 * this packet corresponds to), and (host, port) reflect the host,port of the
2429 * sender. This call returns the packet to the caller if it is finished with
2430 * it, rather than de-allocating it, just as a small performance hack */
2433 rxi_ReceivePacket(register struct rx_packet *np, osi_socket socket,
2434 afs_uint32 host, u_short port, int *tnop,
2435 struct rx_call **newcallp)
2437 register struct rx_call *call;
2438 register struct rx_connection *conn;
2440 afs_uint32 currentCallNumber;
2446 struct rx_packet *tnp;
2449 /* We don't print out the packet until now because (1) the time may not be
2450 * accurate enough until now in the lwp implementation (rx_Listener only gets
2451 * the time after the packet is read) and (2) from a protocol point of view,
2452 * this is the first time the packet has been seen */
2453 packetType = (np->header.type > 0 && np->header.type < RX_N_PACKET_TYPES)
2454 ? rx_packetTypes[np->header.type - 1] : "*UNKNOWN*";
2455 dpf(("R %d %s: %x.%d.%d.%d.%d.%d.%d flags %d, packet %x",
2456 np->header.serial, packetType, ntohl(host), ntohs(port), np->header.serviceId,
2457 np->header.epoch, np->header.cid, np->header.callNumber,
2458 np->header.seq, np->header.flags, np));
2461 if (np->header.type == RX_PACKET_TYPE_VERSION) {
2462 return rxi_ReceiveVersionPacket(np, socket, host, port, 1);
2465 if (np->header.type == RX_PACKET_TYPE_DEBUG) {
2466 return rxi_ReceiveDebugPacket(np, socket, host, port, 1);
2469 /* If an input tracer function is defined, call it with the packet and
2470 * network address. Note this function may modify its arguments. */
2471 if (rx_justReceived) {
2472 struct sockaddr_in addr;
2474 addr.sin_family = AF_INET;
2475 addr.sin_port = port;
2476 addr.sin_addr.s_addr = host;
2477 #ifdef STRUCT_SOCKADDR_HAS_SA_LEN
2478 addr.sin_len = sizeof(addr);
2479 #endif /* AFS_OSF_ENV */
2480 drop = (*rx_justReceived) (np, &addr);
2481 /* drop packet if return value is non-zero */
2484 port = addr.sin_port; /* in case fcn changed addr */
2485 host = addr.sin_addr.s_addr;
2489 /* If packet was not sent by the client, then *we* must be the client */
2490 type = ((np->header.flags & RX_CLIENT_INITIATED) != RX_CLIENT_INITIATED)
2491 ? RX_CLIENT_CONNECTION : RX_SERVER_CONNECTION;
2493 /* Find the connection (or fabricate one, if we're the server & if
2494 * necessary) associated with this packet */
2496 rxi_FindConnection(socket, host, port, np->header.serviceId,
2497 np->header.cid, np->header.epoch, type,
2498 np->header.securityIndex);
2501 /* If no connection found or fabricated, just ignore the packet.
2502 * (An argument could be made for sending an abort packet for
2507 MUTEX_ENTER(&conn->conn_data_lock);
2508 if (conn->maxSerial < np->header.serial)
2509 conn->maxSerial = np->header.serial;
2510 MUTEX_EXIT(&conn->conn_data_lock);
2512 /* If the connection is in an error state, send an abort packet and ignore
2513 * the incoming packet */
2515 /* Don't respond to an abort packet--we don't want loops! */
2516 MUTEX_ENTER(&conn->conn_data_lock);
2517 if (np->header.type != RX_PACKET_TYPE_ABORT)
2518 np = rxi_SendConnectionAbort(conn, np, 1, 0);
2520 MUTEX_EXIT(&conn->conn_data_lock);
2524 /* Check for connection-only requests (i.e. not call specific). */
2525 if (np->header.callNumber == 0) {
2526 switch (np->header.type) {
2527 case RX_PACKET_TYPE_ABORT: {
2528 /* What if the supplied error is zero? */
2529 afs_int32 errcode = ntohl(rx_GetInt32(np, 0));
2530 dpf(("rxi_ReceivePacket ABORT rx_GetInt32 = %d", errcode));
2531 rxi_ConnectionError(conn, errcode);
2532 MUTEX_ENTER(&conn->conn_data_lock);
2534 MUTEX_EXIT(&conn->conn_data_lock);
2537 case RX_PACKET_TYPE_CHALLENGE:
2538 tnp = rxi_ReceiveChallengePacket(conn, np, 1);
2539 MUTEX_ENTER(&conn->conn_data_lock);
2541 MUTEX_EXIT(&conn->conn_data_lock);
2543 case RX_PACKET_TYPE_RESPONSE:
2544 tnp = rxi_ReceiveResponsePacket(conn, np, 1);
2545 MUTEX_ENTER(&conn->conn_data_lock);
2547 MUTEX_EXIT(&conn->conn_data_lock);
2549 case RX_PACKET_TYPE_PARAMS:
2550 case RX_PACKET_TYPE_PARAMS + 1:
2551 case RX_PACKET_TYPE_PARAMS + 2:
2552 /* ignore these packet types for now */
2553 MUTEX_ENTER(&conn->conn_data_lock);
2555 MUTEX_EXIT(&conn->conn_data_lock);
2560 /* Should not reach here, unless the peer is broken: send an
2562 rxi_ConnectionError(conn, RX_PROTOCOL_ERROR);
2563 MUTEX_ENTER(&conn->conn_data_lock);
2564 tnp = rxi_SendConnectionAbort(conn, np, 1, 0);
2566 MUTEX_EXIT(&conn->conn_data_lock);
2571 channel = np->header.cid & RX_CHANNELMASK;
2572 call = conn->call[channel];
2573 #ifdef RX_ENABLE_LOCKS
2575 MUTEX_ENTER(&call->lock);
2576 /* Test to see if call struct is still attached to conn. */
2577 if (call != conn->call[channel]) {
2579 MUTEX_EXIT(&call->lock);
2580 if (type == RX_SERVER_CONNECTION) {
2581 call = conn->call[channel];
2582 /* If we started with no call attached and there is one now,
2583 * another thread is also running this routine and has gotten
2584 * the connection channel. We should drop this packet in the tests
2585 * below. If there was a call on this connection and it's now
2586 * gone, then we'll be making a new call below.
2587 * If there was previously a call and it's now different then
2588 * the old call was freed and another thread running this routine
2589 * has created a call on this channel. One of these two threads
2590 * has a packet for the old call and the code below handles those
2594 MUTEX_ENTER(&call->lock);
2596 /* This packet can't be for this call. If the new call address is
2597 * 0 then no call is running on this channel. If there is a call
2598 * then, since this is a client connection we're getting data for
2599 * it must be for the previous call.
2601 MUTEX_ENTER(&rx_stats_mutex);
2602 rx_stats.spuriousPacketsRead++;
2603 MUTEX_EXIT(&rx_stats_mutex);
2604 MUTEX_ENTER(&conn->conn_data_lock);
2606 MUTEX_EXIT(&conn->conn_data_lock);
2611 currentCallNumber = conn->callNumber[channel];
2613 if (type == RX_SERVER_CONNECTION) { /* We're the server */
2614 if (np->header.callNumber < currentCallNumber) {
2615 MUTEX_ENTER(&rx_stats_mutex);
2616 rx_stats.spuriousPacketsRead++;
2617 MUTEX_EXIT(&rx_stats_mutex);
2618 #ifdef RX_ENABLE_LOCKS
2620 MUTEX_EXIT(&call->lock);
2622 MUTEX_ENTER(&conn->conn_data_lock);
2624 MUTEX_EXIT(&conn->conn_data_lock);
2628 MUTEX_ENTER(&conn->conn_call_lock);
2629 call = rxi_NewCall(conn, channel);
2630 MUTEX_EXIT(&conn->conn_call_lock);
2631 *call->callNumber = np->header.callNumber;
2632 if (np->header.callNumber == 0)
2633 dpf(("RecPacket call 0 %d %s: %x.%u.%u.%u.%u.%u.%u flags %d, packet %lx resend %d.%0.3d len %d", np->header.serial, rx_packetTypes[np->header.type - 1], ntohl(conn->peer->host), ntohs(conn->peer->port), np->header.serial, np->header.epoch, np->header.cid, np->header.callNumber, np->header.seq, np->header.flags, (unsigned long)np, np->retryTime.sec, np->retryTime.usec / 1000, np->length));
2635 call->state = RX_STATE_PRECALL;
2636 clock_GetTime(&call->queueTime);
2637 hzero(call->bytesSent);
2638 hzero(call->bytesRcvd);
2640 * If the number of queued calls exceeds the overload
2641 * threshold then abort this call.
2643 if ((rx_BusyThreshold > 0) && (rx_nWaiting > rx_BusyThreshold)) {
2644 struct rx_packet *tp;
2646 rxi_CallError(call, rx_BusyError);
2647 tp = rxi_SendCallAbort(call, np, 1, 0);
2648 MUTEX_EXIT(&call->lock);
2649 MUTEX_ENTER(&conn->conn_data_lock);
2651 MUTEX_EXIT(&conn->conn_data_lock);
2652 MUTEX_ENTER(&rx_stats_mutex);
2654 MUTEX_EXIT(&rx_stats_mutex);
2657 rxi_KeepAliveOn(call);
2658 } else if (np->header.callNumber != currentCallNumber) {
2659 /* Wait until the transmit queue is idle before deciding
2660 * whether to reset the current call. Chances are that the
2661 * call will be in ether DALLY or HOLD state once the TQ_BUSY
2664 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2665 while ((call->state == RX_STATE_ACTIVE)
2666 && (call->flags & RX_CALL_TQ_BUSY)) {
2667 call->flags |= RX_CALL_TQ_WAIT;
2669 #ifdef RX_ENABLE_LOCKS
2670 osirx_AssertMine(&call->lock, "rxi_Start lock3");
2671 CV_WAIT(&call->cv_tq, &call->lock);
2672 #else /* RX_ENABLE_LOCKS */
2673 osi_rxSleep(&call->tq);
2674 #endif /* RX_ENABLE_LOCKS */
2676 if (call->tqWaiters == 0)
2677 call->flags &= ~RX_CALL_TQ_WAIT;
2679 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2680 /* If the new call cannot be taken right now send a busy and set
2681 * the error condition in this call, so that it terminates as
2682 * quickly as possible */
2683 if (call->state == RX_STATE_ACTIVE) {
2684 struct rx_packet *tp;
2686 rxi_CallError(call, RX_CALL_DEAD);
2687 tp = rxi_SendSpecial(call, conn, np, RX_PACKET_TYPE_BUSY,
2689 MUTEX_EXIT(&call->lock);
2690 MUTEX_ENTER(&conn->conn_data_lock);
2692 MUTEX_EXIT(&conn->conn_data_lock);
2695 rxi_ResetCall(call, 0);
2696 *call->callNumber = np->header.callNumber;
2697 if (np->header.callNumber == 0)
2698 dpf(("RecPacket call 0 %d %s: %x.%u.%u.%u.%u.%u.%u flags %d, packet %lx resend %d.%0.3d len %d", np->header.serial, rx_packetTypes[np->header.type - 1], ntohl(conn->peer->host), ntohs(conn->peer->port), np->header.serial, np->header.epoch, np->header.cid, np->header.callNumber, np->header.seq, np->header.flags, (unsigned long)np, np->retryTime.sec, np->retryTime.usec / 1000, np->length));
2700 call->state = RX_STATE_PRECALL;
2701 clock_GetTime(&call->queueTime);
2702 hzero(call->bytesSent);
2703 hzero(call->bytesRcvd);
2705 * If the number of queued calls exceeds the overload
2706 * threshold then abort this call.
2708 if ((rx_BusyThreshold > 0) && (rx_nWaiting > rx_BusyThreshold)) {
2709 struct rx_packet *tp;
2711 rxi_CallError(call, rx_BusyError);
2712 tp = rxi_SendCallAbort(call, np, 1, 0);
2713 MUTEX_EXIT(&call->lock);
2714 MUTEX_ENTER(&conn->conn_data_lock);
2716 MUTEX_EXIT(&conn->conn_data_lock);
2717 MUTEX_ENTER(&rx_stats_mutex);
2719 MUTEX_EXIT(&rx_stats_mutex);
2722 rxi_KeepAliveOn(call);
2724 /* Continuing call; do nothing here. */
2726 } else { /* we're the client */
2727 /* Ignore all incoming acknowledgements for calls in DALLY state */
2728 if (call && (call->state == RX_STATE_DALLY)
2729 && (np->header.type == RX_PACKET_TYPE_ACK)) {
2730 MUTEX_ENTER(&rx_stats_mutex);
2731 rx_stats.ignorePacketDally++;
2732 MUTEX_EXIT(&rx_stats_mutex);
2733 #ifdef RX_ENABLE_LOCKS
2735 MUTEX_EXIT(&call->lock);
2738 MUTEX_ENTER(&conn->conn_data_lock);
2740 MUTEX_EXIT(&conn->conn_data_lock);
2744 /* Ignore anything that's not relevant to the current call. If there
2745 * isn't a current call, then no packet is relevant. */
2746 if (!call || (np->header.callNumber != currentCallNumber)) {
2747 MUTEX_ENTER(&rx_stats_mutex);
2748 rx_stats.spuriousPacketsRead++;
2749 MUTEX_EXIT(&rx_stats_mutex);
2750 #ifdef RX_ENABLE_LOCKS
2752 MUTEX_EXIT(&call->lock);
2755 MUTEX_ENTER(&conn->conn_data_lock);
2757 MUTEX_EXIT(&conn->conn_data_lock);
2760 /* If the service security object index stamped in the packet does not
2761 * match the connection's security index, ignore the packet */
2762 if (np->header.securityIndex != conn->securityIndex) {
2763 #ifdef RX_ENABLE_LOCKS
2764 MUTEX_EXIT(&call->lock);
2766 MUTEX_ENTER(&conn->conn_data_lock);
2768 MUTEX_EXIT(&conn->conn_data_lock);
2772 /* If we're receiving the response, then all transmit packets are
2773 * implicitly acknowledged. Get rid of them. */
2774 if (np->header.type == RX_PACKET_TYPE_DATA) {
2775 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2776 /* XXX Hack. Because we must release the global rx lock when
2777 * sending packets (osi_NetSend) we drop all acks while we're
2778 * traversing the tq in rxi_Start sending packets out because
2779 * packets may move to the freePacketQueue as result of being here!
2780 * So we drop these packets until we're safely out of the
2781 * traversing. Really ugly!
2782 * For fine grain RX locking, we set the acked field in the
2783 * packets and let rxi_Start remove them from the transmit queue.
2785 if (call->flags & RX_CALL_TQ_BUSY) {
2786 #ifdef RX_ENABLE_LOCKS
2787 rxi_SetAcksInTransmitQueue(call);
2790 return np; /* xmitting; drop packet */
2793 rxi_ClearTransmitQueue(call, 0);
2795 #else /* AFS_GLOBAL_RXLOCK_KERNEL */
2796 rxi_ClearTransmitQueue(call, 0);
2797 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2799 if (np->header.type == RX_PACKET_TYPE_ACK) {
2800 /* now check to see if this is an ack packet acknowledging that the
2801 * server actually *lost* some hard-acked data. If this happens we
2802 * ignore this packet, as it may indicate that the server restarted in
2803 * the middle of a call. It is also possible that this is an old ack
2804 * packet. We don't abort the connection in this case, because this
2805 * *might* just be an old ack packet. The right way to detect a server
2806 * restart in the midst of a call is to notice that the server epoch
2808 /* XXX I'm not sure this is exactly right, since tfirst **IS**
2809 * XXX unacknowledged. I think that this is off-by-one, but
2810 * XXX I don't dare change it just yet, since it will
2811 * XXX interact badly with the server-restart detection
2812 * XXX code in receiveackpacket. */
2813 if (ntohl(rx_GetInt32(np, FIRSTACKOFFSET)) < call->tfirst) {
2814 MUTEX_ENTER(&rx_stats_mutex);
2815 rx_stats.spuriousPacketsRead++;
2816 MUTEX_EXIT(&rx_stats_mutex);
2817 MUTEX_EXIT(&call->lock);
2818 MUTEX_ENTER(&conn->conn_data_lock);
2820 MUTEX_EXIT(&conn->conn_data_lock);
2824 } /* else not a data packet */
2827 osirx_AssertMine(&call->lock, "rxi_ReceivePacket middle");
2828 /* Set remote user defined status from packet */
2829 call->remoteStatus = np->header.userStatus;
2831 /* Note the gap between the expected next packet and the actual
2832 * packet that arrived, when the new packet has a smaller serial number
2833 * than expected. Rioses frequently reorder packets all by themselves,
2834 * so this will be quite important with very large window sizes.
2835 * Skew is checked against 0 here to avoid any dependence on the type of
2836 * inPacketSkew (which may be unsigned). In C, -1 > (unsigned) 0 is always
2838 * The inPacketSkew should be a smoothed running value, not just a maximum. MTUXXX
2839 * see CalculateRoundTripTime for an example of how to keep smoothed values.
2840 * I think using a beta of 1/8 is probably appropriate. 93.04.21
2842 MUTEX_ENTER(&conn->conn_data_lock);
2843 skew = conn->lastSerial - np->header.serial;
2844 conn->lastSerial = np->header.serial;
2845 MUTEX_EXIT(&conn->conn_data_lock);
2847 register struct rx_peer *peer;
2849 if (skew > peer->inPacketSkew) {
2850 dpf(("*** In skew changed from %d to %d\n", peer->inPacketSkew,
2852 peer->inPacketSkew = skew;
2856 /* Now do packet type-specific processing */
2857 switch (np->header.type) {
2858 case RX_PACKET_TYPE_DATA:
2859 np = rxi_ReceiveDataPacket(call, np, 1, socket, host, port, tnop,
2862 case RX_PACKET_TYPE_ACK:
2863 /* Respond immediately to ack packets requesting acknowledgement
2865 if (np->header.flags & RX_REQUEST_ACK) {
2867 (void)rxi_SendCallAbort(call, 0, 1, 0);
2869 (void)rxi_SendAck(call, 0, np->header.serial,
2870 RX_ACK_PING_RESPONSE, 1);
2872 np = rxi_ReceiveAckPacket(call, np, 1);
2874 case RX_PACKET_TYPE_ABORT: {
2875 /* An abort packet: reset the call, passing the error up to the user. */
2876 /* What if error is zero? */
2877 /* What if the error is -1? the application will treat it as a timeout. */
2878 afs_int32 errdata = ntohl(*(afs_int32 *) rx_DataOf(np));
2879 dpf(("rxi_ReceivePacket ABORT rx_DataOf = %d", errdata));
2880 rxi_CallError(call, errdata);
2881 MUTEX_EXIT(&call->lock);
2882 MUTEX_ENTER(&conn->conn_data_lock);
2884 MUTEX_EXIT(&conn->conn_data_lock);
2885 return np; /* xmitting; drop packet */
2887 case RX_PACKET_TYPE_BUSY:
2890 case RX_PACKET_TYPE_ACKALL:
2891 /* All packets acknowledged, so we can drop all packets previously
2892 * readied for sending */
2893 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
2894 /* XXX Hack. We because we can't release the global rx lock when
2895 * sending packets (osi_NetSend) we drop all ack pkts while we're
2896 * traversing the tq in rxi_Start sending packets out because
2897 * packets may move to the freePacketQueue as result of being
2898 * here! So we drop these packets until we're safely out of the
2899 * traversing. Really ugly!
2900 * For fine grain RX locking, we set the acked field in the packets
2901 * and let rxi_Start remove the packets from the transmit queue.
2903 if (call->flags & RX_CALL_TQ_BUSY) {
2904 #ifdef RX_ENABLE_LOCKS
2905 rxi_SetAcksInTransmitQueue(call);
2907 #else /* RX_ENABLE_LOCKS */
2908 MUTEX_EXIT(&call->lock);
2909 MUTEX_ENTER(&conn->conn_data_lock);
2911 MUTEX_EXIT(&conn->conn_data_lock);
2912 return np; /* xmitting; drop packet */
2913 #endif /* RX_ENABLE_LOCKS */
2915 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
2916 rxi_ClearTransmitQueue(call, 0);
2919 /* Should not reach here, unless the peer is broken: send an abort
2921 rxi_CallError(call, RX_PROTOCOL_ERROR);
2922 np = rxi_SendCallAbort(call, np, 1, 0);
2925 /* Note when this last legitimate packet was received, for keep-alive
2926 * processing. Note, we delay getting the time until now in the hope that
2927 * the packet will be delivered to the user before any get time is required
2928 * (if not, then the time won't actually be re-evaluated here). */
2929 call->lastReceiveTime = clock_Sec();
2930 MUTEX_EXIT(&call->lock);
2931 MUTEX_ENTER(&conn->conn_data_lock);
2933 MUTEX_EXIT(&conn->conn_data_lock);
2937 /* return true if this is an "interesting" connection from the point of view
2938 of someone trying to debug the system */
2940 rxi_IsConnInteresting(struct rx_connection *aconn)
2943 register struct rx_call *tcall;
2945 if (aconn->flags & (RX_CONN_MAKECALL_WAITING | RX_CONN_DESTROY_ME))
2947 for (i = 0; i < RX_MAXCALLS; i++) {
2948 tcall = aconn->call[i];
2950 if ((tcall->state == RX_STATE_PRECALL)
2951 || (tcall->state == RX_STATE_ACTIVE))
2953 if ((tcall->mode == RX_MODE_SENDING)
2954 || (tcall->mode == RX_MODE_RECEIVING))
2962 /* if this is one of the last few packets AND it wouldn't be used by the
2963 receiving call to immediately satisfy a read request, then drop it on
2964 the floor, since accepting it might prevent a lock-holding thread from
2965 making progress in its reading. If a call has been cleared while in
2966 the precall state then ignore all subsequent packets until the call
2967 is assigned to a thread. */
2970 TooLow(struct rx_packet *ap, struct rx_call *acall)
2973 MUTEX_ENTER(&rx_stats_mutex);
2974 if (((ap->header.seq != 1) && (acall->flags & RX_CALL_CLEARED)
2975 && (acall->state == RX_STATE_PRECALL))
2976 || ((rx_nFreePackets < rxi_dataQuota + 2)
2977 && !((ap->header.seq < acall->rnext + rx_initSendWindow)
2978 && (acall->flags & RX_CALL_READER_WAIT)))) {
2981 MUTEX_EXIT(&rx_stats_mutex);
2987 rxi_CheckReachEvent(struct rxevent *event, struct rx_connection *conn,
2988 struct rx_call *acall)
2990 struct rx_call *call = acall;
2994 MUTEX_ENTER(&conn->conn_data_lock);
2995 conn->checkReachEvent = NULL;
2996 waiting = conn->flags & RX_CONN_ATTACHWAIT;
2999 MUTEX_EXIT(&conn->conn_data_lock);
3003 MUTEX_ENTER(&conn->conn_call_lock);
3004 MUTEX_ENTER(&conn->conn_data_lock);
3005 for (i = 0; i < RX_MAXCALLS; i++) {
3006 struct rx_call *tc = conn->call[i];
3007 if (tc && tc->state == RX_STATE_PRECALL) {
3013 /* Indicate that rxi_CheckReachEvent is no longer running by
3014 * clearing the flag. Must be atomic under conn_data_lock to
3015 * avoid a new call slipping by: rxi_CheckConnReach holds
3016 * conn_data_lock while checking RX_CONN_ATTACHWAIT.
3018 conn->flags &= ~RX_CONN_ATTACHWAIT;
3019 MUTEX_EXIT(&conn->conn_data_lock);
3020 MUTEX_EXIT(&conn->conn_call_lock);
3025 MUTEX_ENTER(&call->lock);
3026 rxi_SendAck(call, NULL, 0, RX_ACK_PING, 0);
3028 MUTEX_EXIT(&call->lock);
3030 clock_GetTime(&when);
3031 when.sec += RX_CHECKREACH_TIMEOUT;
3032 MUTEX_ENTER(&conn->conn_data_lock);
3033 if (!conn->checkReachEvent) {
3035 conn->checkReachEvent =
3036 rxevent_Post(&when, rxi_CheckReachEvent, conn, NULL);
3038 MUTEX_EXIT(&conn->conn_data_lock);
3044 rxi_CheckConnReach(struct rx_connection *conn, struct rx_call *call)
3046 struct rx_service *service = conn->service;
3047 struct rx_peer *peer = conn->peer;
3048 afs_uint32 now, lastReach;
3050 if (service->checkReach == 0)
3054 MUTEX_ENTER(&peer->peer_lock);
3055 lastReach = peer->lastReachTime;
3056 MUTEX_EXIT(&peer->peer_lock);
3057 if (now - lastReach < RX_CHECKREACH_TTL)
3060 MUTEX_ENTER(&conn->conn_data_lock);
3061 if (conn->flags & RX_CONN_ATTACHWAIT) {
3062 MUTEX_EXIT(&conn->conn_data_lock);
3065 conn->flags |= RX_CONN_ATTACHWAIT;
3066 MUTEX_EXIT(&conn->conn_data_lock);
3067 if (!conn->checkReachEvent)
3068 rxi_CheckReachEvent(NULL, conn, call);
3073 /* try to attach call, if authentication is complete */
3075 TryAttach(register struct rx_call *acall, register osi_socket socket,
3076 register int *tnop, register struct rx_call **newcallp,
3079 struct rx_connection *conn = acall->conn;
3081 if (conn->type == RX_SERVER_CONNECTION
3082 && acall->state == RX_STATE_PRECALL) {
3083 /* Don't attach until we have any req'd. authentication. */
3084 if (RXS_CheckAuthentication(conn->securityObject, conn) == 0) {
3085 if (reachOverride || rxi_CheckConnReach(conn, acall) == 0)
3086 rxi_AttachServerProc(acall, socket, tnop, newcallp);
3087 /* Note: this does not necessarily succeed; there
3088 * may not any proc available
3091 rxi_ChallengeOn(acall->conn);
3096 /* A data packet has been received off the interface. This packet is
3097 * appropriate to the call (the call is in the right state, etc.). This
3098 * routine can return a packet to the caller, for re-use */
3101 rxi_ReceiveDataPacket(register struct rx_call *call,
3102 register struct rx_packet *np, int istack,
3103 osi_socket socket, afs_uint32 host, u_short port,
3104 int *tnop, struct rx_call **newcallp)
3106 int ackNeeded = 0; /* 0 means no, otherwise ack_reason */
3110 afs_uint32 seq, serial, flags;
3112 struct rx_packet *tnp;
3114 MUTEX_ENTER(&rx_stats_mutex);
3115 rx_stats.dataPacketsRead++;
3116 MUTEX_EXIT(&rx_stats_mutex);
3119 /* If there are no packet buffers, drop this new packet, unless we can find
3120 * packet buffers from inactive calls */
3122 && (rxi_OverQuota(RX_PACKET_CLASS_RECEIVE) || TooLow(np, call))) {
3123 MUTEX_ENTER(&rx_freePktQ_lock);
3124 rxi_NeedMorePackets = TRUE;
3125 MUTEX_EXIT(&rx_freePktQ_lock);
3126 MUTEX_ENTER(&rx_stats_mutex);
3127 rx_stats.noPacketBuffersOnRead++;
3128 MUTEX_EXIT(&rx_stats_mutex);
3129 call->rprev = np->header.serial;
3130 rxi_calltrace(RX_TRACE_DROP, call);
3131 dpf(("packet %x dropped on receipt - quota problems", np));
3133 rxi_ClearReceiveQueue(call);
3134 clock_GetTime(&when);
3135 clock_Add(&when, &rx_softAckDelay);
3136 if (!call->delayedAckEvent
3137 || clock_Gt(&call->delayedAckEvent->eventTime, &when)) {
3138 rxevent_Cancel(call->delayedAckEvent, call,
3139 RX_CALL_REFCOUNT_DELAY);
3140 CALL_HOLD(call, RX_CALL_REFCOUNT_DELAY);
3141 call->delayedAckEvent =
3142 rxevent_Post(&when, rxi_SendDelayedAck, call, 0);
3144 /* we've damaged this call already, might as well do it in. */
3150 * New in AFS 3.5, if the RX_JUMBO_PACKET flag is set then this
3151 * packet is one of several packets transmitted as a single
3152 * datagram. Do not send any soft or hard acks until all packets
3153 * in a jumbogram have been processed. Send negative acks right away.
3155 for (isFirst = 1, tnp = NULL; isFirst || tnp; isFirst = 0) {
3156 /* tnp is non-null when there are more packets in the
3157 * current jumbo gram */
3164 seq = np->header.seq;
3165 serial = np->header.serial;
3166 flags = np->header.flags;
3168 /* If the call is in an error state, send an abort message */
3170 return rxi_SendCallAbort(call, np, istack, 0);
3172 /* The RX_JUMBO_PACKET is set in all but the last packet in each
3173 * AFS 3.5 jumbogram. */
3174 if (flags & RX_JUMBO_PACKET) {
3175 tnp = rxi_SplitJumboPacket(np, host, port, isFirst);
3180 if (np->header.spare != 0) {
3181 MUTEX_ENTER(&call->conn->conn_data_lock);
3182 call->conn->flags |= RX_CONN_USING_PACKET_CKSUM;
3183 MUTEX_EXIT(&call->conn->conn_data_lock);
3186 /* The usual case is that this is the expected next packet */
3187 if (seq == call->rnext) {
3189 /* Check to make sure it is not a duplicate of one already queued */
3190 if (queue_IsNotEmpty(&call->rq)
3191 && queue_First(&call->rq, rx_packet)->header.seq == seq) {
3192 MUTEX_ENTER(&rx_stats_mutex);
3193 rx_stats.dupPacketsRead++;
3194 MUTEX_EXIT(&rx_stats_mutex);
3195 dpf(("packet %x dropped on receipt - duplicate", np));
3196 rxevent_Cancel(call->delayedAckEvent, call,
3197 RX_CALL_REFCOUNT_DELAY);
3198 np = rxi_SendAck(call, np, serial, RX_ACK_DUPLICATE, istack);
3204 /* It's the next packet. Stick it on the receive queue
3205 * for this call. Set newPackets to make sure we wake
3206 * the reader once all packets have been processed */
3207 queue_Prepend(&call->rq, np);
3209 np = NULL; /* We can't use this anymore */
3212 /* If an ack is requested then set a flag to make sure we
3213 * send an acknowledgement for this packet */
3214 if (flags & RX_REQUEST_ACK) {
3215 ackNeeded = RX_ACK_REQUESTED;
3218 /* Keep track of whether we have received the last packet */
3219 if (flags & RX_LAST_PACKET) {
3220 call->flags |= RX_CALL_HAVE_LAST;
3224 /* Check whether we have all of the packets for this call */
3225 if (call->flags & RX_CALL_HAVE_LAST) {
3226 afs_uint32 tseq; /* temporary sequence number */
3227 struct rx_packet *tp; /* Temporary packet pointer */
3228 struct rx_packet *nxp; /* Next pointer, for queue_Scan */
3230 for (tseq = seq, queue_Scan(&call->rq, tp, nxp, rx_packet)) {
3231 if (tseq != tp->header.seq)
3233 if (tp->header.flags & RX_LAST_PACKET) {
3234 call->flags |= RX_CALL_RECEIVE_DONE;
3241 /* Provide asynchronous notification for those who want it
3242 * (e.g. multi rx) */
3243 if (call->arrivalProc) {
3244 (*call->arrivalProc) (call, call->arrivalProcHandle,
3245 call->arrivalProcArg);
3246 call->arrivalProc = (void (*)())0;
3249 /* Update last packet received */
3252 /* If there is no server process serving this call, grab
3253 * one, if available. We only need to do this once. If a
3254 * server thread is available, this thread becomes a server
3255 * thread and the server thread becomes a listener thread. */
3257 TryAttach(call, socket, tnop, newcallp, 0);
3260 /* This is not the expected next packet. */
3262 /* Determine whether this is a new or old packet, and if it's
3263 * a new one, whether it fits into the current receive window.
3264 * Also figure out whether the packet was delivered in sequence.
3265 * We use the prev variable to determine whether the new packet
3266 * is the successor of its immediate predecessor in the
3267 * receive queue, and the missing flag to determine whether
3268 * any of this packets predecessors are missing. */
3270 afs_uint32 prev; /* "Previous packet" sequence number */
3271 struct rx_packet *tp; /* Temporary packet pointer */
3272 struct rx_packet *nxp; /* Next pointer, for queue_Scan */
3273 int missing; /* Are any predecessors missing? */
3275 /* If the new packet's sequence number has been sent to the
3276 * application already, then this is a duplicate */
3277 if (seq < call->rnext) {
3278 MUTEX_ENTER(&rx_stats_mutex);
3279 rx_stats.dupPacketsRead++;
3280 MUTEX_EXIT(&rx_stats_mutex);
3281 rxevent_Cancel(call->delayedAckEvent, call,
3282 RX_CALL_REFCOUNT_DELAY);
3283 np = rxi_SendAck(call, np, serial, RX_ACK_DUPLICATE, istack);
3289 /* If the sequence number is greater than what can be
3290 * accomodated by the current window, then send a negative
3291 * acknowledge and drop the packet */
3292 if ((call->rnext + call->rwind) <= seq) {
3293 rxevent_Cancel(call->delayedAckEvent, call,
3294 RX_CALL_REFCOUNT_DELAY);
3295 np = rxi_SendAck(call, np, serial, RX_ACK_EXCEEDS_WINDOW,
3302 /* Look for the packet in the queue of old received packets */
3303 for (prev = call->rnext - 1, missing =
3304 0, queue_Scan(&call->rq, tp, nxp, rx_packet)) {
3305 /*Check for duplicate packet */
3306 if (seq == tp->header.seq) {
3307 MUTEX_ENTER(&rx_stats_mutex);
3308 rx_stats.dupPacketsRead++;
3309 MUTEX_EXIT(&rx_stats_mutex);
3310 rxevent_Cancel(call->delayedAckEvent, call,
3311 RX_CALL_REFCOUNT_DELAY);
3312 np = rxi_SendAck(call, np, serial, RX_ACK_DUPLICATE,
3318 /* If we find a higher sequence packet, break out and
3319 * insert the new packet here. */
3320 if (seq < tp->header.seq)
3322 /* Check for missing packet */
3323 if (tp->header.seq != prev + 1) {
3327 prev = tp->header.seq;
3330 /* Keep track of whether we have received the last packet. */
3331 if (flags & RX_LAST_PACKET) {
3332 call->flags |= RX_CALL_HAVE_LAST;
3335 /* It's within the window: add it to the the receive queue.
3336 * tp is left by the previous loop either pointing at the
3337 * packet before which to insert the new packet, or at the
3338 * queue head if the queue is empty or the packet should be
3340 queue_InsertBefore(tp, np);
3344 /* Check whether we have all of the packets for this call */
3345 if ((call->flags & RX_CALL_HAVE_LAST)
3346 && !(call->flags & RX_CALL_RECEIVE_DONE)) {
3347 afs_uint32 tseq; /* temporary sequence number */
3350 call->rnext, queue_Scan(&call->rq, tp, nxp, rx_packet)) {
3351 if (tseq != tp->header.seq)
3353 if (tp->header.flags & RX_LAST_PACKET) {
3354 call->flags |= RX_CALL_RECEIVE_DONE;
3361 /* We need to send an ack of the packet is out of sequence,
3362 * or if an ack was requested by the peer. */
3363 if (seq != prev + 1 || missing) {
3364 ackNeeded = RX_ACK_OUT_OF_SEQUENCE;
3365 } else if (flags & RX_REQUEST_ACK) {
3366 ackNeeded = RX_ACK_REQUESTED;
3369 /* Acknowledge the last packet for each call */
3370 if (flags & RX_LAST_PACKET) {
3381 * If the receiver is waiting for an iovec, fill the iovec
3382 * using the data from the receive queue */
3383 if (call->flags & RX_CALL_IOVEC_WAIT) {
3384 didHardAck = rxi_FillReadVec(call, serial);
3385 /* the call may have been aborted */
3394 /* Wakeup the reader if any */
3395 if ((call->flags & RX_CALL_READER_WAIT)
3396 && (!(call->flags & RX_CALL_IOVEC_WAIT) || !(call->iovNBytes)
3397 || (call->iovNext >= call->iovMax)
3398 || (call->flags & RX_CALL_RECEIVE_DONE))) {
3399 call->flags &= ~RX_CALL_READER_WAIT;
3400 #ifdef RX_ENABLE_LOCKS
3401 CV_BROADCAST(&call->cv_rq);
3403 osi_rxWakeup(&call->rq);
3409 * Send an ack when requested by the peer, or once every
3410 * rxi_SoftAckRate packets until the last packet has been
3411 * received. Always send a soft ack for the last packet in
3412 * the server's reply. */
3414 rxevent_Cancel(call->delayedAckEvent, call, RX_CALL_REFCOUNT_DELAY);
3415 np = rxi_SendAck(call, np, serial, ackNeeded, istack);
3416 } else if (call->nSoftAcks > (u_short) rxi_SoftAckRate) {
3417 rxevent_Cancel(call->delayedAckEvent, call, RX_CALL_REFCOUNT_DELAY);
3418 np = rxi_SendAck(call, np, serial, RX_ACK_IDLE, istack);
3419 } else if (call->nSoftAcks) {
3420 clock_GetTime(&when);
3421 if (haveLast && !(flags & RX_CLIENT_INITIATED)) {
3422 clock_Add(&when, &rx_lastAckDelay);
3424 clock_Add(&when, &rx_softAckDelay);
3426 if (!call->delayedAckEvent
3427 || clock_Gt(&call->delayedAckEvent->eventTime, &when)) {
3428 rxevent_Cancel(call->delayedAckEvent, call,
3429 RX_CALL_REFCOUNT_DELAY);
3430 CALL_HOLD(call, RX_CALL_REFCOUNT_DELAY);
3431 call->delayedAckEvent =
3432 rxevent_Post(&when, rxi_SendDelayedAck, call, 0);
3434 } else if (call->flags & RX_CALL_RECEIVE_DONE) {
3435 rxevent_Cancel(call->delayedAckEvent, call, RX_CALL_REFCOUNT_DELAY);
3442 static void rxi_ComputeRate();
3446 rxi_UpdatePeerReach(struct rx_connection *conn, struct rx_call *acall)
3448 struct rx_peer *peer = conn->peer;
3450 MUTEX_ENTER(&peer->peer_lock);
3451 peer->lastReachTime = clock_Sec();
3452 MUTEX_EXIT(&peer->peer_lock);
3454 MUTEX_ENTER(&conn->conn_data_lock);
3455 if (conn->flags & RX_CONN_ATTACHWAIT) {
3458 conn->flags &= ~RX_CONN_ATTACHWAIT;
3459 MUTEX_EXIT(&conn->conn_data_lock);
3461 for (i = 0; i < RX_MAXCALLS; i++) {
3462 struct rx_call *call = conn->call[i];
3465 MUTEX_ENTER(&call->lock);
3466 /* tnop can be null if newcallp is null */
3467 TryAttach(call, (osi_socket) - 1, NULL, NULL, 1);
3469 MUTEX_EXIT(&call->lock);
3473 MUTEX_EXIT(&conn->conn_data_lock);
3477 rx_ack_reason(int reason)
3480 case RX_ACK_REQUESTED:
3482 case RX_ACK_DUPLICATE:
3484 case RX_ACK_OUT_OF_SEQUENCE:
3486 case RX_ACK_EXCEEDS_WINDOW:
3488 case RX_ACK_NOSPACE:
3492 case RX_ACK_PING_RESPONSE:
3504 /* rxi_ComputePeerNetStats
3506 * Called exclusively by rxi_ReceiveAckPacket to compute network link
3507 * estimates (like RTT and throughput) based on ack packets. Caller
3508 * must ensure that the packet in question is the right one (i.e.
3509 * serial number matches).
3512 rxi_ComputePeerNetStats(struct rx_call *call, struct rx_packet *p,
3513 struct rx_ackPacket *ap, struct rx_packet *np)
3515 struct rx_peer *peer = call->conn->peer;
3517 /* Use RTT if not delayed by client. */
3518 if (ap->reason != RX_ACK_DELAY)
3519 rxi_ComputeRoundTripTime(p, &p->timeSent, peer);
3521 rxi_ComputeRate(peer, call, p, np, ap->reason);
3525 /* The real smarts of the whole thing. */
3527 rxi_ReceiveAckPacket(register struct rx_call *call, struct rx_packet *np,
3530 struct rx_ackPacket *ap;
3532 register struct rx_packet *tp;
3533 register struct rx_packet *nxp; /* Next packet pointer for queue_Scan */
3534 register struct rx_connection *conn = call->conn;
3535 struct rx_peer *peer = conn->peer;
3538 /* because there are CM's that are bogus, sending weird values for this. */
3539 afs_uint32 skew = 0;
3544 int newAckCount = 0;
3545 u_short maxMTU = 0; /* Set if peer supports AFS 3.4a jumbo datagrams */
3546 int maxDgramPackets = 0; /* Set if peer supports AFS 3.5 jumbo datagrams */
3548 MUTEX_ENTER(&rx_stats_mutex);
3549 rx_stats.ackPacketsRead++;
3550 MUTEX_EXIT(&rx_stats_mutex);
3551 ap = (struct rx_ackPacket *)rx_DataOf(np);
3552 nbytes = rx_Contiguous(np) - (int)((ap->acks) - (u_char *) ap);
3554 return np; /* truncated ack packet */
3556 /* depends on ack packet struct */
3557 nAcks = MIN((unsigned)nbytes, (unsigned)ap->nAcks);
3558 first = ntohl(ap->firstPacket);
3559 serial = ntohl(ap->serial);
3560 /* temporarily disabled -- needs to degrade over time
3561 * skew = ntohs(ap->maxSkew); */
3563 /* Ignore ack packets received out of order */
3564 if (first < call->tfirst) {
3568 if (np->header.flags & RX_SLOW_START_OK) {
3569 call->flags |= RX_CALL_SLOW_START_OK;
3572 if (ap->reason == RX_ACK_PING_RESPONSE)
3573 rxi_UpdatePeerReach(conn, call);
3577 if (rxdebug_active) {
3581 len = _snprintf(msg, sizeof(msg),
3582 "tid[%d] RACK: reason %s serial %u previous %u seq %u skew %d first %u acks %u space %u ",
3583 GetCurrentThreadId(), rx_ack_reason(ap->reason),
3584 ntohl(ap->serial), ntohl(ap->previousPacket),
3585 (unsigned int)np->header.seq, (unsigned int)skew,
3586 ntohl(ap->firstPacket), ap->nAcks, ntohs(ap->bufferSpace) );
3590 for (offset = 0; offset < nAcks && len < sizeof(msg); offset++)
3591 msg[len++] = (ap->acks[offset] == RX_ACK_TYPE_NACK ? '-' : '*');
3595 OutputDebugString(msg);
3597 #else /* AFS_NT40_ENV */
3600 "RACK: reason %x previous %u seq %u serial %u skew %d first %u",
3601 ap->reason, ntohl(ap->previousPacket),
3602 (unsigned int)np->header.seq, (unsigned int)serial,
3603 (unsigned int)skew, ntohl(ap->firstPacket));
3606 for (offset = 0; offset < nAcks; offset++)
3607 putc(ap->acks[offset] == RX_ACK_TYPE_NACK ? '-' : '*',
3612 #endif /* AFS_NT40_ENV */
3615 /* Update the outgoing packet skew value to the latest value of
3616 * the peer's incoming packet skew value. The ack packet, of
3617 * course, could arrive out of order, but that won't affect things
3619 MUTEX_ENTER(&peer->peer_lock);
3620 peer->outPacketSkew = skew;
3622 /* Check for packets that no longer need to be transmitted, and
3623 * discard them. This only applies to packets positively
3624 * acknowledged as having been sent to the peer's upper level.
3625 * All other packets must be retained. So only packets with
3626 * sequence numbers < ap->firstPacket are candidates. */
3627 for (queue_Scan(&call->tq, tp, nxp, rx_packet)) {
3628 if (tp->header.seq >= first)
3630 call->tfirst = tp->header.seq + 1;
3632 && (tp->header.serial == serial || tp->firstSerial == serial))
3633 rxi_ComputePeerNetStats(call, tp, ap, np);
3634 if (!(tp->flags & RX_PKTFLAG_ACKED)) {
3637 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
3638 /* XXX Hack. Because we have to release the global rx lock when sending
3639 * packets (osi_NetSend) we drop all acks while we're traversing the tq
3640 * in rxi_Start sending packets out because packets may move to the
3641 * freePacketQueue as result of being here! So we drop these packets until
3642 * we're safely out of the traversing. Really ugly!
3643 * To make it even uglier, if we're using fine grain locking, we can
3644 * set the ack bits in the packets and have rxi_Start remove the packets
3645 * when it's done transmitting.
3647 if (call->flags & RX_CALL_TQ_BUSY) {
3648 #ifdef RX_ENABLE_LOCKS
3649 tp->flags |= RX_PKTFLAG_ACKED;
3650 call->flags |= RX_CALL_TQ_SOME_ACKED;
3651 #else /* RX_ENABLE_LOCKS */
3653 #endif /* RX_ENABLE_LOCKS */
3655 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
3658 rxi_FreePacket(tp); /* rxi_FreePacket mustn't wake up anyone, preemptively. */
3663 /* Give rate detector a chance to respond to ping requests */
3664 if (ap->reason == RX_ACK_PING_RESPONSE) {
3665 rxi_ComputeRate(peer, call, 0, np, ap->reason);
3669 /* N.B. we don't turn off any timers here. They'll go away by themselves, anyway */
3671 /* Now go through explicit acks/nacks and record the results in
3672 * the waiting packets. These are packets that can't be released
3673 * yet, even with a positive acknowledge. This positive
3674 * acknowledge only means the packet has been received by the
3675 * peer, not that it will be retained long enough to be sent to
3676 * the peer's upper level. In addition, reset the transmit timers
3677 * of any missing packets (those packets that must be missing
3678 * because this packet was out of sequence) */
3680 call->nSoftAcked = 0;
3681 for (missing = 0, queue_Scan(&call->tq, tp, nxp, rx_packet)) {
3682 /* Update round trip time if the ack was stimulated on receipt
3684 #ifdef AFS_GLOBAL_RXLOCK_KERNEL
3685 #ifdef RX_ENABLE_LOCKS
3686 if (tp->header.seq >= first)
3687 #endif /* RX_ENABLE_LOCKS */
3688 #endif /* AFS_GLOBAL_RXLOCK_KERNEL */
3690 && (tp->header.serial == serial || tp->firstSerial == serial))
3691 rxi_ComputePeerNetStats(call, tp, ap, np);
3693 /* Set the acknowledge flag per packet based on the
3694 * information in the ack packet. An acknowlegded packet can
3695 * be downgraded when the server has discarded a pack