
AFS-3 Programmer’s Reference:
File Server/Cache Manager Interface

Edward R. Zayas

Transarc Corporation

Version 1.1 of 20 Aug 1991 9:38
c©Copyright 1991 Transarc Corporation

All Rights Reserved
FS-00-D162

AFS-3 FS/CM Programmer’s Ref

Contents

1 Overview . 1
1.1 Introduction . 1

1.1.1 The AFS 3.1 Distributed File System 1
1.1.2 Scope of this Document . 6
1.1.3 Related Documents . 6

1.2 Basic Concepts . 7
1.3 Document Layout . 9

2 File Server Architecture . 10
2.1 Overview . 10
2.2 Interactions . 10
2.3 Threading . 11
2.4 Callback Race Conditions . 12
2.5 Read-Only Volume Synchronization . 13
2.6 Disposal of Cache Manager Records . 13

3 Cache Manager Architecture . 15
3.1 Overview . 15
3.2 Interactions . 17
3.3 Implementation Techniques . 17

3.3.1 VFS Interface . 17
3.3.2 System Calls . 18
3.3.3 Threading . 18

3.4 Disposal of Cache Manager Records . 19

4 Common Definitions and Data Structures 21
4.1 File-Related Definitions . 21

4.1.1 struct AFSFid . 21
4.2 Callback-related Definitions . 22

4.2.1 Types of Callbacks . 22
4.2.2 struct AFSCallBack . 22
4.2.3 Callback Arrays . 22

Table of Contents i August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

4.2.3.1 struct AFSCBFids . 23
4.2.3.2 struct AFSCBs . 23

4.3 Locking Definitions . 23
4.3.1 struct AFSDBLockDesc . 23
4.3.2 struct AFSDBCacheEntry . 24
4.3.3 struct AFSDBLock . 24

4.4 Miscellaneous Definitions . 25
4.4.1 Opaque structures . 25
4.4.2 String Lengths . 25

5 File Server Interfaces . 26
5.1 RPC Interface . 27

5.1.1 Introduction and Caveats . 27
5.1.2 Definitions and Structures . 27

5.1.2.1 Constants and Typedefs 27
5.1.2.1.1 AFS DISKNAMESIZE 28
5.1.2.1.2 AFS MAX XSTAT LONGS 28
5.1.2.1.3 AFS XSTATSCOLL CALL INFO 28
5.1.2.1.4 AFS XSTATSCOLL PERF INFO 28
5.1.2.1.5 AFS CollData 28
5.1.2.1.6 AFSBulkStats 29
5.1.2.1.7 DiskName . 29
5.1.2.1.8 ViceLockType 29

5.1.2.2 struct AFSVolSync . 30
5.1.2.3 struct AFSFetchStatus 30
5.1.2.4 struct AFSStoreStatus 31
5.1.2.5 struct ViceDisk . 31
5.1.2.6 struct ViceStatistics . 32
5.1.2.7 struct afs PerfStats . 34
5.1.2.8 struct AFSFetchVolumeStatus 37
5.1.2.9 struct AFSStoreVolumeStatus 38
5.1.2.10 struct AFSVolumeInfo 38

5.1.3 Non-Streamed Function Calls . 39
5.1.3.1 RXAFS FetchACL . 40
5.1.3.2 RXAFS FetchStatus . 41
5.1.3.3 RXAFS StoreACL . 42
5.1.3.4 RXAFS StoreStatus . 43
5.1.3.5 RXAFS RemoveFile . 44
5.1.3.6 RXAFS CreateFile . 45
5.1.3.7 RXAFS Rename . 46
5.1.3.8 RXAFS Symlink . 47

Table of Contents ii August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.9 RXAFS Link . 48
5.1.3.10 RXAFS MakeDir . 49
5.1.3.11 RXAFS RemoveDir . 50
5.1.3.12 RXAFS GetStatistics 51
5.1.3.13 RXAFS GiveUpCallBacks 52
5.1.3.14 RXAFS GetVolumeInfo 53
5.1.3.15 RXAFS GetVolumeStatus 54
5.1.3.16 RXAFS SetVolumeStatus 55
5.1.3.17 RXAFS GetRootVolume 56
5.1.3.18 RXAFS CheckToken 57
5.1.3.19 RXAFS GetTime . 58
5.1.3.20 RXAFS NGetVolumeInfo 59
5.1.3.21 RXAFS BulkStatus . 60
5.1.3.22 RXAFS SetLock . 61
5.1.3.23 RXAFS ExtendLock . 62
5.1.3.24 RXAFS ReleaseLock 63
5.1.3.25 RXAFS XStatsVersion 64
5.1.3.26 RXAFS GetXStats . 65

5.1.4 Streamed Function Calls . 65
5.1.4.1 StartRXAFS FetchData 67
5.1.4.2 EndRXAFS FetchData 68
5.1.4.3 StartRXAFS StoreData 69
5.1.4.4 EndRXAFS StoreData 70

5.1.5 Example of Streamed Function Call Usage 71
5.1.5.1 Preface . 71
5.1.5.2 Code Fragment Illustrating Fetch Operation 71
5.1.5.3 Discussion and Analysis 72

5.1.6 Required Caller Functionality . 73
5.2 Signal Interface . 74

5.2.1 SIGQUIT: Server Shutdown . 74
5.2.2 SIGTSTP: Upgrade Debugging Level 74
5.2.3 SIGHUP: Reset Debugging Level 75
5.2.4 SIGTERM: File Descriptor Check 75

5.3 Command Line Interface . 75

6 Cache Manager Interfaces . 78
6.1 Overview . 78
6.2 Definitions . 79

6.2.1 struct VenusFid . 79
6.2.2 struct ClearToken . 80

6.3 ioctl() Interface . 80

Table of Contents iii August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.3.1 VIOCCLOSEWAIT . 80
6.3.2 VIOCABORT . 81
6.3.3 VIOIGETCELL . 81

6.4 pioctl() Interface . 81
6.4.1 Introduction . 81
6.4.2 Mount Point Asymmetry . 84
6.4.3 Volume Operations . 84

6.4.3.1 VIOCGETVOLSTAT: Get volume status for pathname . . . 84
6.4.3.2 VIOCSETVOLSTAT: Set volume status for pathname . . . 85
6.4.3.3 VIOCWHEREIS: Find the server(s) hosting the pathname’s

volume . 85
6.4.3.4 VIOC FLUSHVOLUME: Flush all data cached from the path-

name’s volume . 85
6.4.3.5 VIOCCKBACK: Check validity of all cached volume infor-

mation . 86
6.4.4 File Server Operations . 86

6.4.4.1 VIOCGETFID: Get augmented fid for named file system
object . 86

6.4.4.2 VIOCFLUSHCB: Unilaterally drop a callback 87
6.4.4.3 VIOC AFS DELETE MT PT: Delete a mount point 87
6.4.4.4 VIOC AFS STAT MT PT: Get the contents of a mount point 87
6.4.4.5 VIOCCKSERV: Check the status of one or more File Servers 88

6.4.5 Cell Operations . 89
6.4.5.1 VIOCNEWCELL: Set cell service information 89
6.4.5.2 VIOCGETCELL: Get cell configuration entry 89
6.4.5.3 VIOC FILE CELL NAME: Get cell hosting a given object . 90
6.4.5.4 VIOC GET WS CELL: Get caller’s home cell name 90
6.4.5.5 VIOC GET PRIMARY CELL: Get the caller’s primary cell . 90
6.4.5.6 VIOC GETCELLSTATUS: Get status info for a cell entry . . 91
6.4.5.7 VIOC SETCELLSTATUS: Set status info for a cell entry . . 91

6.4.6 Authentication Operations . 92
6.4.6.1 VIOCSETTOK: Set the caller’s token for a cell 92
6.4.6.2 VIOCGETTOK: Get the caller’s token for a cell 93
6.4.6.3 VIOCACCESS: Check caller’s access on object 93
6.4.6.4 VIOCCKCONN: Check status of caller’s tokens/connections 94
6.4.6.5 VIOCUNLOG: Discard authentication information 94
6.4.6.6 VIOCUNPAG: Discard authentication information 94

6.4.7 ACL Operations . 94
6.4.7.1 VIOCSETAL: Set the ACL on a directory 96
6.4.7.2 VIOCGETAL: Get the ACL for a directory 96

6.4.8 Cache Operations . 96

Table of Contents iv August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.4.8.1 VIOCFLUSH: Flush an object from the cache 97
6.4.8.2 VIOCSETCACHESIZE: Set maximum cache size in blocks . 97
6.4.8.3 VIOCGETCACHEPARAMS: Get current cache parameter val-

ues . 97
6.4.9 Miscellaneous Operations . 98

6.4.9.1 VIOC AFS MARINER HOST: Get/set file transfer monitor-
ing output . 98

6.4.9.2 VIOC VENUSLOG: Enable/disable Cache Manager logging 98
6.4.9.3 VIOC AFS SYSNAME: Get/set the @sys mapping 99
6.4.9.4 VIOC EXPORTAFS: Enable/disable NFS/AFS translation 99

6.5 RPC Interface . 100
6.5.1 Introduction . 100
6.5.2 Locks . 101
6.5.3 Definitions and Typedefs . 102
6.5.4 Structures . 103

6.5.4.1 struct afs MeanStats 103
6.5.4.2 struct afs CMCallStats 103
6.5.4.3 struct afs CMMeanStats 104
6.5.4.4 struct afs CMStats . 104
6.5.4.5 struct afs CMPerfStats 104

6.5.5 Function Calls . 105
6.5.5.1 RXAFSCB Probe . 107
6.5.5.2 RXAFSCB CallBack 108
6.5.5.3 RXAFSCB InitCallBackState 109
6.5.5.4 RXAFSCB GetLock . 110
6.5.5.5 RXAFSCB GetCE . 111
6.5.5.6 RXAFSCB XStatsVersion 112
6.5.5.7 RXAFSCB GetXStats 113

6.6 Files . 114
6.6.1 Configuration Files . 114

6.6.1.1 ThisCell . 114
6.6.1.2 CellServDB . 114
6.6.1.3 cacheinfo . 116

6.6.2 Cache Information Files . 116
6.6.2.1 AFSLog . 116
6.6.2.2 CacheItems . 117
6.6.2.3 VolumeItems . 117

6.7 Mariner Interface . 118

A struct afs CMCallStats . 120

Index . i

Table of Contents v August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Chapter 1

Overview

1.1 Introduction

1.1.1 The AFS 3.1 Distributed File System

AFS 3.1 is a distributed file system (DFS) designed to meet the following set of require-
ments:

• Server-client model: Permanent file storage for AFS is maintained by a col-
lection of file server machines. This centralized storage is accessed by individuals
running on client machines, which also serve as the computational engines for those
users. A single machine may act as both an AFS file server and client simultane-
ously. However, file server machines are generally assumed to be housed in a secure
environment, behind locked doors.

• Scale: Unlike other existing DFSs, AFS was designed with the specific goal of
supporting a very large user community. Unlike the rule-of-thumb ratio of 20
client machines for every server machine (20:1) used by Sun Microsystem’s NFS
distributed file system [4][5], the AFS architecture aims at smoothly supporting
client/server ratios more along the lines of 200:1 within a single installation.

AFS also provides another, higher-level notion of scalability. Not only can each
independently-administered AFS site, or cell, grow very large (on the order of
tens of thousands of client machines), but individual cells may easily collaborate
to form a single, unified file space composed of the union of the individual name
spaces. Thus, users have the image of a single unix file system tree rooted at the

Overview 1 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

/afs directory on their machine. Access to files in this tree is performed with the
standard unix commands, editors, and tools, regardless of a file’s location.

These cells and the files they export may be geographically dispersed, thus requiring
client machines to access remote file servers across network pathways varying widely
in speed, latency, and reliability. The AFS architecture encourages this concept of
a single, wide-area file system. As of this writing, the community AFS filespace
includes sites spanning the continental United States and Hawaii, and also reaches
overseas to various installations in Europe, Japan, and Australia.

• Performance: This is a critical consideration given the scalability and connec-
tivity requirements described above. A high-performance system in the face of
high client/server ratios and the existence of low-bandwidth, high-latency network
connections as well as the normal high-speed ones is achieved by two major mech-
anisms:

– Caching: Client machines make extensive use of caching techniques wherever
possible. One important application of this methodology is that each client
is required to maintain a cache of files it has accessed from AFS file servers,
performing its operations exclusively on these local copies. This file cache is
organized in a least-recently-used (LRU) fashion. Thus, each machine will
build a local working set of objects being referenced by its users. As long as
the cached images remain “current” (i.e., compatible with the central version
stored at the file servers), operations may be performed on these files without
further communication with the central servers. This results in significant
reductions in network traffic and server loads, paving the way for the target
client/server ratios.

This file cache is typically located on the client’s local hard disk, although a
strictly in-memory cache is also supported. The disk cache has the advantage
that its contents will survive crashes and reboots, with the expectation that
the majority of cached objects will remain current. The local cache param-
eters, including the maximum number of blocks it may occupy on the local
disk, may be changed on the fly. In order to avoid having the size of the client
file cache become a limit on the length of an AFS file, caching is actually
performed on chunks of the file. These chunks are typically 64 Kbytes in
length, although the chunk size used by the client is settable when the client
starts up.

– Callbacks: The use of caches by the file system, as described above, raises
the thorny issue of cache consistency. Each client must efficiently determine
whether its cached file chunks are identical to the corresponding sections of
the file as stored at the server machine before allowing a user to operate on
those chunks. AFS employs the notion of a callback as the backbone of its

Overview 2 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

cache consistency algorithm. When a server machine delivers one or more
chunks of a file to a client, it also includes a callback “promise” that the client
will be notified if any modifications are made to the data in the file. Thus, as
long as the client machine is in possession of a callback for a file, it knows it is
correctly synchronized with the centrally-stored version, and allows its users
to operate on it as desired without any further interaction with the server.
Before a file server stores a more recent version of a file on its own disks, it will
first break all outstanding callbacks on this item. A callback will eventually
time out, even if there are no changes to the file or directory it covers.

• Location transparency: The typical AFS user does not know which server or
servers houses any of his or her files. In fact, the user’s storage may be distributed
among several servers. This location transparency also allows user data to be
migrated between servers without users having to take corrective actions, or even
becoming aware of the shift.

• Reliability: The crash of a server machine in any distributed file system will
cause the information it hosts to become unavailable to the user community. The
same effect is caused when server and client machines are isolated across a network
partition. AFS addresses this situation by allowing data to be replicated across
two or more servers in a read-only fashion. If the client machine loses contact
with a particular server from which it is attempting to fetch data, it hunts among
the remaining machines hosting replicas, looking for one that is still in operation.
This search is performed without the user’s knowledge or intervention, smoothly
masking outages whenever possible. Each client machine will automatically per-
form periodic probes of machines on its list of known servers, updating its internal
records concerning their status. Consequently, server machines may enter and exit
the pool without administrator intervention.

Replication also applies to the various databases employed by the AFS server pro-
cesses. These system databases are read/write replicated with a single synchro-
nization site at any instant. If a synchronization site is lost due to failure, the
remaining database sites elect a new synchronization site automatically without
operator intervention.

• Security: A production file system, especially one which allows and encourages
transparent access between administrative domains, must be conscious of security
issues. AFS considers the server machines as “trusted”, being kept behind locked
doors and only directly manipulated by administrators. On the other hand, client
machines are, by definition, assumed to exist in inherently insecure environments.
These client machines are recognized to be fully accessible to their users, making
AFS servers open to attacks mounted by possibly modified hardware, operating
systems, and software from its clients.

Overview 3 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

To provide credible file system security, AFS employs an authentication system
based on the Kerberos facility developed by Project Athena at MIT [6][7]. Users
operating from client machines are required to interact with Authentication Server
agents running on the secure server machines to generate secure tokens of identity.
These tokens express the user’s identity in an encrypted fashion, and are stored in
the kernel of the client machine. When the user attempts to fetch or store files, the
server may challenge the user to verify his or her identity. This challenge, hidden
from the user and handled entirely by the RPC layer, will transmit this token to
the file server involved in the operation. The server machine, upon decoding the
token and thus discovering the user’s true identity, will allow the caller to perform
the operation if permitted.

• Access control: The standard unix access control mechanism associatesmode bits
with every file and directory, applying them based on the user’s numerical identifier
and the user’s membership in various groups. AFS has augmented this traditional
access control mechanism with Access Control Lists (ACLs). Every AFS directory
has an associated ACL which defines the principals or parties that may operate
on all files contained in the directory, and which operations these principals may
perform. Rights granted by these ACLs include read, write, delete, lookup, insert
(create new files, but don’t overwrite old files), and administer (change the ACL).
Principals on these ACLs include individual users and groups of users. These
groups may be defined by AFS users without administrative intervention. AFS
ACLs provide for much finer-grained access control for its files.

• Administrability: Any system with the scaling goals of AFS must pay close
attention to its ease of administration. The task of running an AFS installation is
facilitated via the following mechanisms:

– Pervasive RPC interfaces: Access to AFS server agents is performed
mostly via RPC interfaces. Thus, servers may be queried and operated upon
regardless of their location. In combination with the security system outlined
above, even administrative functions such as instigating backups, reconfigur-
ing server machines, and stopping and restarting servers may be performed
by an administrator sitting in front of any AFS-capable machine, as long as
the administrator holds the proper tokens.

– Replication: As AFS supports read-only replication for user data and read-
write replication for system databases, much of the system reconfiguration
work in light of failures is performed transparently and without human inter-
vention. Administrators thus typically have more time to respond to many
common failure situations.

– Data mobility: Improved and balanced utilization of disk resources is fa-
cilitated by the fact that AFS supports transparent relocation of user data

Overview 4 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

between partitions on a single file server machine or between two different
machines. In a situation where a machine must be brought down for an ex-
tended period, all its storage may be migrated to other servers so that users
may continue their work completely unaffected.

– Automated “nanny” services: Each file server machine runs a BOS Server
process, which assists in the machine’s administration. This server is respon-
sible for monitoring the health of the AFS agents under its care, bringing
them up in the proper order after a system reboot, answering requests as to
their status and restarting them when they fail. It also accepts commands
to start, suspend, or resume these processes, and install new server binaries.
Accessible via an RPC interface, this supervisory process relieves administra-
tors of some oversight responsibilities and also allows them to perform their
duties from any machine running AFS, regardless of location or geographic
distance from the targeted file server machine.

– On-line backup: Backups may be performed on the data stored by the
AFS file server machines without bringing those machines down for the dura-
tion. Copy-on-write “snapshots” are taken of the data to be preserved, and
tape backup is performed from these clones. One added benefit is that these
backup clones are on-line and accessible by users. Thus, if someone acciden-
tally deletes a file that is contained in their last snapshot, they may simply
copy its contents as of the time the snapshot was taken back into their active
workspace. This facility also serves to improve the administrability of the
system, greatly reducing the number of requests to restore data from tape.

– On-line help: The set of provided program tools used to interact with the
active AFS agents are self-documenting in that they will accept command-line
requests for help, displaying descriptive text in response.

– Statistics: Each AFS agent facilitates collection of statistical data on its
performance, configuration, and status via its RPC interface. Thus, the sys-
tem is easy to monitor. One tool that takes advantage of this facility is the
scout program. Scout polls file server machines periodically, displaying us-
age statistics, current disk capacities, and whether the server is unavailable.
Administrators monitoring this information can thus quickly react to correct
overcrowded disks and machine crashes.

• Coexistence: Many organizations currently employ other distributed file systems,
most notably NFS. AFS was designed to run simultaneously with other DFSs with-
out interfering in their operation. In fact, an NFS-AFS translator agent exists that
allows pure-NFS client machines to transparently access files in the AFS commu-
nity.

Overview 5 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

• Portability: Because AFS is implemented using the standard VFS and vnode
interfaces pioneered and advanced by Sun Microsystems, AFS is easily portable
between different platforms from a single vendor or from different vendors.

1.1.2 Scope of this Document

This document is a member of a documentation suite providing specifications of the
operations and interfaces offered by the various AFS servers and agents. Specifically,
this document will focus on two of these system agents:

• File Server: This AFS entity is responsible for providing a central disk reposi-
tory for a particular set of files and for making these files accessible to properly-
authorized users running on client machines. The File Server is implemented as a
user-space process

• Cache Manager: This code, running within the kernel of an AFS client machine,
is a user’s representative in communicating with the File Servers, fetching files
back and forth into the local cache as needed. The Cache Manager also keeps
information as to the composition of its own cell as well as the other AFS cells in
existence. It resolves file references and operations, determining the proper File
Server (or group of File Servers) that may satisfy the request. In addition, it is
also a reliable repository for the user’s authentication information, holding on to
their tokens and wielding them as necessary when challenged.

1.1.3 Related Documents

The full AFS specification suite of documents is listed below:

• AFS-3 Programmer’s Reference: Architectural Overview: This paper provides an
architectual overview of the AFS distributed file system, describing the full set of
servers and agents in a coherent way, illustrating their relationships to each other
and examining their interactions.

• AFS-3 Programmer’s Reference:Volume Server/Volume Location Server Interface:
This document describes the services through which “containers” of related user
data are located and managed.

• AFS-3 Programmer’s Reference: Protection Server Interface: This paper describes
the server responsible for providing two-way mappings between printable user

Overview 6 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

names and their internal AFS identifiers. The Protection Server also allows users to
create, destroy, and manipulate “groups” of users, which are suitable for placement
on ACLs.

• AFS-3 Programmer’s Reference: BOS Server Interface: This paper explicates the
“nanny” service described above, which assists in the administrability of the AFS
environment.

• AFS-3 Programmer’s Reference: Specification for the Rx Remote Procedure Call
Facility: This document specifies the design and operation of the remote procedure
call and lightweight process packages used by AFS.

In addition to these papers, the AFS 3.1 product is delivered with its own user, admin-
istrator, installation, and command reference documents.

1.2 Basic Concepts

To properly understand AFS operation, specifically the tasks and objectives of the File
Server and Cache Manager, it is necessary to introduce and explain the following con-
cepts:

• Cell: A cell is the set of server and client machines operated by an administratively
independent organization. The cell administrators make decisions concerning such
issues as server deployment and configuration, user backup schedules, and replica-
tion strategies on their own hardware and disk storage completely independently
from those implemented by other cell administrators regarding their own domains.
Every client machine belongs to exactly one cell, and uses that information to de-
termine the set of database servers it uses to locate system resources and generate
authentication information.

• Volume: AFS disk partitions do not directly host individual user files or direc-
tories. Rather, connected subtrees of the system’s directory structure are placed
into containers called volumes. Volumes vary in size dynamically as objects are
inserted, overwritten, and deleted. Each volume has an associated quota, or max-
imum permissible storage. A single unix disk partition may host one or more
volumes, and in fact may host as many volumes as physically fit in the storage
space. However, a practical maximum is 3,500 volumes per disk partition, since
this is the highest number currently handled by the salvager program. The salvager
is run on occasions where the volume structures on disk are inconsistent, repair-
ing the damage. A compile-time constant within the salvager imposes the above

Overview 7 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

limit, causing it to refuse to repair any inconsistent partition with more than 3,500
volumes.

Volumes serve many purposes within AFS. First, they reduce the number of objects
with which an administrator must be concerned, since operations are normally per-
formed on an entire volume at once (and thus on all files and directories contained
within the volume). In addition, volumes are the unit of replication, data mobility
between servers, and backup. Disk utilization may be balanced by transparently
moving volumes between partitions.

• Mount Point: The connected subtrees contained within individual volumes stored
at AFS file server machines are “glued” to their proper places in the file space de-
fined by a site, forming a single, apparently seamless unix tree. These attachment
points are referred to as mount points. Mount points are persistent objects, im-
plemented as symbolic links whose contents obey a stylized format. Thus, AFS
mount points differ from NFS-style mounts. In the NFS environment, the user
dynamically mounts entire remote disk partitions using any desired name. These
mounts do not survive client restarts, and do not insure a uniform namespace
between different machines.

As a Cache Manager resolves an AFS pathname as part of a file system operation
initiated by a user process, it recognizes mount points and takes special action
to resolve them. The Cache Manager consults the appropriate Volume Location
Server to discover the File Server (or set of File Servers) hosting the indicated
volume. This location information is cached, and the Cache Manager then proceeds
to contact the listed File Server(s) in turn until one is found that responds with
the contents of the volume’s root directory. Once mapped to a real file system
object, the pathname resolution proceeds to the next component.

• Database Server: A set of AFS databases is required for the proper functioning
of the system. Each database may be replicated across two or more file server
machines. Access to these databases is mediated by a database server process
running at each replication site. One site is declared to be the synchronization
site, the sole location accepting requests to modify the databases. All other sites
are read-only with respect to the set of AFS users. When the synchronization site
receives an update to its database, it immediately distributes it to the other sites.
Should a synchronization site go down through either a hard failure or a network
partition, the remaining sites will automatically elect a new synchronization site
if they form a quorum, or majority. This insures that multiple synchronization
sites do not become active in the network partition scenario.

The classes of AFS database servers are listed below:

– Authentication Server: This server maintains the authentication database
used to generate tokens of identity.

Overview 8 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

– Protection Server: This server maintains mappings between human-readable
user account names and their internal numerical AFS identifiers. It also man-
ages the creation, manipulation, and update of user-defined groups suitable
for use on ACLs.

– Volume Location Server: This server exports information concerning the lo-
cation of the individual volumes housed within the cell.

1.3 Document Layout

Following this introduction and overview, Chapter 2 describes the architecture of the File
Server process design. Similarly, Chapter 3 describes the architecture of the in-kernel
Cache Manager agent. Following these architectural examinations, Chapter 4 provides a
set of basic coding definitions common to both the AFS File Server and Cache Manager,
required to properly understand the interface specifications which follow. Chapter 5
then proceeds to specify the various File Server interfaces. The myriad Cache Manager
interfaces are presented in Chapter 6, thus completing the document.

Overview 9 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Chapter 2

File Server Architecture

2.1 Overview

The AFS File Server is a user-level process that presides over the raw disk partitions on
which it supports one or more volumes. It provides “half” of the fundamental service
of the system, namely exporting and regimenting access to the user data entrusted to
it. The Cache Manager provides the other half, acting on behalf of its human users to
locate and access the files stored on the file server machines.

This chapter examines the structure of the File Server process. First, the set of AFS
agents with which it must interact are discussed. Next, the threading structure of the
server is examined. Some details of its handling of the race conditions created by the
callback mechanism are then presented. This is followed by a discussion of the read-only
volume synchronization mechanism. This functionality is used in each RPC interface call
and intended to detect new releases of read-only volumes. File Servers do not generate
callbacks for objects residing in read-only volumes, so this synchronization information
is used to implement a “whole-volume” callback. Finally, the fact that the File Server
may drop certain information recorded about the Cache Managers with which it has
communicated and yet guarantee correctness of operation is explored.

2.2 Interactions

By far the most frequent partner in File Server interactions is the set of Cache Managers
actively fetching and storing chunks of data files for which the File Server provides central
storage facilities. The File Server also periodically probes the Cache Managers recorded

File Server Architecture 10 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

in its tables with which it has recently dealt, determining if they are still active or
whether their records might be garbage-collected.

There are two other server entities with which the File Server interacts, namely the
Protection Server and the BOS Server. Given a fetch or store request generated by a
Cache Manager, the File Server needs to determine if the caller is authorized to perform
the given operation. An important step in this process is to determine what is referred
to as the caller’s Current Protection Subdomain, or CPS. A user’s CPS is a list
of principals, beginning with the user’s internal identifier, followed by the the numeri-
cal identifiers for all groups to which the user belongs. Once this CPS information is
determined, the File Server scans the ACL controlling access to the file system object
in question. If it finds that the ACL contains an entry specifying a principal with the
appropriate rights which also appears in the user’s CPS, then the operation is cleared.
Otherwise, it is rejected and a protection violation is reported to the Cache Manager for
ultimate reflection back to the caller.

The BOS Server performs administrative operations on the File Server process. Thus,
their interactions are quite one-sided, and always initiated by the BOS Server. The BOS
Server does not utilize the File Server’s RPC interface, but rather generates unix signals
to achieve the desired effect.

2.3 Threading

The File Server is organized as a multi-threaded server. Its threaded behavior within
a single unix process is achieved by use of the LWP lightweight process facility, as
described in detail in the companion “AFS-3 Programmer’s Reference: Specification for
the Rx Remote Procedure Call Facility” document. The various threads utilized by the
File Server are described below:

• WorkerLWP: This lightweight process sleeps until a request to execute one of
the RPC interface functions arrives. It pulls the relevant information out of the
request, including any incoming data delivered as part of the request, and then
executes the server stub routine to carry out the operation. The thread finishes its
current activation by feeding the return code and any output data back through the
RPC channel back to the calling Cache Manager. The File Server initialization
sequence specifies that at least three but no more than six of these WorkerLWP

threads are to exist at any one time. It is currently not possible to configure the
File Server process with a different number of WorkerLWP threads.

File Server Architecture 11 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

• FiveMinuteCheckLWP: This thread runs every five minutes, performing such
housekeeping chores as cleaning up timed-out callbacks, setting disk usage statis-
tics, and executing the special handling required by certain AIX implementa-
tions. Generally, this thread performs activities that do not take unbounded
time to accomplish and do not block the thread. If reassurance is required,
FiveMinuteCheckLWP can also be told to print out a banner message to the ma-
chine’s console every so often, stating that the File Server process is still running.
This is not strictly necessary and an artifact from earlier versions, as the File
Server’s status is now easily accessible at any time through the BOS Server run-
ning on its machine.

• HostCheckLWP: This thread, also activated every five minutes, performs pe-
riodic checking of the status of Cache Managers that have been previously con-
tacted and thus appear in this File Server’s internal tables. It generates RXAF-
SCB Probe() calls from the Cache Manager interface, and may find itself suspended
for an arbitrary amount of time when it enounters unreachable Cache Managers.

2.4 Callback Race Conditions

Callbacks serve to implement the efficient AFS cache consistency mechanism, as de-
scribed in Section 1.1.1. Because of the asynchronous nature of callback generation
and the multi-threaded operation and organization of both the File Server and Cache
Manager, race conditions can arise in their use. As an example, consider the case of a
client machine fetching a chunk of file X. The File Server thread activated to carry out
the operation ships the contents of the chunk and the callback information over to the
requesting Cache Manager. Before the corresponding Cache Manager thread involved
in the exchange can be scheduled, another request arrives at the File Server, this time
storing a modified image of the same chunk from file X. Another worker thread comes
to life and completes processing of this second request, including execution of an RX-
AFSCB CallBack() to the Cache Manager who still hasn’t picked up on the results of
its fetch operation. If the Cache Manager blindly honors the RXAFSCB CallBack()
operation first and then proceeds to process the fetch, it will wind up believing it has a
callback on X when in reality it is out of sync with the central copy on the File Server.
To resolve the above class of callback race condition, the Cache Manager effectively
doublechecks the callback information received from File Server calls, making sure they
haven’t already been nullified by other file system activity.

File Server Architecture 12 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

2.5 Read-Only Volume Synchronization

The File Server issues a callback for each file chunk it delivers from a read-write vol-
ume, thus allowing Cache Managers to efficiently synchronize their local caches with
the authoritative File Server images. However, no callbacks are issued when data from
read-only volumes is delivered to clients. Thus, it is possible for a new snapshot of the
read-only volume to be propagated to the set of replication sites without Cache Man-
agers becoming aware of the event and marking the appropriate chunks in their caches as
stale. Although the Cache Manager refreshes its volume version information periodically
(once an hour), there is still a window where a Cache Manager will fail to notice that it
has outdated chunks.

The volume synchronization mechanism was defined to close this window, resulting
in what is nearly a “whole-volume” callback device for read-only volumes. Each File
Server RPC interface function handling the transfer of file data is equipped with a
parameter (a volSyncP), which carries this volume synchronization information. This
parameter is set to a non-zero value by the File Server exclusively when the data being
fetched is coming from a read-only volume. Although the struct AFSVolSync defined
in Section 5.1.2.2 passed via a volSyncP consists of six longwords, only the first one is
set. This leading longword carries the creation date of the read-only volume. The Cache
Manager immediately compares the synchronization value stored in its cached volume
information against the one just received. If they are identical, then the operation is free
to complete, secure in the knowledge that all the information and files held from that
volume are still current. A mismatch, though, indicates that every file chunk from this
volume is potentially out of date, having come from a previous release of the read-only
volume. In this case, the Cache Manager proceeds to mark every chunk from this volume
as suspect. The next time the Cache Manager considers accessing any of these chunks,
it first checks with the File Server it came from which the chunks were obtained to see
if they are up to date.

2.6 Disposal of Cache Manager Records

Every File Server, when first starting up, will, by default, allocate enough space to record
20,000 callback promises (see Section 5.3 for how to override this default). Should the File
Server fully populate its callback records, it will not allocate more, allowing its memory
image to possibly grow in an unbounded fashion. Rather, the File Server chooses to
break callbacks until it acquires a free record. All reachable Cache Managers respond by
marking their cache entries appropriately, preserving the consistency guarantee. In fact,
a File Server may arbitrarily and unilaterally purge itself of all records associated with

File Server Architecture 13 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

a particular Cache Manager. Such actions will reduce its performance (forcing these
Cache Managers to revalidate items cached from that File Server) without sacrificing
correctness.

File Server Architecture 14 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Chapter 3

Cache Manager Architecture

3.1 Overview

The AFS Cache Manager is a kernel-resident agent with the following duties and respon-
sibilities:

• Users are to be given the illusion that files stored in the AFS distributed file system
are in fact part of the local unix file system of their client machine. There are
several areas in which this illusion is not fully realized:

– Semantics: Full unix semantics are not maintained by the set of agents im-
plementing the AFS distributed file system. The largest deviation involves
the time when changes made to a file are seen by others who also have the file
open. In AFS, modifications made to a cached copy of a file are not necessar-
ily reflected immediately to the central copy (the one hosted by File Server
disk storage), and thus to other cache sites. Rather, the changes are only
guaranteed to be visible to others who simultaneously have their own cached
copies open when the modifying process executes a unix close() operation on
the file.

This differs from the semantics expected from the single-machine, local unix

environment, where writes performed on one open file descriptor are imme-
diately visible to all processes reading the file via their own file descriptors.
Thus, instead of the standard “last writer wins” behavior, users see “last
closer wins” behavior on their AFS files. Incidentally, other DFSs, such as
NFS, do not implement full unix semantics in this case either.

Cache Manager Architecture 15 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

– Partial failures: A panic experienced by a local, single-machine unix file
system will, by definition, cause all local processes to terminate immediately.
On the other hand, any hard or soft failure experienced by a File Server pro-
cess or the machine upon which it is executing does not cause any of the
Cache Managers interacting with it to crash. Rather, the Cache Managers
will now have to reflect their failures in getting responses from the affected
File Server back up to their callers. Network partitions also induce the same
behavior. From the user’s point of view, part of the file system tree has be-
come inaccessible. In addition, certain system calls (e.g., open() and read())
may return unexpected failures to their users. Thus, certain coding practices
that have become common amongst experienced (single-machine) unix pro-
grammers (e.g., not checking error codes from operations that “can’t” fail)
cause these programs to misbehave in the face of partial failures.

To support this transparent access paradigm, the Cache Manager proceeds to:

– Intercept all standard unix operations directed towards AFS objects, mapping
them to references aimed at the corresponding copies in the local cache.

– Keep a synchronized local cache of AFS files referenced by the client machine’s
users. If the chunks involved in an operation reading data from an object are
either stale or do not exist in the local cache, then they must be fetched from
the File Server(s) on which they reside. This may require a query to the
volume location service in order to locate the place(s) of residence. Authenti-
cation challenges from File Servers needing to verify the caller’s identity are
handled by the Cache Manager, and the chunk is then incorporated into the
cache.

– Upon receipt of a unix close, all dirty chunks belonging to the object will be
flushed back to the appropriate File Server.

– Callback deliveries and withdrawals from File Servers must be processed,
keeping the local cache in close synchrony with the state of affairs at the
central store.

• Interfaces are also be provided for those principals who wish to perform AFS-
specific operations, such as Access Control List (ACL) manipulations or changes
to the Cache Manager’s configuration.

This chapter takes a tour of the Cache Manager’s architecture, and examines how it
supports these roles and responsibilities. First, the set of AFS agents with which it
must interact are discussed. Next, some of the Cache Manager’s implementation and
interface choices are examined. Finally, the server’s ability to arbitrarily dispose of
callback information without affecting the correctness of the cache consistency algorithm
is explained.

Cache Manager Architecture 16 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

3.2 Interactions

The main AFS agent interacting with a Cache Manager is the File Server. The most
common operation performed by the Cache Manager is to act as its users’ agent in
fetching and storing files to and from the centralized repositories. Related to this activity,
a Cache Manager must be prepared to answer queries from a File Server concerning its
health. It must also be able to accept callback revocation notices generated by File
Servers. Since the Cache Manager not only engages in data transfer but must also
determine where the data is located in the first place, it also directs inquiries to Volume
Location Server agents. There must also be an interface allowing direct interactions with
both common and administrative users. Certain AFS-specific operations must be made
available to these parties. In addition, administrative users may desire to dynamically
reconfigure the Cache Manager. For example, information about a newly-created cell
may be added without restarting the client’s machine.

3.3 Implementation Techniques

The above roles and behaviors for the Cache Manager influenced the implementation
choices and methods used to construct it, along with the desire to maximize portability.
This section begins by showing how the VFS/vnode interface, pioneered and standardized
by Sun Microsystems, provides not only the necessary fine-grain access to user file system
operations, but also facilitates Cache Manager ports to new hardware and operating
system platforms. Next, the use of unix system calls is examined. Finally, the threading
structure employed is described.

3.3.1 VFS Interface

As mentioned above, Sun Microsystems has introduced and propagated an important
concept in the file system world, that of the Virtual File System (VFS) interface. This
abstraction defines a core collection of file system functions which cover all operations
required for users to manipulate their data. System calls are written in terms of these
standardized routines. Also, the associated vnode concept generalizes the original unix

inode idea and provides hooks for differing underlying environments. Thus, to port a
system to a new hardware platform, the system programmers have only to construct
implementations of this base array of functions consistent with the new underlying ma-
chine.

The VFS abstraction also allows multiple file systems (e.g., vanilla unix, DOS, NFS, and

Cache Manager Architecture 17 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

AFS) to coexist on the same machine without interference. Thus, to make a machine
AFS-capable, a system designer first extends the base vnode structure in well-defined
ways in order to store AFS-specific operations with each file description. Then, the
base function array is coded so that calls upon the proper AFS agents are made to
accomplish each function’s standard objectives. In effect, the Cache Manager consists of
code that interprets the standard set of unix operations imported through this interface
and executes the AFS protocols to carry them out.

3.3.2 System Calls

As mentioned above, many unix system calls are implemented in terms of the base
function array of vnode-oriented operations. In addition, one existing system call has
been modified and two new system calls have been added to perform AFS-specific opera-
tions apart from the Cache Manager’s unix “emulation” activities. The standard ioctl()
system call has been augmented to handle AFS-related operations on objects accessed
via open unix file descriptors. One of the brand-new system calls is pioctl(), which is
much like ioctl() except it names targeted objects by pathname instead of file descriptor.
Another is afs call(), which is used to initialize the Cache Manager threads, as described
in the section immediately following.

3.3.3 Threading

In order to execute its many roles, the Cache Manager is organized as a multi-threaded
entity. It is implemented with (potentially multiple instantiations of) the following three
thread classes:

• CallBack Listener: This thread implements the Cache Manager callback RPC
interface, as described in Section 6.5.

• Periodic Maintenance: Certain maintenance and checkup activities need to be
performed at five set intervals. Currently, the frequency of each of these opera-
tions is hard-wired. It would be a simple matter, though, to make these times
configurable by adding command-line parameters to the Cache Manager.

– Thirty seconds: Flush pending writes for NFS clients coming in through the
NFS-AFS Translator facility.

– One minute: Make sure local cache usage is below the assigned quota, write
out dirty buffers holding directory data, and keep flock()s alive.

Cache Manager Architecture 18 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

– Three minutes: Check for the resuscitation of File Servers previously de-
termined to be down, and check the cache of previously computed access
information in light of any newly expired tickets.

– Ten minutes: Check health of all File Servers marked as active, and garbage-
collect old RPC connections.

– One hour: Check the status of the root AFS volume as well as all cached
information concerning read-only volumes.

• Background Operations: The Cache Manager is capable of prefetching file sys-
tem objects, as well as carrying out delayed stores, occurring sometime after a
close() operation. At least two threads are created at Cache Manager initializa-
tion time and held in reserve to carry out these objectives. This class of background
threads implements the following three operations:

– Prefetch operation: Fetches particular file system object chunks in the expec-
tation that they will soon be needed.

– Path-based prefetch operation: The prefetch daemon mentioned above oper-
ates on objects already at least partly resident in the local cache, referenced
by their vnode. The path-based prefetch daemon performs the same actions,
but on objects named solely by their unix pathname.

– Delayed store operation: Flush all modified chunks from a file system object
to the appropriate File Server’s disks.

3.4 Disposal of Cache Manager Records

The Cache Manager is free to throw away any or all of the callbacks it has received from
the set of File Servers from which it has cached files. This housecleaning does not in
any way compromise the correctness of the AFS cache consistency algorithm. The File
Server RPC interface described in this paper provides a call to allow a Cache Manager
to advise of such unilateral jettisoning. However, failure to use this routine still leaves
the machine’s cache consistent. Let us examine the case of a Cache Manager on machine
C disposing of its callback on file X from File Server F. The next user access on file X
on machine C will cause the Cache Manager to notice that it does not currently hold
a callback on it (although the File Server will think it does). The Cache Manager on
C attempts to revalidate its entry when it is entirely possible that the file is still in
sync with the central store. In response, the File Server will extend the existing callback
information it has and deliver the new promise to the Cache Manager on C. Now consider
the case where file X is modified by a party on a machine other than C before such an

Cache Manager Architecture 19 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

access occurs on C. Under these circumstances, the File Server will break its callback on
file X before performing the central update. The Cache Manager on C will receive one of
these “break callback” messages. Since it no longer has a callback on file X, the Cache
Manager on C will cheerfully acknowledge the File Server’s notification and move on to
other matters. In either case, the callback information for both parties will eventually
resynchronize. The only potential penalty paid is extra inquiries by the Cache Manager
and thus providing for reduced performance instead of failure of operation.

Cache Manager Architecture 20 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Chapter 4

Common Definitions and Data
Structures

This chapter discusses the definitions used in common by the File Server and the Cache
Manager. They appear in the common.xg file, used by Rxgen to generate the C code
instantiations of these definitions.

4.1 File-Related Definitions

4.1.1 struct AFSFid

This is the type for file system objects within AFS.

Fields

unsigned long Volume - This provides the identifier for the volume in which the
object resides.

unsigned long Vnode - This specifies the index within the given volume corre-
sponding to the object.

unsigned long Unique - This is a “uniquifier” or generation number for the slot
identified by the Vnode field.

Common Definitions and Data Structures 21 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

4.2 Callback-related Definitions

4.2.1 Types of Callbacks

There are three types of callbacks defined by AFS-3:

• EXCLUSIVE: This version of callback has not been implemented. Its intent was to
allow a single Cache Manager to have exclusive rights on the associated file data.

• SHARED: This callback type indicates that the status information kept by a Cache
Manager for the associated file is up to date. All cached chunks from this file whose
version numbers match the status information are thus guaranteed to also be up to
date. This type of callback is non-exclusive, allowing any number of other Cache
Managers to have callbacks on this file and cache chunks from the file.

• DROPPED: This is used to indicate that the given callback promise has been cancelled
by the issuing File Server. The Cache Manager is forced to mark the status of its
cache entry as unknown, forcing it to stat the file the next time a user attempts to
access any chunk from it.

4.2.2 struct AFSCallBack

This is the canonical callback structure passed in many File Server RPC interface calls.

Fields

unsigned long CallBackVersion - Callback version number.

unsigned long ExpirationTime - Time when the callback expires, measured in
seconds.

unsigned long CallBackType - The type of callback involved, one of EXCLUSIVE,
SHARED, or DROPPED.

4.2.3 Callback Arrays

AFS-3 sometimes does callbacks in bulk. Up to AFSCBMAX (50) callbacks can be handled
at once. Layouts for the two related structures implementing callback arrays, struct
AFSCBFids and struct AFSCBs, follow below. Note that the callback descriptor in slot

Common Definitions and Data Structures 22 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

i of the array in the AFSCBs structure applies to the file identifier contained in slot i in
the fid array in the matching AFSCBFids structure.

4.2.3.1 struct AFSCBFids

Fields

u int AFSCBFids len - Number of AFS file identifiers stored in the structure, up
to a maximum of AFSCBMAX.

AFSFid *AFSCBFids val - Pointer to the first element of the array of file identifiers.

4.2.3.2 struct AFSCBs

Fields

u int AFSCBs len - Number of AFS callback descriptors stored in the structure,
up to a maximum of AFSCBMAX.

AFSCallBack *AFSCBs val - Pointer to the actual array of callback descriptors

4.3 Locking Definitions

4.3.1 struct AFSDBLockDesc

This structure describes the state of an AFS lock.

Fields

char waitStates - Types of lockers waiting for the lock.

char exclLocked - Does anyone have a boosted, shared or write lock? (A boosted
lock allows the holder to have data read-locked and then “boost” up to a write
lock on the data without ever relinquishing the lock.)

char readersReading - Number of readers that actually hold a read lock on the
associated object.

char numWaiting - Total number of parties waiting to acquire this lock in some
fashion.

Common Definitions and Data Structures 23 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

4.3.2 struct AFSDBCacheEntry

This structure defines the description of a Cache Manager local cache entry, as made
accessible via the RXAFSCB GetCE() callback RPC call. Note that File Servers do
not make the above call. Rather, client debugging programs (such as cmdebug) are the
agents which call RXAFSCB GetCE().

Fields

long addr - Memory location in the Cache Manager where this description is lo-
cated.

long cell - Cell part of the fid.

AFSFid netFid - Network (standard) part of the fid

long Length - Number of bytes in the cache entry.

long DataVersion - Data version number for the contents of the cache entry.

struct AFSDBLockDesc lock - Status of the lock object controlling access to this
cache entry.

long callback - Index in callback records for this object.

long cbExpires - Time when the callback expires.

short refCount - General reference count.

short opens - Number of opens performed on this object.

short writers - Number of writers active on this object.

char mvstat - The file classification, indicating one of normal file, mount point, or
volume root.

char states - Remembers the state of the given file with a set of bits indicating,
from lowest-order to highest order: stat info valid, read-only file, mount point
valid, pending core file, wait-for-store, and mapped file.

4.3.3 struct AFSDBLock

This is a fuller description of an AFS lock, including a string name used to identify it.

Fields

char name[16] - String name of the lock.

struct AFSDBLockDesc lock - Contents of the lock itself.

Common Definitions and Data Structures 24 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

4.4 Miscellaneous Definitions

4.4.1 Opaque structures

A maximum size for opaque structures passed via the File Server interface is defined as
AFSOPAQUEMAX. Currently, this is set to 1,024 bytes. The AFSOpaque typedef is defined
for use by those parameters that wish their contents to travel completely uninterpreted
across the network.

4.4.2 String Lengths

Two common definitions used to specify basic AFS string lengths are AFSNAMEMAX and
AFSPATHMAX. AFSNAMEMAX places an upper limit of 256 characters on such things as file
and directory names passed as parameters. AFSPATHMAX defines the longest pathname
expected by the system, composed of slash-separated instances of the individual directory
and file names mentioned above. The longest acceptable pathname is currently set to
1,024 characters.

Common Definitions and Data Structures 25 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Chapter 5

File Server Interfaces

There are several interfaces offered by the File Server, allowing it to export the files
stored within the set of AFS volumes resident on its disks to the AFS community in a
secure fashion and to perform self-administrative tasks. This chapter will cover the three
File Server interfaces, summarized below. There is one File Server interface that will
not be discussed in this document, namely that used by the Volume Server. It will be
fully described in the companion AFS-3 Programmer’s Reference:Volume Server/Volume
Location Server Interface.

• RPC: This is the main File Server interface, supporting all of the Cache Manager’s
needs for providing its own clients with appropriate access to file system objects
stored within AFS. It is closedly tied to the callback interface exported by the
Cache Manager as described in Section 6.5, which has special implications for any
application program making direct calls to this interface.

• Signals: Certain operations on a File Server must be performed by it sending
unix signals on the machine on which it is executing. These operations include
performing clean shutdowns and adjusting debugging output levels. Properly-
authenticated administrative users do not have to be physically logged into a File
Server machine to generate these signals. Rather, they may use the RPC inter-
face exported by that machine’s BOS Server process to generate them from any
AFS-capable machine.

• Command Line: Many of the File Server’s operating parameters may be set
upon startup via its command line interface. Such choices as the number of data
buffers and callback records to hold in memory may be made here, along with
various other decisions such as lightweight thread stack size.

File Server Interfaces 26 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1 RPC Interface

5.1.1 Introduction and Caveats

The documentation for the AFS-3 File Server RPC interface commences with some
basic definitions and data structures used in conjunction with the function calls. This
is followed by an examination of the set of non-streamed RPC functions, namely those
routines whose parameters are all fixed in size. Next, the streamed RPC functions, those
with parameters that allow an arbitrary amount of data to be delivered, are described.
A code fragment and accompanying description and analysis are offered as an example
of how to use the streamed RPC calls. Finally, a description of the special requirements
on any application program making direct calls to this File Server interface appears.
The File Server assumes that any entity making calls to its RPC functionality is a bona
fide and full-fledged Cache Manager. Thus, it expects this caller to export the Cache
Manager’s own RPC interface, even if the application simply uses File Server calls that
don’t transfer files and thus generate callbacks.

Within those sections describing the RPC functions themselves, the purpose of each call
is detailed, and the nature and use of its parameters is documented. Each of these RPC
interface routines returns an integer error code, and a subset of the possible values are
described. A complete and systematic list of potential error returns for each function
is difficult to construct and unwieldy to examine. This is due to fact that error codes
from many different packages and from many different levels may arise. Instead of
attempting completeness, the error return descriptions discuss error codes generated
within the functions themselves (or a very small number of code levels below them)
within the File Server code itself, and not from such associated packages as the Rx,
volume, and protection modules. Many of these error code are defined in the companion
AFS-3 documents.

By convention, a return value of zero reveals that the function call was successful and
that all of its OUT parameters have been set by the File Server.

5.1.2 Definitions and Structures

5.1.2.1 Constants and Typedefs

The following constants and typedefs are required to properly use the File Server RPC
interface, both to provide values and to interpret information returned by the calls. The
constants appear first, followed by the list of typedefs, which sometimes depend on the

File Server Interfaces 27 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

constants above. Items are alphabetized within each group.

All of the constants appearing below whose names contain the XSTAT string are used in
conjuction with the extended data collection facility supported by the File Server. The
File Server defines some number of data collections, each of which consists of an array
of longword values computed by the File Server.

There are currently two data collections defined for the File Server. The first is identified
by the AFS XSTATSCOLL CALL INFO constant. This collection of longwords relates the
number of times each internal function within the File Server code has been executed,
thus providing profiling information. The second File Server data collection is identified
by the AFS XSTATSCOLL PERF INFO constant. This set of longwords contains information
related to the File Server’s performance.

5.1.2.1.1 AFS DISKNAMESIZE [Value = 32] Specifies the maximum length
for an AFS disk partition, used directly in the definition for the DiskName typedef. A
DiskName appears as part of a struct ViceDisk, a group of which appear inside a
struct ViceStatistics, used for carrying basic File Server statistics information.

5.1.2.1.2 AFS MAX XSTAT LONGS [Value = 1,024] Defines the maximum
size for a File Server data collection, as exported via the RXAFS GetXStats() RPC call.
It is used directly in the AFS CollData typedef.

5.1.2.1.3 AFS XSTATSCOLL CALL INFO [Value = 0] This constant identi-
fies the File Server’s data collection containing profiling information on the number of
times each of its internal procedures has been called.

Please note that this data collection is not supported by the File Server at this time. A
request for this data collection will result the return of a zero-length array.

5.1.2.1.4 AFS XSTATSCOLL PERF INFO [Value = 1] This constant identi-
fies the File Server’s data collection containing performance-related information.

5.1.2.1.5 AFS CollData [typedef long AFS CollData<AFS MAX XSTAT LONGS>;]
This typedef is used by Rxgen to create a structure used to pass File Server data col-
lections to the caller. It resolves into a C typedef statement defining a structure of the
same name with the following fields:

File Server Interfaces 28 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Fields

u int AFS CollData len - The number of longwords contained within the data
pointed to by the next field.

long *AFS CollData val - A pointer to a sequence of AFS CollData len long-
words.

5.1.2.1.6 AFSBulkStats [typedef AFSFetchStatus AFSBulkStats<AFSCBMAX>;]
This typedef is used by Rxgen to create a structure used to pass a set of statistics struc-
tures, as described in the RXAFS BulkStatus documentation in Section 5.1.3.21. It
resolves into a C typedef statement defining a structure of the same name with the
following fields:

Fields

u int AFSBulkStats len - The number of struct AFSFetchStatus units con-
tained within the data to which the next field points.

AFSFetchStatus *AFSBulkStats val - This field houses pointer to a sequence of
AFSBulkStats len units of type struct AFSFetchStatus.

5.1.2.1.7 DiskName [typedef opaque DiskName[AFS DISKNAMESIZE];] The name
of an AFS disk partition. This object appears as a field within a struct ViceDisk, a
group of which appear inside a struct ViceStatistics, used for carrying basic File
Server statistics information. The term opaque appearing above inidcates that the object
being defined will be treated as an undifferentiated string of bytes.

5.1.2.1.8 ViceLockType [typedef long ViceLockType;] This defines the format of
a lock used internally by the Cache Manager. The content of these locks is accessible
via the RXAFSCB GetLock() RPC function. An isomorphic and more refined version
of the lock structure used by the Cache Manager, mapping directly to this definition, is
struct AFSDBLockDesc, defined in Section 4.3.1.

File Server Interfaces 29 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.2.2 struct AFSVolSync

This structure conveys volume synchronization information across many of the File
Server RPC interface calls, allowing something akin to a ‘whole-volume callback” on
read-only volumes.

Fields

unsigned long spare1 ... spare6 - The first longword, spare1, contains the
volume’s creation date. The rest are currently unused.

5.1.2.3 struct AFSFetchStatus

This structure defines the information returned when a file system object is fetched from
a File Server.

Fields

unsigned long InterfaceVersion - RPC interface version, defined to be 1.

unsigned long FileType - Distinguishes the object as either a file, directory, sym-
link, or invalid.

unsigned long LinkCount - Number of links to this object.

unsigned long Length - Length in bytes.

unsigned long DataVersion - Object’s data version number.

unsigned long Author - Identity of the object’s author.

unsigned long Owner - Identity of the object’s owner.

unsigned long CallerAccess - The set of access rights computed for the caller on
this object.

unsigned long AnonymousAccess - The set of access rights computed for any com-
pletely unauthenticated principal.

unsigned long UnixModeBits - Contents of associated unix mode bits.

unsigned long ParentVnode - Vnode for the object’s parent directory.

unsigned long ParentUnique - Uniquifier field for the parent object.

unsigned long SegSize - (Not implemented).

File Server Interfaces 30 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

unsigned long ClientModTime - Time when the caller last modified the data
within the object.

unsigned long ServerModTime - Time when the server last modified the data
within the object.

unsigned long Group - (Not implemented).

unsigned long SyncCounter - (Not implemented).

unsigned long spare1 ... spare4 - Spares.

5.1.2.4 struct AFSStoreStatus

This structure is used to convey which of a file system object’s status fields should be set,
and their new values. Several File Server RPC calls, including RXAFS StoreStatus(),
RXAFS CreateFile(), RXAFS SymLink(), RXAFS MakeDir(), and the streamed call to
store file data onto the File Server.

Fields

unsigned long Mask - Bit mask, specifying which of the following fields should be
assigned into the File Server’s status block on the object.

unsigned long ClientModTime - The time of day that the object was last modified.

unsigned long Owner - The principal identified as the owner of the file system
object.

unsigned long Group - (Not implemented).

unsigned long UnixModeBits - The set of associated unix mode bits.

unsigned long SegSize - (Not implemented).

5.1.2.5 struct ViceDisk

This structure occurs in struct ViceStatistics, and describes the characteristics and
status of a disk partition used for AFS storage.

File Server Interfaces 31 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Fields

long BlocksAvailable - Number of 1 Kbyte disk blocks still available on the par-
tition.

long TotalBlocks - Total number of disk blocks in the partition.

DiskName Name - The human-readable character string name of the disk partition
(e.g., /vicepa).

5.1.2.6 struct ViceStatistics

This is the File Server statistics structure returned by the RXAFS GetStatistics() RPC
call.

Fields

unsigned long CurrentMsgNumber - Not used

unsigned long OldestMsgNumber - Not used

unsigned long CurrentTime - Time of day, as understood by the File Server.

unsigned long BootTime - Kernel’s boot time.

unsigned long StartTime - Time when the File Server started up.

long CurrentConnections - Number of connections to Cache Manager instances.

unsigned long TotalViceCalls - Count of all calls made to the RPC interface.

unsigned long TotalFetchs - Total number of fetch operations, either status or
data, performed.

unsigned long FetchDatas - Total number of data fetch operations exclusively.

unsigned long FetchedBytes - Total number of bytes fetched from the File Server
since it started up.

long FetchDataRate - Result of dividing the FetchedBytes field by the number of
seconds the File Server has been running.

unsigned long TotalStores - Total number of store operations, either status or
data, performed.

unsigned long StoreDatas - Total number of data store operations exclusively.

unsigned long StoredBytes - Total number of bytes stored to the File Server
since it started up.

File Server Interfaces 32 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

long StoreDataRate - The result of dividing the StoredBytes field by the number
of seconds the File Server has been running.

unsigned long TotalRPCBytesSent - Outdated

unsigned long TotalRPCBytesReceived - Outdated

unsigned long TotalRPCPacketsSent - Outdated

unsigned long TotalRPCPacketsReceived - Outdated

unsigned long TotalRPCPacketsLost - Outdated

unsigned long TotalRPCBogusPackets - Outdated

long SystemCPU - Result of reading from the kernel the usage times attributed to
system activities.

long UserCPU - Result of reading from the kernel the usage times attributed to
user-level activities.

long NiceCPU - Result of reading from the kernel the usage times attributed to File
Server activities that have been nice()d (i.e., run at a lower priority).

long IdleCPU - Result of reading from the kernel the usage times attributed to
idling activities.

long TotalIO - Summary of the number of bytes read/written from the disk.

long ActiveVM - Amount of virtual memory used by the File Server.

long TotalVM - Total space available on disk for virtual memory activities.

long EtherNetTotalErrors - Not used.

long EtherNetTotalWrites - Not used.

long EtherNetTotalInterupts - Not used.

long EtherNetGoodReads - Not used.

long EtherNetTotalBytesWritten - Not used.

long EtherNetTotalBytesRead - Not used.

long ProcessSize - The size of the File Server’s data space in 1 Kbyte chunks.

long WorkStations - The total number of client Cache Managers (workstations)
for which information is held by the File Server.

long ActiveWorkStations - The total number of client Cache Managers (work-
stations) that have recently interacted with the File Server. This number is
strictly less than or equal to the WorkStations field.

long Spare1 ... Spare8 - Not used.

File Server Interfaces 33 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

ViceDisk Disk1 ... Disk10 - Statistics concerning up to 10 disk partitions used
by the File Server. These records keep information on all partitions, not just
partitions reserved for AFS storage.

5.1.2.7 struct afs PerfStats

This is the structure corresponding to the AFS XSTATSCOLL PERF INFO data collection
that is defined by the File Server (see Section 5.1.2.1.4). It is accessible via the RX-
AFS GetXStats() interface routine, as defined in Section 5.1.3.26.

The fields within this structure fall into the following classifications:

• Number of requests for the structure.

• Vnode cache information.

• Directory package numbers.

• Rx information.

• Host module fields

• Spares.

Please note that the Rx fields represent the contents of the rx stats structure maintained
by Rx RPC facility itself. Also, a full description of all the structure’s fields is not
possible here. For example, the reader is referred to the companion Rx document for
further clarification on the Rx-related fields within afs PerfStats.

Fields

long numPerfCalls - Number of performance collection calls received.

long vcache L Entries - Number of entries in large (directory) vnode cache.

long vcache L Allocs - Number of allocations for the large vnode cache.

long vcache L Gets - Number of get operations for the large vnode cache.

long vcache L Reads - Number of reads performed on the large vnode cache.

long vcache L Writes - Number of writes executed on the large vnode.cache.

File Server Interfaces 34 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

long vcache S Entries - Number of entries in the small (file) vnode cache.

long vcache S Allocs - Number of allocations for the small vnode cache.

long vcache S Gets - Number of get operations for the small vnode cache.

long vcache S Reads - Number of reads performed on the small vnode cache.

long vcache S Writes - Number of writes executed on the small vnode cache.

long vcache H Entries - Number of entries in the header of the vnode cache.

long vcache H Gets - Number of get operations on the header of the vnode cache.

long vcache H Replacements - Number of replacement operations on the header
of the vnode cache.

long dir Buffers - Number of directory package buffers in use.

long dir Calls - Number of read calls made to the directory package.

long dir IOs - Number of directory I/O operations performed.

long rx packetRequests - Number of Rx packet allocation requests.

long rx noPackets RcvClass - Number of failed packet reception requests.

long rx noPackets SendClass - Number of failed packet transmission requests.

long rx noPackets SpecialClass - Number of “special” Rx packet rquests.

long rx socketGreedy - Did setting the Rx socket to SO GREEDY succeed?

long rx bogusPacketOnRead - Number of short packets received.

long rx bogusHost - Latest host address from bogus packets.

long rx noPacketOnRead - Number of attempts to read a packet when one was not
physically available.

long rx noPacketBuffersOnRead - Number of packets dropped due to buffer short-
ages.

long rx selects - Number of selects performed, waiting for a packet arrival or a
timeout.

long rx sendSelects - Number of selects forced upon a send.

long rx packetsRead RcvClass - Number of packets read belonging to the “Rcv”
class.

long rx packetsRead SendClass - Number of packets read that belong to the
“Send” class.

long rx packetsRead SpecialClass - Number of packets read belonging to the
“Special” class.

long rx dataPacketsRead - Number of unique data packets read off the wire.

File Server Interfaces 35 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

long rx ackPacketsRead - Number of acknowledgement packets read.

long rx dupPacketsRead - Number of duplicate data packets read.

long rx spuriousPacketsRead - Number of inappropriate packets read.

long rx packetsSent RcvClass - Number of packets sent belonging to the “Rcv”
class.

long rx packetsSent SendClass - Number of packets sent belonging to the “Send”
class.

long rx packetsSent SpecialClass - Number of packets sent belonging to the
“Special” class.

long rx ackPacketsSent - Number of acknowledgement packets sent.

long rx pingPacketsSent - Number of ping packets sent.

long rx abortPacketsSent - Number of abort packets sent.

long rx busyPacketsSent - Number of busy packets sent.

long rx dataPacketsSent - Number of unique data packets sent.

long rx dataPacketsReSent - Number of retransmissions sent.

long rx dataPacketsPushed - Number of retransmissions pushed by a NACK.

long rx ignoreAckedPacket - Number of packets whose acked flag was set at
rxi Start() time.

long rx totalRtt Sec - Total round trip time in seconds.

long rx totalRtt Usec - Microsecond portion of the total round trip time,

long rx minRtt Sec - Minimum round trip time in seconds.

long rx minRtt Usec - Microsecond portion of minimal round trip time.

long rx maxRtt Sec - Maximum round trip time in seconds.

long rx maxRtt Usec - Microsecond portion of maximum round trip time.

long rx nRttSamples - Number of round trip samples.

long rx nServerConns - Total number of server connections.

long rx nClientConns - Total number of client connections.

long rx nPeerStructs - Total number of peer structures.

long rx nCallStructs - Total number of call structures.

long rx nFreeCallStructs - Total number of call structures residing on the free
list.

long host NumHostEntries - Number of host entries.

File Server Interfaces 36 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

long host HostBlocks - Number of blocks in use for host entries.

long host NonDeletedHosts - Number of non-deleted host entries.

long host HostsInSameNetOrSubnet - Number of host entries in the same [sub]net
as the File Server.

long host HostsInDiffSubnet - Number of host entries in a different subnet as
the File Server.

long host HostsInDiffNetwork - Number of host entries in a different network
entirely as the File Server.

long host NumClients - Number of client entries.

long host ClientBlocks - Number of blocks in use for client entries.

long spare[32] - Spare fields, reserved for future use.

5.1.2.8 struct AFSFetchVolumeStatus

The results of asking the File Server for status information concerning a particular
volume it hosts.

Fields

long Vid - Volume ID.

long ParentId - Volume ID in which the given volume is “primarily” mounted.
This is used to properly resolve pwd operations, as a volume may be mounted
simultaneously at multiple locations.

char Online - Is the volume currently online and fully available?

char InService - This field records whether the volume is currently in service. It
is indistinguishable from the Blessed field,

char Blessed - See the description of the InService field immediately above.

char NeedsSalvage - Should this volume be salvaged (run through a consistency-
checking procedure)?

long Type - The classification of this volume, namely a read/write volume (RWVOL
= 0), read-only volume (ROVOL = 1), or backup volume (BACKVOL = 2).

long MinQuota - Minimum number of 1 Kbyte disk blocks to be set aside for this
volume. Note: this field is not currently set or accessed by any AFS agents.

File Server Interfaces 37 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

long MaxQuota - Maximum number of 1 Kbyte disk blocks that may be occupied
by this volume.

long BlocksInUse - Number of 1 Kbyte disk blocks currently in use by this volume.

long PartBlocksAvail - Number of available 1 Kbyte blocks currently unused in
the volume’s partition.

long PartMaxBlocks - Total number of blocks, in use or not, for the volume’s
partition.

5.1.2.9 struct AFSStoreVolumeStatus

This structure is used to convey which of a file system object’s status fields should be
set, and their new values. The RXAFS SetVolumeStatus() RPC call is the only user of
this structure.

Fields

long Mask - Bit mask to determine which of the following two fields should be
stored in the centralized status for a given volume.

long MinQuota - Minimum number of 1 Kbyte disk blocks to be set aside for this
volume.

long MaxQuota - Maximum number of 1 Kbyte disk blocks that may be occupied
by this volume.

5.1.2.10 struct AFSVolumeInfo

This field conveys information regarding a particular volume through certain File Server
RPC interface calls. For information regarding the different volume types that ex-
ist, please consult the companion document, AFS-3 Programmer’s Reference:Volume
Server/Volume Location Server Interface.

Fields

unsigned long Vid - Volume ID.

File Server Interfaces 38 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

long Type - Volume type (see struct AFSFetchVolumeStatus in Section 5.1.2.8
above).

unsigned long Type0 ... Type4 - The volume IDs for the possible volume types
in existance for this volume.

unsigned long ServerCount - The number of File Server machines on which an
instance of this volume is located.

unsigned long Server0 ... Server7 - Up to 8 IP addresses of File Server ma-
chines hosting an instance on this volume. The first ServerCount of these
fields hold valid server addresses.

unsigned short Port0 ... Port7 - Up to 8 UDP port numbers on which oper-
ations on this volume should be directed. The first ServerCount of these fileds
hold valid port identifiers.

5.1.3 Non-Streamed Function Calls

The following is a description of the File Server RPC interface routines that utilize only
parameters with fixed maximum lengths. The majority of the File Server calls fall into
this suite, with only a handful using streaming techniques to pass objects of unbounded
size between a File Server and Cache Manager.

Each function is labeled with an opcode number. This is the low-level numerical identifier
for the function, and appears in the set of network packets constructed for the RPC call.

File Server Interfaces 39 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.1 RXAFS FetchACL — Fetch the ACL associated with the given
AFS file identifier

int RXAFS FetchACL(IN struct rx connection *a rxConnP,

IN AFSFid *a dirFidP,

OUT AFSOpaque *a ACLP,

OUT AFSFetchStatus *a dirNewStatP,

OUT AFSVolSync *a volSyncP)

Description

[Opcode 131] Fetch the ACL for the directory identified by a dirFidP, placing it in the
space described by the opaque structure to which a ACLP points. Also returned is the
given directory’s status, written to a dirNewStatP. An ACL may thus take up at most
AFSOPAQUEMAX (1,024) bytes, since this is the maximum size of an AFSOpaque.

Rx connection information for the related File Server is contained in a rxConnP. Volume
version information is returned for synchronization purposes in a volSyncP.

Error Codes

EACCES The caller is not permitted to perform this operation.

EINVAL An internal error in looking up the client record was encountered, or an
invalid fid was provided.

VICETOKENDEAD Caller’s authentication token has expired.

File Server Interfaces 40 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.2 RXAFS FetchStatus — Fetch the status information regarding a
given file system object

int RXAFS FetchStatus(IN struct rx connection *a rxConnP,

IN AFSFid *a fidToStatP,

OUT AFSFetchStatus *a currStatP,

OUT AFSCallBack *a callBackP,

OUT AFSVolSync *a volSyncP)

Description

[Opcode 132] Fetch the current status information for the file or directory identified by
a fidToStatP, placing it into the area to which a currStatP points. If the object resides
in a read/write volume, then the related callback information is returned in a callBackP.

Rx connection information for the related File Server is contained in a rxConnP. Volume
version information is returned for synchronization purposes in a volSyncP.

Error Codes

EACCES The caller is not permitted to perform this operation.

EINVAL An internal error in looking up the client record was encountered, or an
invalid fid was provided.

VICETOKENDEAD Caller’s authentication token has expired.

File Server Interfaces 41 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.3 RXAFS StoreACL — Associate the given ACL with the named
directory

int RXAFS StoreACL(IN struct rx connection *a rxConnP,

IN AFSOpaque *a ACLToStoreP,

IN AFSFid *a dirFidP,

OUT AFSFetchStatus *a dirNewStatP,

OUT AFSVolSync *a volSyncP)

Description

[Opcode 134] Store the ACL information to which a ACLToStoreP points to the File
Server, associating it with the directory identified by a dirFidP. The resulting status
information for the a dirFidP directory is returned in a dirNewStatP. Note that the
ACL supplied via a ACLToStoreP may be at most AFSOPAQUEMAX (1,024) bytes long,
since this is the maximum size accommodated by an AFSOpaque.

Rx connection information for the related File Server is contained in a rxConnP. Volume
version information is returned for synchronization purposes in a volSyncP.

Error Codes

EACCES The caller is not permitted to perform this operation.

E2BIG The given ACL is too large.

EINVAL The given ACL could not translated to its on-disk format.

File Server Interfaces 42 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.4 RXAFS StoreStatus — Store the given status information for the
specified file

int RXAFS StoreStatus(IN struct rx connection *a rxConnP,

IN AFSFid *a fidP,

IN AFSStoreStatus *a currStatusP,

OUT AFSFetchStatus *a srvStatusP,

OUT AFSVolSync *a volSyncP)

Description

[Opcode 135] Store the status information to which a currStatusP points, associating it
with the file identified by a fidP. All outstanding callbacks on this object are broken.
The resulting status structure stored at the File Server is returned in a srvStatusP.

Rx connection information for the related File Server is contained in a rxConnP. Volume
version information is returned for synchronization purposes in a volSyncP.

Error Codes

EACCES The caller is not permitted to perform this operation.

EINVAL An internal error in looking up the client record was encountered, or an
invalid fid was provided, or an attempt was made to change the mode of a
symbolic link.

VICETOKENDEAD Caller’s authentication token has expired.

File Server Interfaces 43 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.5 RXAFS RemoveFile — Delete the given file

int RXAFS RemoveFile(IN struct rx connection *a rxConnP,

IN AFSFid *a dirFidP,

IN char *a name<AFSNAMEMAX>,

OUT AFSFetchStatus *a srvStatusP,

OUT AFSVolSync *a volSyncP)

Description

[Opcode 136] Destroy the file named a name within the directory identified by a dirFidP.
All outstanding callbacks on this object are broken. The resulting status structure stored
at the File Server is returned in a srvStatusP.

Rx connection information for the related File Server is contained in a rxConnP. Volume
version information is returned for synchronization purposes in a volSyncP.

Error Codes

EACCES The caller is not permitted to perform this operation.

EINVAL An internal error in looking up the client record was encountered, or an
invalid fid was provided, or an attempt was made to remove “.” or “..”.

EISDIR The target of the deletion was supposed to be a file, but it is really a
directory.

ENOENT The named file was not found.

ENOTDIR The a dirFidP parameter references an object which is not a directory,
or the deletion target is supposed to be a directory but is not.

ENOTEMPTY The target directory being deleted is not empty.

VICETOKENDEAD Caller’s authentication token has expired.

File Server Interfaces 44 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.6 RXAFS CreateFile — Create the given file

int RXAFS CreateFile(IN struct rx connection *a rxConnP,

IN AFSFid *DirFid,

IN char *Name,

IN AFSStoreStatus *InStatus,

OUT AFSFid *OutFid,

OUT AFSFetchStatus *OutFidStatus,

OUT AFSFetchStatus *OutDirStatus,

OUT AFSCallBack *CallBack,

OUT AFSVolSync *a volSyncP)

associated with the new file.

Description

[Opcode 137] This call is used to create a file, but not for creating a directory or a symbolic
link. If this call succeeds, it is the Cache Manager’s responsibility to either create an
entry locally in the directory specified by DirFid or to invalidate this directory’s cache
entry.

Rx connection information for the related File Server is contained in a rxConnP. Volume
version information is returned for synchronization purposes in a volSyncP.

Error Codes

EACCES The caller is not permitted to perform this operation.

EINVAL An internal error in looking up the client record was encountered, or an
invalid fid or name was provided.

ENOTDIR The DirFid parameter references an object which is not a directory.

VICETOKENDEAD Caller’s authentication token has expired.

File Server Interfaces 45 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.7 RXAFS Rename — Rename the specified file in the given directory

int RXAFS Rename(IN struct rx connection *a rxConnP,

IN AFSFid *a origDirFidP,

IN char *a origNameP,

IN AFSFid *a newDirFidP,

IN char *a newNameP,

OUT AFSFetchStatus *a origDirStatusP,

OUT AFSFetchStatus *a newDirStatusP,

OUT AFSVolSync *a volSyncP)

Description

[Opcode 138] Rename file a origNameP in the directory identified by a origDirFidP.
Its new name is to be a newNameP, and it will reside in the directory identified by
a newDirFidP. Each of these names must be no more than AFSNAMEMAX (256) characters
long. The status of the original and new directories after the rename operation completes
are deposited in a origDirStatusP and a newDirStatusP respectively. Existing callbacks
are broken for all files and directories involved in the operation.

Rx connection information for the related File Server is contained in a rxConnP. Volume
version information is returned for synchronization purposes in a volSyncP.

Error Codes

EACCES New file exists but user doesn’t have Delete rights in the directory.

EINVAL Name provided is invalid.

EISDIR Original object is a file and new object is a directory.

ENOENT The object to be renamed doesn’t exist in the parent directory.

ENOTDIR Original object is a directory and new object is a file.

EXDEV Rename attempted across a volume boundary, or create a pathname loop,
or hard links exist to the file.

File Server Interfaces 46 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.8 RXAFS Symlink — Create a symbolic link

int RXAFS Symlink(IN struct rx connection *a rxConnP,

IN AFSFid *a dirFidP,

IN char *a nameP,

IN char *a linkContentsP,

IN AFSStoreStatus *a origDirStatP,

OUT AFSFid *a newFidP,

OUT AFSFetchStatus *a newFidStatP,

OUT AFSFetchStatus *a newDirStatP,

OUT AFSVolSync *a volSyncP)

Description

[Opcode 139] Create a symbolic link named a nameP in the directory identified by
a dirFidP. The text of the symbolic link is provided in a linkContentsP, and the de-
sired status fields for the symbolic link given by a origDirStatP. The name offered in
a nameP must be less than AFSNAMEMAX (256) characters long, and the text of the link
to which a linkContentsP points must be less than AFSPATHMAX (1,024) characters long.
Once the symbolic link has been successfully created, its file identifier is returned in
a newFidP. Existing callbacks to the a dirFidP directory are broken before the symbolic
link creation completes. The status fields for the symbolic link itself and its parent’s
directory are returned in a newFidStatP and a newDirStatP respectively.

Rx connection information for the related File Server is contained in a rxConnP. Volume
version information is returned for synchronization purposes in a volSyncP.

Error Codes

EACCES The caller does not have the necessary access rights.

EINVAL Illegal symbolic link name provided.

File Server Interfaces 47 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.9 RXAFS Link — Create a hard link

int RXAFS Link(IN struct rx connection *a rxConnP,

IN AFSFid *a dirFidP,

IN char *a nameP,

IN AFSFid *a existingFidP,

OUT AFSFetchStatus *a newFidStatP,

OUT AFSFetchStatus *a newDirStatP,

OUT AFSVolSync *a volSyncP)

Description

[Opcode 140] Create a hard link named a nameP in the directory identified by a dirFidP.
The file serving as the basis for the hard link is identified by existingFidP. The name
offered in a nameP must be less than AFSNAMEMAX (256) characters long. Existing call-
backs to the a dirFidP directory are broken before the hard link creation completes. The
status fields for the file itself and its parent’s directory are returned in a newFidStatP
and a newDirStatP respectively.

Rx connection information for the related File Server is contained in a rxConnP. Volume
version information is returned for synchronization purposes in a volSyncP.

Error Codes

EACCES The caller does not have the necessary access rights.

EISDIR An attempt was made to create a hard link to a directory.

EXDEV Hard link attempted across directories.

File Server Interfaces 48 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.10 RXAFS MakeDir — Create a directory

int RXAFS MakeDir(IN struct rx connection *a rxConnP,

IN AFSFid *a parentDirFid,P

IN char *a newDirNameP,

IN AFSStoreStatus *a currStatP,

OUT AFSFid *a newDirFidP,

OUT AFSFetchStatus *a dirFidStatP,

OUT AFSFetchStatus *a parentDirStatP,

OUT AFSCallBack *a newDirCallBackP,

OUT AFSVolSync *a volSyncP)

Description

[Opcode 141] Create a directory named a newDirNameP within the directory identi-
fied by a parentDirFidP. The initial status fields for the new directory are provided in
a currStatP. The new directory’s name must be less than AFSNAMEMAX (256) characters
long. The new directory’s ACL is inherited from its parent. Existing callbacks on the
parent directory are broken before the creation completes. Upon successful directory cre-
ation, the new directory’s file identifier is returned in a newDirFidP, and the resulting
status information for the new and parent directories are stored in a dirFidStatP and
a parentDirStatP respectively. In addition, a callback for the new directory is returned
in a newDirCallBackP.

Rx connection information for the related File Server is contained in a rxConnP. Volume
version information is returned for synchronization purposes in a volSyncP.

Error Codes

EACCES The caller does not have the necessary access rights.

EINVAL The directory name provided is unacceptable.

File Server Interfaces 49 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.11 RXAFS RemoveDir — Remove a directory

int RXAFS RemoveDir(IN struct rx connection *a rxConnP,

IN AFSFid *a parentDirFidP,

IN char *a dirNameP,

OUT AFSFetchStatus *a newParentDirStatP,

OUT AFSVolSync *a volSyncP)

Description

[Opcode 142] Remove the directory named a dirNameP from within its parent direc-
tory, identified by a parentDirFid. The directory being removed must be empty, and its
name must be less than AFSNAMEMAX (256) characters long. Existing callbacks to the
directory being removed and its parent directory are broken before the deletion com-
pletes. Upon successful deletion, the status fields for the parent directory are returned
in a newParentDirStatP.

Rx connection information for the related File Server is contained in a rxConnP. Volume
version information is returned for synchronization purposes in a volSyncP.

Error Codes

EACCES The caller does not have the necessary access rights.

File Server Interfaces 50 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.12 RXAFS GetStatistics — Get common File Server statistics

int RXAFS GetStatistics(IN struct rx connection *a rxConnP,

OUT ViceStatistics *a FSInfoP)

Description

[Opcode 146] Fetch the structure containing a set of common File Server statistics. These
numbers represent accumulated readings since the time the File Server last restarted.
For a full description of the individual fields contained in this structure, please see Section
5.1.2.6.

Rx connection information for the related File Server is contained in a rxConnP.

Error Codes

--- No error codes generated.

File Server Interfaces 51 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.13 RXAFS GiveUpCallBacks — Ask the File Server to break the
given set of callbacks on the corresponding set of file identifiers

int RXAFS GiveUpCallBacks(IN struct rx connection *a rxConnP,

IN AFSCBFids *a fidArrayP,

IN AFSCBs *a callBackArrayP)

Description

[Opcode 147] Given an array of up to AFSCBMAX file identifiers in a fidArrayP and a
corresponding number of callback structures in a callBackArrayP, ask the File Server
to remove these callbacks from its register. Note that this routine only affects callbacks
outstanding on the given set of files for the host issuing the RXAFS GiveUpCallBacks
call. Callback promises made to other machines on any or all of these files are not
affected.

Rx connection information for the related File Server is contained in a rxConnP.

Error Codes

EINVAL More file identifiers were provided in the a fidArrayP than callbacks in the
a callBackArray.

File Server Interfaces 52 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.14 RXAFS GetVolumeInfo — Get information about a volume
given its name

int RXAFS GetVolumeInfo(IN struct rx connection *a rxConnP,

IN char *a volNameP,

OUT VolumeInfo *a volInfoP)

Description

[Opcode 148] Ask the given File Server for information regarding a volume whose name
is a volNameP. The volume name must be less than AFSNAMEMAX characters long, and
the volume itself must reside on the File Server being probed.

Rx connection information for the related File Server is contained in a rxConnP. Please
note that definitions for the error codes with VL prefixes may be found in the vlserver.h
include file

Error Codes

1 Could not contact any of the corresponding Volume Location Servers.

VL BADNAME An improperly-formatted volume name provided.

VL ENTDELETED An entry was found for the volume, reporting that the volume has
been deleted.

VL NOENT The given volume was not found.

File Server Interfaces 53 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.15 RXAFS GetVolumeStatus — Get basic status information for
the named volume

int RXAFS GetVolumeStatus(IN struct rx connection *a rxConnP,

IN long a volIDP,

OUT AFSFetchVolumeStatus *a volFetchStatP,

OUT char *a volNameP,

OUT char *a offLineMsgP,

OUT char *a motdP)

Description

[Opcode 149] Given the numeric volume identifier contained in a volIDP, fetch the basic
status information corresponding to that volume. This status information is stored into
a volFetchStatP. A full description of this status structure is found in Section 5.1.2.8. In
addition, three other facts about the volume are returned. The volume’s character string
name is placed into a volNameP. This name is guaranteed to be less than AFSNAMEMAX

characters long. The volume’s offline message, namely the string recording why the vol-
ume is off-line (if it is), is stored in a offLineMsgP . Finally, the volume’s “Message of the
Day” is placed in a motdP. Each of the character strings deposited into a offLineMsgP
and a motdP is guaranteed to be less than AFSOPAQUEMAX (1,024) characters long.

Rx connection information for the related File Server is contained in a rxConnP.

Error Codes

EACCES The caller does not have the necessary access rights.

EINVAL A volume identifier of zero was specified.

File Server Interfaces 54 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.16 RXAFS SetVolumeStatus — Set the basic status information
for the named volume

int RXAFS SetVolumeStatus(IN struct rx connection *a rxConnP,

IN long a volIDP,

IN AFSStoreVolumeStatus *a volStoreStatP,

IN char *a volNameP,

IN char *a offLineMsgP,

IN char *a motdP)

Description

[Opcode 150] Given the numeric volume identifier contained in a volIDP, set that vol-
ume’s basic status information to the values contained in a volStoreStatP. A full de-
scription of the fields settable by this call, including the necessary masking, is found
in Section 5.1.2.9. In addition, three other items relating to the volume may be set.
Non-null character strings found in a volNameP, a offLineMsgP, and a motdP will be
stored in the volume’s printable name, off-line message, and “Message of the Day” fields
respectively. The volume name provided must be less than AFSNAMEMAX (256) characters
long, and the other two strings must be less than AFSOPAQUEMAX (1,024) characters long
each.

Rx connection information for the related File Server is contained in a rxConnP.

Error Codes

EACCES The caller does not have the necessary access rights.

EINVAL A volume identifier of zero was specified.

File Server Interfaces 55 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.17 RXAFS GetRootVolume — Return the name of the root vol-
ume for the file system

int RXAFS GetRootVolume(IN struct rx connection *a rxConnP,

OUT char *a rootVolNameP)

Description

[Opcode 151] Fetch the name of the volume which serves as the root of the AFS file
system and place it into a rootVolNameP. This name will always be less than AFSNAMEMAX
characters long. Any File Server will respond to this call, not just the one hosting the
root volume. The queried File Server first tries to discover the name of the root volume
by reading from the /usr/afs/etc/RootVolume file on its local disks. If that file doesn’t
exist, then it will return the default value, namely “root.afs”.

Rx connection information for the related File Server is contained in a rxConnP. Volume
version information is returned for synchronization purposes in a volSyncP.

Error Codes

--- No error codes generated.

File Server Interfaces 56 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.18 RXAFS CheckToken — (Obsolete) Check that the given user
identifier matches the one in the supplied authentication token

int RXAFS CheckToken(IN struct rx connection *a rxConnP,

IN long ViceId,

IN AFSOpaque *token)

Description

[Opcode 152] This function only works for the now-obsolete RPC facility used by AFS,
R. For modern systems using the Rx RPC mechanism, we always get an error return
from this routine.

Rx connection information for the related File Server is contained in a rxConnP.

Error Codes

ECONNREFUSED Always returned on Rx connections.

File Server Interfaces 57 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.19 RXAFS GetTime — Get the File Server’s time of day

int RXAFS GetTime(IN struct rx connection *a rxConnP,

OUT unsigned long *a secondsP,

OUT unsigned long *a uSecondsP)

Description

[Opcode 153] Get the current time of day from the File Server specified in the Rx con-
nection information contained in a rxConnP. The time is returned in elapsed seconds
(a secondsP) and microseconds (a uSecondsP) since that standard unix “start of the
world”.

Error Codes

--- No error codes generated.

File Server Interfaces 58 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.20 RXAFS NGetVolumeInfo — Get information about a volume
given its name

int RXAFS NGetVolumeInfo(IN struct rx connection *a rxConnP,

IN char *a volNameP,

OUT AFSVolumeInfo *a volInfoP)

Description

[Opcode 154] This function is identical to RXAFS GetVolumeInfo() (see Section 5.1.3.14),
except that it returns a struct AFSVolumeInfo instead of a struct VolumeInfo. The
basic difference is that struct AFSVolumeInfo also carries an accompanying UDP port
value for each File Server listed in the record.

File Server Interfaces 59 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.21 RXAFS BulkStatus — Fetch the status information regarding a
set of given file system objects

int RXAFS BulkStatus(IN struct rx connection *a rxConnP,

IN AFSCBFids *a fidToStatArrayP,

OUT AFSBulkStats *a currStatArrayP,

OUT AFSCBs *a callBackArrayP,

OUT AFSVolSync *a volSyncP)

Description

[Opcode 155] This routine is identical to RXAFS FetchStatus() as described in Section
5.1.3.2, except for the fact that it allows the caller to ask for the current status fields for
a set of up to AFSCBMAX (50) file identifiers at once.

Rx connection information for the related File Server is contained in a rxConnP. Volume
version information is returned for synchronization purposes in a volSyncP.

Error Codes

EACCES The caller does not have the necessary access rights.

EINVAL The number of file descriptors for which status information was requested
is illegal.

File Server Interfaces 60 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.22 RXAFS SetLock — Set an advisory lock on the given file identifier

int RXAFS SetLock(IN struct rx connection *a rxConnP,

IN AFSFid *a fidToLockP,

IN ViceLockType a lockType,

OUT AFSVolSync *a volSyncP)

Description

[Opcode 156] Set an advisory lock on the file identified by a fidToLockP. There are two
types of locks that may be specified via a lockType: LockRead and LockWrite. An
advisory lock times out after AFS LOCKWAIT (5) minutes, and must be extended in order
to stay in force (see RXAFS ExtendLock(), Section 5.1.3.23).

Rx connection information for the related File Server is contained in a rxConnP. Volume
version information is returned for synchronization purposes in a volSyncP.

Error Codes

EACCES The caller does not have the necessary access rights.

EINVAL An illegal lock type was specified.

EWOULDBLOCK The lock was already incompatibly granted to another party.

File Server Interfaces 61 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.23 RXAFS ExtendLock — Extend an advisory lock on a file

int RXAFS ExtendLock(IN struct rx connection *a rxConnP,

IN AFSFid *a fidToBeExtendedP,

OUT AFSVolSync *a volSyncP)

Description

[Opcode 157] Extend the advisory lock that has already been granted to the caller on
the file identified by a fidToBeExtendedP.

Rx connection information for the related File Server is contained in a rxConnP. Volume
version information is returned for synchronization purposes in a volSyncP.

Error Codes

EINVAL The caller does not already have the given file locked.

File Server Interfaces 62 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.24 RXAFS ReleaseLock — Release the advisory lock on a file

int RXAFS ReleaseLock(IN struct rx connection *a rxConnP,

IN AFSFid *a fidToUnlockP,

OUT AFSVolSync *a volSyncP)

Description

[Opcode 158] Release the advisory lock held on the file identified by a fidToUnlockP. If
this was the last lock on this file, the File Server will break all existing callbacks to this
file.

Rx connection information for the related File Server is contained in a rxConnP. Volume
version information is returned for synchronization purposes in a volSyncP.

Error Codes

EACCES The caller does not have the necessary access rights.

File Server Interfaces 63 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.25 RXAFS XStatsVersion — Get the version number associated
with the File Server’s extended statistics structure

int RXAFS XStatsVersion(IN struct rx connection *a rxConnP,

OUT long *a versionNumberP)

Description

[Opcode 159] This call asks the File Server for the current version number of the extended
statistics structures it exports (see RXAFS GetXStats(), Section 5.1.3.26). The version
number is placed into a versionNumberP.

Rx connection information for the related File Server is contained in a rxConnP.

Error Codes

--- No error codes generated.

File Server Interfaces 64 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.3.26 RXAFS GetXStats — Get the current contents of the specified
extended statistics structure

int RXAFS GetXStats(IN struct rx connection *a rxConnP,

IN long a clientVersionNumber,

IN long a collectionNumber,

OUT long *a srvVersionNumberP,

OUT long *a timeP,

OUT AFS CollData *a dataP)

Description

[Opcode 160] This function fetches the contents of the specified File Server extended
statistics structure. The caller provides the version number of the data it expects to
receive in a clientVersionNumber. Also provided in a collectionNumber is the numerical
identifier for the desired data collection. There are currently two of these data col-
lections defined: AFS XSTATSCOLL CALL INFO, which is the list of tallies of the number
of invocations of internal File Server procedure calls, and AFS XSTATSCOLL PERF INFO,
which is a list of performance-related numbers. The precise contents of these collections
are described in Sections 5.1.2.7. The current version number of the File Server col-
lections is returned in a srvVersionNumberP, and is always set upon return, even if the
caller has asked for a different version. If the correct version number has been specified,
and a supported collection number given, then the collection data is returned in a dataP.
The time of collection is also returned, being placed in a timeP.

Rx connection information for the related File Server is contained in a rxConnP.

Error Codes

--- No error codes are generated.

5.1.4 Streamed Function Calls

There are two streamed functions in the File Server RPC interface, used to fetch and store
arbitrary amounts of data from a file. While some non-streamed calls pass such variable-
length objects as struct AFSCBFids, these objects have a pre-determined maximum
size.

File Server Interfaces 65 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

The two streamed RPC functions are also distinctive in that their single Rxgen declara-
tions generate not one but two client-side stub routines. The first is used to ship the IN
parameters off to the designated File Server, and the second to gather the OUT parame-
ters and the error code. If a streamed definition declares a routine named X YZ(), the
two resulting stubs will be named StartX YZ() and EndX YZ(). It is the application
programmer’s job to first invoke StartX YZ(), then manage the unbounded data trans-
fer, then finish up by calling EndX YZ(). The first longword in the unbounded data
stream being fetched from a File Server contains the number of data bytes to follow.
The application then reads the specified number of bytes from the stream.

The following sections describe the four client-side functions resulting from the Fetch-
Data() and StoreData() declarations in the Rxgen interface definition file. These are
the actual routines the application programmer will include in the client code. For ref-
erence, here are the interface definitions that generate these functions. Note that the
split keyword is what causes Rxgen to generate the separate start and end routines.
In each case, the number after the equal sign specifies the function’s identifying opcode
number. The opcode is passed to the File Server by the StartRXAFS FetchData() and
StartRXAFS StoreData() stub routines.

FetchData(IN AFSFid *a_fidToFetchP,
IN long a_offset,
IN long a_lenInBytes,
OUT AFSFetchStatus *a_fidStatP,
OUT AFSCallBack *a_callBackP,
OUT AFSVolSync *a_volSyncP) split = 130;

StoreData(IN AFSFid *Fid,
IN AFSStoreStatus *InStatus,
IN long Pos,
IN long Length,
IN long FileLength,
OUT AFSFetchStatus *OutStatus,
OUT AFSVolSync *a_volSyncP) split = 133;

File Server Interfaces 66 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.4.1 StartRXAFS FetchData — Begin a request to fetch file data

int StartRXAFS FetchData(IN struct rx call *a rxCallP,

IN AFSFid *a fidToFetchP,

IN long a offset,

IN long a lenInBytes)

Description

Begin a request for a lenInBytes bytes of data starting at byte offset a offset from the
file identified by a fidToFetchP. After successful completion of this call, the data stream
will make the desired bytes accessible. The first longword in the stream contains the
number of bytes to actually follow.

Rx call information to the related File Server is contained in a rxCallP.

Error Codes

--- No error codes generated.

File Server Interfaces 67 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.4.2 EndRXAFS FetchData — Conclude a request to fetch file data

int EndRXAFS FetchData(IN struct rx call *a rxCallP,

OUT AFSFetchStatus *a fidStatP,

OUT AFSCallBack *a callBackP,

OUT AFSVolSync *a volSyncP)

Description

Conclude a request to fetch file data, as commenced by an StartRXAFS FetchData()
invocation. By the time this routine has been called, all of the desired data has been
read off the data stream. The status fields for the file from which the data was read are
stored in a fidStatP. If the file was from a read/write volume, its callback information is
placed in a callBackP.

Rx call information to the related File Server is contained in a rxCallP. Volume version
information is returned for synchronization purposes in a volSyncP.

Error Codes

EACCES The caller does not have the necessary access rights.

EIO Given file could not be opened or statted on the File Server, or there was an
error reading the given data off the File Server’s disk.

-31 An Rx write into the stream ended prematurely.

File Server Interfaces 68 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.4.3 StartRXAFS StoreData — Begin a request to store file data

int StartRXAFS StoreData(IN struct rx call *a rxCallP,

IN AFSFid *a fidToStoreP,

IN AFSStoreStatus *a fidStatusP,

IN long a offset,

IN long a lenInBytes,

IN long a fileLenInBytes)

Description

Begin a request to write a lenInBytes of data starting at byte offset a offset to the file
identified by a fidToStoreP, causing that file’s length to become a fileLenInBytes bytes.
After successful completion of this call, the data stream will be ready to begin accepting
the actual data being written.

Rx call information to the related File Server is contained in a rxCallP.

Error Codes

--- No error codes generated.

File Server Interfaces 69 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.4.4 EndRXAFS StoreData — Conclude a request to store file data

int EndRXAFS StoreData(IN struct rx call *a rxCallP,

OUT AFSFetchStatus *a fidStatP,

OUT AFSCallBack *a callBackP,

OUT AFSVolSync *a volSyncP)

Description

Conclude a request to store file data, as commenced by a StartRXAFS StoreData()
invocation. By the time this routine has been called, all of the file data has been inserted
into the data stream. The status fields for the file to which the data was written are
stored in a fidStatP. All existing callbacks to the given file are broken before the store
concludes.

Rx call information to the related File Server is contained in a rxCallP. Volume version
information is returned for synchronization purposes in a volSyncP.

Error Codes

EACCES The caller does not have the necessary access rights.

EISDIR The file being written to is a symbolic link.

ENOSPEC A write to the File Server’s file on local disk failed.

-32 A short read was encountered by the File Server on the data stream.

File Server Interfaces 70 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.5 Example of Streamed Function Call Usage

5.1.5.1 Preface

The following code fragment is offered as an example of how to use the streamed File
Server RPC calls. In this case, a client fetches some amount of data from the given
File Server and writes it to a local file it uses to cache the information. For simplicity,
many issues faced by a true application programmer are not addressed here. These
issues include locking, managing file chunking, data version number mismatches, volume
location, Rx connection management, defensive programming (e.g., checking parameters
before using them), client-side cache management algorithms, callback management,
and full error detection and recovery. Pseudocode is incorporated when appropriate to
keep the level of detail reasonable. For further descriptions of some of these details
and issues, the reader is referred to such companion documents as AFS-3 Programmer’s
Reference: Specification for the Rx Remote Procedure Call Facility, AFS-3 Programmer’s
Reference:Volume Server/Volume Location Server Interface, and AFS-3 Programmer’s
Reference: Architectural Overview.

A discussion of the methods used within the example code fragment follows immediately
afterwards in Section 5.1.5.3.

5.1.5.2 Code Fragment Illustrating Fetch Operation

int code; /*Return code*/
long bytesRead; /*Num bytes read from Rx*/
struct myConnInfo *connP; /*Includes Rx conn info*/
struct rx_call *rxCallP; /*Rx call ptr*/
struct AFSFid *afsFidP; /*Fid for file to fetch*/
int lclFid; /*Fid for local cache file*/
long offsetBytes; /*Starting fetch offset*/
long bytesToFetch; /*Num bytes to fetch*/
long bytesFromFS; /*Num bytes FileServer returns*/
char *fetchBuffP; /*Buffer to hold stream data*/
int currReadBytes; /*Num bytes for current read*/

/*
* Assume that connP, afsFidP, offsetBytes, lclFid,and
* bytesToFetch have all been given their desired values.
*/

.

.

.
rxCallP = rx_NewCall(connP->rxConnP);
code = StartRXAFS_FetchData(

rxCallP, /*Rx call to use*/

File Server Interfaces 71 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

afsFidP, /*Fid being fetched from*/
offsetBytes, /*Offset in bytes*/
bytesToFetch); /*Num bytes wanted*/

if (code == 0) {
bytesRead = rx_Read(rxCallP, &bytesFromFS, sizeof(long));
if (bytesRead != sizeof(long))

ExitWithError(SHORT_RX_READ);
bytesFromFS = ntohl(bytesFromFS);
xmitBuffer = malloc(FETCH_BUFF_BYTES);
lclFid = open(CacheFileName, O_RDWR, mode);
pos = lseek(lclFid, offsetBytes, L_SET);
while (bytesToFetch > 0) {

currReadBytes =
(bytesToFetch > FETCH_BUFF_BYTES) ?

FETCH_BUFF_BYTES : bytesToFetch;
bytesRead = rx_Read(rxCallP, fetchBuffP, currReadBytes);
if (bytesRead != currReadBytes)

ExitWithError(SHORT_RX_READ);
code = write(lclFid, fetchBuffP, currReadBytes);
if (code)

ExitWithError(LCL_WRITE_FAILED);
bytesToFetch -= bytesRead;

} /*Read from the Rx stream*/
close(lclFid);

}
else

ExitWithError(code);
code = EndRXAFS_FetchData(

rxCallP, /*Rx call to use*/
fidStatP, /*Resulting stat fields*/
fidCallBackP, /*Resulting callback info*/
volSynchP); /*Resulting volume sync info*/

code = rx_EndCall(rxCallP, code);
return(code);

.

.

.

5.1.5.3 Discussion and Analysis

The opening assumption in this discussion is that all the information required to do the
fetch has already been set up. These mandatory variables are the client-side connection
information for the File Server hosting the desired file, the corresponding AFS file iden-
tifier, the byte offset into the file, the number of bytes to fetch, and the identifier for the
local file serving as a cached copy.

Given the Rx connection information stored in the client’s connP record, rx NewCall() is
used to create a new Rx call to handle this fetch operation. The structure containing this

File Server Interfaces 72 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

call handle is placed into rxCallP. This call handle is used immediately in the invocation
of StartRXAFS FetchData(). If this setup call fails, the fragment exits. Upon success,
though, the File Server will commence writing the desired data into the Rx data stream.
The File Server first writes a single longword onto the stream announcing to the client
how many bytes of data will actually follow. The fragment reads this number with
its first rx Read() call. Since all Rx stream data is written in network byte order, the
fragment translates the byte count to its own host byte order first to properly interpret
it. Once the number of bytes to appear on the stream is known, the client code proceeds
to open the appropriate cache file on its own local disk and seeks to the appropriate spot
within it. A buffer into which the stream data will be placed is also created at this time.

The example code then falls into a loop where it reads all of the data from the File Server
and stores it in the corresponding place in the local cache file. For each iteration, the code
decides whether to read a full buffer’s worth or the remaining number of bytes, whichever
is smaller. After all the data is pulled off the Rx stream, the local cache file is closed. At
this point, the example finishes off the RPC by calling EndRXAFS FetchData(). This
gathers in the required set of OUT parameters, namely the status fields for the file just
fetched, callback and volume synchronization information, and the overall error code for
the streamed routine. The Rx call created to perform the fetch is then terminated and
cleaned up by invoking rx EndCall().

5.1.6 Required Caller Functionality

The AFS File Server RPC interface was originally designed to interact only with Cache
Manager agents, and thus made some assumptions about its callers. In particular, the
File Server expected that the agents calling it would potentially have stored callback state
on file system objects, and would have to be periodically pinged in order to garbage-
collect its records, removing information on dead client machines. Thus, any entity
making direct calls to this interface must mimic certain Cache Manager actions, and
respond to certain Cache Manager RPC interface calls.

To be safe, any application calling the File Server RPC interface directly should ex-
port the entire Cache Manager RPC interface. Realistically, though, it will only need
to provide stubs for the three calls from this interface that File Servers know how to
make: RXAFSCB InitCallBackState(), RXAFSCB Probe() and RXAFSCB CallBack().
The very first File Server call made by this application will prompt the given File Server
to call RXAFSCB InitCallBackState(). This informs the application that the File Server
has no record of its existence and hence this “Cache Manager” should clear all callback
information for that server. Once the application responds positively to the inital RX-
AFSCB InitCallBackState(), the File Server will treat it as a bona fide, fully-fledged

File Server Interfaces 73 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Cache Manager, and probe it every so often with RXAFSCB Probe() calls to make sure
it is still alive.

5.2 Signal Interface

While the majority of communication with AFS File Servers occurs over the RPC in-
terface, some important operations are invoked by sending unix signals to the process.
This section describes the set of signals recognized by the File Server and the actions
they trigger upon receipt, as summarized below:

• SIGQUIT: Shut down a File Server.

• SIGTSTP: Upgrade debugging output level.

• SIGHUP: Reset debugging output level.

• SIGTERM: Generate debugging output specifically concerning open files within the
File Server process.

5.2.1 SIGQUIT: Server Shutdown

Upon receipt of this signal, the File Server shuts itself down in an orderly fashion. It
first writes a message to the console and to its log file (/usr/afs/logs/FileLog) stating
that a shutdown has commenced. The File Server then flushes all modified buffers and
prints out a set of internal statistics, including cache and disk numbers. Finally, each
attached volume is taken offline, which means the volume header is written to disk with
the appropriate bits set.

In typical usage, human operators do not send the SIGQUIT signal directly to the File
Server in order to affect an orderly shutdown. Rather, the BOS Server managing the
server processes on that machine issues the signal upon receipt of a properly-authorized
shutdown RPC request.

5.2.2 SIGTSTP: Upgrade Debugging Level

Arrival of a SIGTSTP signal results in an increase of the debugging level used by the
File Server. The routines used for writing to log files are sensitive to this debugging

File Server Interfaces 74 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

level, as recorded in the global LogLevel variable. Specifically, these routines will only
generate output if the value of LogLevel is greater than or equal to the value of its
threshold parameter. By default, the File Server sets LogLevel to zero upon startup.
If a SIGTSTP signal is received when the debugging level is zero, it will be bumped to
1. If the signal arrives when the debugging level is positive, its value will be multiplied
by 5. Thus, as more SIGTSTPs are received, the set of debugging messages eligible to be
delivered to log files grows.

Since the SIGTSTP signal is not supported under IBM’s AIX 2.2.1 operating system, this
form of debugging output manipulation is not possible on those platforms.

5.2.3 SIGHUP: Reset Debugging Level

Receiving a SIGHUP signal causes a File Server to reset its debugging level to zero. This
effectively reduces the set of debugging messages eligible for delivery to log files to a bare
minimum. This signal is used in conjunction with SIGTSTP to manage the verbosity of
log information.

Since the SIGHUP signal is not supported under IBM’s AIX 2.2.1 operating system, this
form of debugging output manipulation is not possible on those platforms.

5.2.4 SIGTERM: File Descriptor Check

Receipt of a SIGTERM signal triggers a routine which sweeps through the given File
Server’s unix file descriptors. For each possible unix fid slot, an fstat() is performed
on that descriptor, and the particulars of each open file are printed out. This action is
designed solely for debugging purposes.

5.3 Command Line Interface

Another interface exported by the File Server is the set of command line switches it
accepts. Using these switches, many server parameters and actions can be set. Under
normal conditions, the File Server process is started up by the BOS Server on that
machine, as described in AFS-3 Programmer’s Reference: BOS Server Interface. So, in
order to utilize any combination of these command-line options, the system administra-
tor must define the File Server bnode in such a way that these parameters are properly
included. Note that the switch names must be typed exactly as listed, and that abbre-

File Server Interfaces 75 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

viations are not allowed. Thus, specifying -b 300 on the command line is unambiguous,
directing that 300 buffers are to be allocated. It is not an abbreviation for the -banner
switch, asking that a message is to be printed to the console periodically.

A description of the set of currently-supported command line switches follows.

• -b <# buffers> Choose the number of 2,048-byte data buffers to allocate at system
startup. If this switch is not provided, the File Server will operate with 70 such
buffers by default.

• -banner This switch instructs the File Server to print messages to the console
every 10 minutes to demonstrate it is still running correctly. The text of the
printed message is: File Server is running at <time>.

• -cb <# callbacks stored> Specify the maximum number of callback records stored
simultaneously by the File Server. The default pool size is 20,000 records.

• -d <debug level> Set the debugging output level at which File Server runs to the
value provided. Specifically, the LogLevel global variable is set to the given value
(See Section 5.2.2). If this switch is not provided, the default initial File Server
debugging level is set to zero, producing the minimal debugging output to the log
files.

• -k <stack size> Set the stack size to provide server LWPs upon creation, measured
in 1,024-byte blocks. The default LWP stack size is 24 blocks, or 24,576 bytes.

• -l <large (directory) vnodes> Select the number of “large” vnodes the File Server
will cache. These vnodes are suitable for recording information about AFS direc-
tories. The extra space in the vnode allows ACL information to be stored along
with the directory. The default allocation value is 200 directory vnodes.

• -pctspare <percent overrun blocks past quota> Similar to the -spare switch, ex-
cept that the number of allowable overrun blocks is expressed as a percentage of
the given volume’s quota. Note: this switch cannot be used in combination with
the -spare switch.

• -rxdbg Instruct the File Server to open a file named rx dbg in the current direc-
tory, into which the Rx package will write general debugging information. If the
file is already open (due to the appearance of the -rxdbge switch earlier in the
command line), this results in a no-op.

• -rxdbge Instruct the File Server to open a file named rx dbg in the current di-
rectory, into which the Rx package will write debugging information related to its
event-scheduling activities. If the file is already open (due to the appearance of the
-rxdbg switch earlier in the command line), this results in a no-op.

File Server Interfaces 76 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

• -rxpck <# packets> Set the number of extra Rx packet buffers to hold in re-
serve. These pre-allocated buffers assist in responding to spikes in network traffic
demands. By default, 100 such packet buffers are maintained.

• -s <small (file) vnodes> Select the number of “small” vnodes the File Server will
cache. These vnodes are suitable for recording information about non-directory
files. As with directory vnodes, the File Server will allocate 200 small vnodes by
default.

• -spare <# overrun blocks to allow> Tell the File Server to allow users performing
a store operation to overrun the host volume’s disk quota by a certain number of
(1,024-byte) blocks. In other words, the first store resulting in a quota overrun will
be allowed to succeed if and only if it uses no more than these many blocks beyond
the quota. Further store operations will be rejected until the volume’s storage is
once again reduced below quota. By default, overruns of 1,024 blocks of 1,024
bytes each (1 megabyte total) are tolerated. Note: this switch cannot be used in
combination with the -pctspare switch.

• -w <callback wait interval in seconds> This switch determines how often the File
Server periodic daemon lightweight processes run. Among other things, these
daemon LWPs check on the validity of callback records, keep disk usage statistics up
to date, and check the health of the various client machines that have previously
interacted with the File Server. For a full description of these daemon LWPs,
consult Section 2.3. The associated argument specifies the number of seconds to
sleep between daemon invocations. By default, these periodic daemons run every
300 seconds (5 minutes).

File Server Interfaces 77 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Chapter 6

Cache Manager Interfaces

6.1 Overview

There are several interfaces offered by the Cache Manager, allowing clients to access the
files stored by the community of AFS File Servers, to configure the Cache Manager’s
behavior and resources, to store and retrieve authentication information, to specify the
location of community Authentication Server and Volume Location Server services, and
to observe and debug the Cache Manager’s state and actions. This chapter will cover
the following five interfaces to the Cache Manager:

• ioctl(): The standard unix ioctl() system call has been extended to include
more operations, namely waiting until data stores to a File Server complete before
returning to the caller (VIOCCLOSEWAIT) and getting the name of the cell in which
an open file resides (VIOCIGETCELL).

• pioctl(): An additional system call is provided through which applications can
access operations specific to AFS, which are often tied to a particular pathname.
These operations include Access Control List (ACL) and mount point management,
Kerberos ticket management, cache configuration, cell configuration, and status of
File Servers.

• RPC: Interface by which outside servers and investigators can manipulate the
Cache Manager. There are two main categories of routines: callback management,
typically called by the File Server, and debugging/statistics, called by programs
such as cmdebug and via the xstat user-level library for collection of extended
statistics.

Cache Manager Interfaces 78 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

• Files: Much of the Cache Manager’s configuration information, as well as its
view of the AFS services available from the outside world, is obtained from pars-
ing various files. One set of these files is typically located in /usr/vice/etc, and
includes CellServDB, ThisCell, and cacheinfo. Another set is usually found in
/usr/vice/cache, namely CacheItems, VolumeItems, and AFSLog.

• Mariner: This is the interface by which file transfer activity between the Cache
Manager and File Servers may be monitored. Specifically, it is used to monitor the
names of the files and directories being fetched and/or stored over the network.

Another important component not described in this document is the afsd program. It
is afsd’s job to initialize the Cache Manager on a given machine and to start up its
related daemon threads. It accepts a host of configuration decisions via its command-
line interface. In addition, it parses some of the information kept in the configuration
files mentioned above and passes that information to the Cache Manager. The reader
may find a full description of afsd in the AFS 3.0 Command Reference Manual[2].

6.2 Definitions

This section defines data structures that are used by the pioctl() calls.

6.2.1 struct VenusFid

The Cache Manager is the sole active AFS agent aware of the cellular architecture of the
system. Since AFS file identifiers are not guaranteed to be unique across cell boundaries,
it must further qualify them for its own internal bookkeeping. The struct VenusFid

provides just such additional qualification, attaching the Cache Manager’s internal cell
identifier to the standard AFS fid.

Fields

long Cell - The internal identifier for the cell in which the file resides.

struct ViceFid Fid - The AFS file identifier within the above cell.

Cache Manager Interfaces 79 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.2.2 struct ClearToken

This is the clear-text version of an AFS token of identity. Its fields are encrypted into
the secret token format, and are made easily available to the Cache Manager in this
structure.

Fields

long AuthHandle - Key version number.

char HandShakeKey[8] - Session key.

long ViceId - Identifier for the AFS principal represented by this token.

long BeginTimestamp - Timestamp of when this token was minted, and hence came
into effect.

long EndTimestamp - Timestamp of when this token is considered to be expired,
and thus disregarded.

6.3 ioctl() Interface

The standard unix ioctl() system call performs operations on file system objects ref-
erenced with an open file descriptor. AFS has augmented this system call with two
additional operations, one to perform “safe stores”, and one to get the name of the cell
in which a file resides. A third ioctl() extension is now obsolete, namely aborting a store
operation currently in progress.

6.3.1 VIOCCLOSEWAIT

[Opcode 1] Normally, a client performing a unix close() call on an AFS file resumes
once the store operation on the given file data to the host File Server has commenced
but before it has completed. Thus, it is possible that the store could actually fail (say,
because of network partition or server crashes) without the client’s knowledge. This
new ioctl opcode specifies to the Cache Manager that all future close() operations will
wait until the associated store operation to the File Server has completed fully before
returning.

Cache Manager Interfaces 80 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.3.2 VIOCABORT

[Opcode 2] This ioctl() extension is now obsolete. This call results in a noop.

The original intention of this call was to allow a store operation currently in progress to
a File Server on the named fid to be aborted.

6.3.3 VIOIGETCELL

[Opcode 3] Get the name of the cell in which the given fid resides. If the file is not an
AFS file, then ENOTTY is returned. The output buffer specified in the data area must
be large enough to hold the null-terminated string representing the file’s cell, otherwise
EFAULT is returned. However, an out size value of zero specifies that the cell name is
not to be copied into the output buffer. In this case, the caller is simply interested in
whether the file is in AFS, and not its exact cell of residence.

6.4 pioctl() Interface

6.4.1 Introduction

There is a new unix system call, pioctl(), which has been defined especially to support
the AFS Cache Manager. Its functional definition is as follows:

int afs syscall pioctl(IN char *a pathP,

IN int a opcode,

IN struct ViceIoctl *a paramsP,

IN int a followSymLinks)

This new call is much like the standard ioctl() call, but differs in that the affected file
(when applicable) is specified by its path, not by a file descriptor. Another difference is
the fourth parameter, a followSymLinks, determines which file should be used should
a pathP be a symbolic link. If a followSymLinks be set to 1, then the symbolic link is fol-
lowed to its target, and the pioctl() is applied to that resulting file. If a followSymLinks
is set to 0, then the pioctl() applies to the symbolic link itself.

Cache Manager Interfaces 81 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Not all pioctl() calls affect files. In those cases, the a pathP parameter should be set
to a null pointer. The second parameter to pioctl(), a opcode, specifies which operation
is to be performed. The opcode for each of these operations is included in the text of
the description. Note that not all pioctl() opcodes are in use. These unused values
correspond to obsolete operations.

The descriptions that follow identify some of the possible error codes for each pioctl()
opcode, but do not offer a comprehensive lists. All pioctl() calls return 0 upon success.

The rest of this section proceeds to describe the individual opcodes available. First,
though, one asymmetry in this opcode set is pointed out, namely that while various
operations are defined on AFS mount points, there is no direct way to create a mount
point.

This documentation partitions the pioctl() into several groups:

• Volume operations

• File Server operations

• Cell Operations

• Authentication Operations

• ACL Operations

• Cache operations

• Miscellaneous operations

For all pioctl()s, the fields within the a paramsP parameter will be referred to directly.
Thus, the values of in, in size, out, and out size are discussed, rather than the settings
for a paramsP->in, a paramsP->in size, a paramsP->out, and a paramsP->out size.

For convenience of reference, a list of the actively-supported pioctl()s, their opcodes,
and brief description appears (in opcode order) below.

• [1] VIOCSETAL : Set the ACL on a directory

• [2] VIOCGETAL : Get the ACL for a directory

• [3] VIOCSETTOK : Set the caller’s token for a cell

• [4] VIOCGETVOLSTAT : Get volume status

Cache Manager Interfaces 82 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

• [5] VIOCSETVOLSTAT : Set volume status

• [6] VIOCFLUSH : Flush an object from the cache

• [8] VIOCGETTOK : Get the caller’s token for a cell

• [9] VIOCUNLOG : Discard authentication information

• [10] VIOCCKSERV : Check the status of one or more File Servers

• [11] VIOCCKBACK : Mark cached volume info as stale

• [12] VIOCCKCONN : Check caller’s tokens/connections

• [14] VIOCWHEREIS : Find host(s) for a volume

• [20] VIOCACCESS : Check caller’s access on object

• [21] VIOCUNPAG : See [9] VIOCUNLOG

• [22] VIOCGETFID : Get fid for named object

• [24] VIOCSETCACHESIZE : Set maximum cache size in blocks

• [25] VIOCFLUSHCB : Unilaterally drop a callback

• [26] VIOCNEWCELL : Set cell service information

• [27] VIOCGETCELL : Get cell configuration entry

• [28] VIOCAFS DELETE MT PT : Delete a mount point

• [29] VIOC AFS STAT MT PT : Get the contents of a mount point

• [30] VIOC FILE CELL NAME : Get cell hosting a given object

• [31] VIOC GET WS CELL : Get caller’s home cell name

• [32] VIOC AFS MARINER HOST : Get/set file transfer monitoring output

• [33] VIOC GET PRIMARY CELL : Get the caller’s primary cell

• [34] VIOC VENUSLOG : Enable/disable Cache Manager logging

• [35] VIOC GETCELLSTATUS : Get status info for a cell entry

• [36] VIOC SETCELLSTATUS : Set status info for a cell entry

• [37] VIOC FLUSHVOLUME : Flush cached data from a volume

Cache Manager Interfaces 83 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

• [38] VIOC AFS SYSNAME : Get/set the @sys mapping

• [39] VIOC EXPORTAFS : Enable/disable NFS/AFS translation

• [40] VIOCGETCACHEPARAMS : Get current cache parameter values

6.4.2 Mount Point Asymmetry

There is an irregularity which deserves to be mentioned regarding the pioctl() in-
terface. There are pioctl() operations for getting information about a mount point
(VIOC AFS STAT MT PT) and for deleting a mount point (VIOC AFS DELETE MT PT), but
no operation for creating mount points. To create a mount point, a symbolic link obey-
ing a particular format must be created. The first character must be either a “%” or a
“#”, depending on the type of mount point being created (see the discussion in Section
6.4.4.4). If the mount point carries the name of the cell explicitly, the full cell name will
appear next, followed by a colon. In all cases, the next portion of the mount point is
the volume name. By convention, the last character of a mount point must always be a
period (“.”). This trailing period is not visible in the output from fs lsmount.

6.4.3 Volume Operations

There are several pioctl() opcodes dealing with AFS volumes. It is possible to get and set
volume information (VIOCGETVOLSTAT, VIOCSETVOLSTAT), discover which volume hosts
a particular file system object (VIOCWHEREIS), remove all objects cached from a given
volume (VIOC FLUSHVOLUME), and revalidate cached volume information (VIOCCKBACK).

6.4.3.1 VIOCGETVOLSTAT: Get volume status for pathname

[Opcode 4] Fetch information concerning the volume that contains the file system object
named by a pathP. There is no other input for this call, so in size should be set to zero.
The status information is placed into the buffer named by out, if out size is set to a value
of sizeof(struct VolumeStatus) or larger. Included in the volume information are the
volume’s ID, quota, and number of blocks used in the volume as well as the disk partition
on which it resides. Internally, the Cache Manager calls the RXAFS GetVolumeInfo()
RPC (See Section 5.1.3.14) to fetch the volume status.

Among the possible error returns, EINVAL indicates that the object named by a pathP
could not be found.

Cache Manager Interfaces 84 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.4.3.2 VIOCSETVOLSTAT: Set volume status for pathname

[Opcode 5] Set the status fields for the volume hosting the file system object named by
a pathP. The first object placed into the input buffer in is the new status image. Only
those fields that may change, namely MinQuota and MaxQuota fields, are interpreted
upon receipt by the File Server, and are set to the desired values. Immediately after the
struct VolumeStatus image, the caller must place the null-terminated string name of
the volume involved in the input buffer. New settings for the offline message and MOTD
(Message of the Day) strings may appear after the volume name. If there are no changes
in the offline and/or MOTDmessages, a null string must appear for that item. The in size
parameter must be set to the total number of bytes so inserted, including the nulls after
each string. Internally, the Cache Manager calls the RXAFS SetVolumeStatus() RPC
(See Section 5.1.3.16) to store the new volume status.

Among the possible error returns, EINVAL indicates that the object named by a pathP
could not be found.

6.4.3.3 VIOCWHEREIS: Find the server(s) hosting the pathname’s volume

[Opcode 14] Find the set of machines that host the volume in which the file system object
named by a pathP resides. The input buffer in is not used by this call, so in size should
be set to zero. The output buffer indicated by out is filled with up to 8 IP addresses,
one for each File Server hosting the indicated volume. Thus, out size should be set to
at least (8*sizeof(long)). This group of hosts is terminated by the first zeroed IP
address that appears in the list, but under no circumstances are more than 8 host IP
addresses returned.

Among the possible error returns is EINVAL, indicating that the pathname is not in AFS,
hence is not contained within a volume. If ENODEV is returned, the associated volume
information could not be obtained.

6.4.3.4 VIOC FLUSHVOLUME: Flush all data cached from the pathname’s volume

[Opcode 37] Determine the volume in which the file system object named by a pathP
resides, and then throw away all currently cached copies of files that the Cache Manager
has obtained from that volume. This call is typically used should a user suspect there is
some cache corruption associated with the files from a given volume.

Cache Manager Interfaces 85 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.4.3.5 VIOCCKBACK: Check validity of all cached volume information

[Opcode 11] Ask the Cache Manager to check the validity of all cached volume informa-
tion. None of the call’s parameters are referenced in this call, so a pathP and in should
be set to the null pointer, and in size and out size should be set to zero.

This operation is performed in two steps:

1. The Cache Manager first refreshes its knowledge of the root volume, usually named
root.afs. On success, it wakes up any of its own threads waiting on the arrival of
this information, should it have been previously unreachable. This typically hap-
pens should the Cache Manager discover in its startup sequence that information
on the root volume is unavailable. Lacking this knowledge at startup time, the
Cache Manager settles into a semi-quiescent state, checking every so often to see
if volume service is available and thus may complete its own initialization.

2. Each cached volume record is flagged as being stale. Any future attempt to access
information from these volumes will result in the volume record’s data first being
refreshed from the Volume Location Server.

6.4.4 File Server Operations

One group of pioctl() opcodes is aimed at performing operations against one or more File
Servers directly. Specifically, a caller may translate a pathname into the corresponding
AFS fid (VIOCGETFID), unilaterally discard a set of callback promises (VIOCFLUSHCB), get
status on mount points (VIOC AFS STAT MT PT), delete unwanted mount points (VIOC AFS DELETE MT PT),
and check the health of a group of File Servers (VIOCCKSERV).

6.4.4.1 VIOCGETFID: Get augmented fid for named file system object

[Opcode 22] Return the augmented file identifier for the file system object named by
a pathP. The desired struct VenusFid is placed in the output buffer specified by out.
The output buffer size, as indicated by the out size parameter, must be set to the value
of sizeof(struct VenusFid) or greater. The input buffer is not referenced in this call,
so in should be set to the null pointer and in size set to zero.

Among the possible error returns, EINVAL indicates that the object named by a pathP
was not found.

Cache Manager Interfaces 86 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.4.4.2 VIOCFLUSHCB: Unilaterally drop a callback

[Opcode 25] Remove any callback information kept by the Cache Manager on the file
system object named by a pathP. Internally, the Cache Manager executes a call to the
RXAFS GiveUpCallBacks() RPC (See Section 5.1.3.13) to inform the appropriate File
Server that it is being released from its particular callback promise. Note that if the
named file resides on a read-only volume, then the above call is not made, and success
is returned immediately. This optimization is possible because AFS File Servers do not
grant callbacks on files from read-only volumes.

Among the possible error returns is EINVAL, which indicates that the object named by
a pathP was not found.

6.4.4.3 VIOC AFS DELETE MT PT: Delete a mount point

[Opcode 28] Remove an AFS mount point. The name of the directory in which the mount
point exists is specified by a pathP, and the string name of the mount point within this
directory is provided through the in parameter. The input buffer length, in size, is set to
the length of the mount point name itself, including the trailing null. The output buffer
is not accessed by this call, so out should be set to the null pointer and out size to zero.

One important note is that the a followSymLinks argument must be set to zero for
correct operation. This is counter-intuitive, since at first glance it seems that a sym-
bolic link that resolves to a directory should be a valid pathname parameter. However,
recall that mount points are implemented as symbolic links that do not actually point
to another file system object, but rather simply contain cell and volume information
(see the description in Section 6.4.2). This “special” symbolic link must not be resolved
by the pioctl(), but rather presented as-is to the Cache Manager, which then properly
interprets it and generates a reference to the given volume’s root directory. As an unfor-
tunate side-effect, a perfectly valid symbolic link referring to a directory will be rejected
out of hand by this operation as a value for the a pathP parameter.

Among the possible error returns, EINVAL reports that the named directory was not
found, and ENOTDIR indicates that the pathname contained within a pathP is not a
directory.

6.4.4.4 VIOC AFS STAT MT PT: Get the contents of a mount point

[Opcode 29] Return the contents of the given mount point. The directory in which the
mount point in question resides is provided via the a pathP argument, and the in buffer

Cache Manager Interfaces 87 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

contains the name of the mount point object within this directory. As usual, in size is
set to the length of the input buffer, including the trailing null. If the given object is
truly a mount point and the out buffer is large enough (its length appears in out size),
the mount point’s contents are stored into out.

The mount point string returned obeys a stylized format, as fully described in Section
5.6.2 of the AFS 3.0 System Administrator’s Guide[1]. Briefly, a leading pound sign
(“#”) indicates a standard mount point, inheriting the read-only or read-write prefer-
ences of the mount point’s containing volume. On the other hand, a leading percent sign
(“%”) advises the Cache Manager to cross into the read-write version of the volume,
regardless of the existence of read-only clones. If a colon (“:”) separator occurs, the
portion up to the colon itself denotes the fully-qualified cell name hosting the volume.
The rest of the string is the volume name itself.

Among the possible error codes is EINVAL, indicating that the named object is not an AFS
mount point. Should the name passed in a pathP be something other than a directory,
then ENOTDIR is returned.

6.4.4.5 VIOCCKSERV: Check the status of one or more File Servers

[Opcode 10] Check the status of the File Servers that have been contacted over the
lifetime of the Cache Manager. The a pathP parameter is ignored by this call, so it
should be set to the null pointer. The input parameters as specified by in are completely
optional. If something is placed in the input buffer, namely in size is not zero, then
the first item stored there is a longword used as a bit array of flags. These flags carry
instructions as to the domain and the “thoroughness” of this check.

Only the settings of the least-significant two bits are recognized. Enabling the lowest bit
tells the Cache Manager not to ping its list of servers, but simply report their status as
contained in the internal server records. Enabling the next-higher bit limits the search
to only those File Servers in a given cell. If in size is greater than sizeof(long), a
null-terminated cell name string follows the initial flag array, specifying the cell to check.
If this search bit is set but no cell name string follows the longword of flags, then the
search is restricted to those servers contacted from the same cell as the caller.

This call returns at least one longword into the output buffer out, specifying the number
of hosts it discovered to be down. If this number is not zero, then the longword IP
address for each dead (or unreachable) host follows in the output buffer. At most 16
server addresses will be returned, as this is the maximum number of servers for which
the Cache Manager keeps information.

Among the possible error returns is ENOENT, indicating that the optional cell name string

Cache Manager Interfaces 88 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

input value is not known to the Cache Manager.

6.4.5 Cell Operations

The Cache Manager is the only active AFS agent that understands the system’s cel-
lular architecture. Thus, it keeps important information concerning the identities of
the cells in the community, which cell is in direct administrative control of the ma-
chine upon which it is running, status and configuration of its own cell, and what
cell-specific operations may be legally executed. The following pioctl()s allow client
processes to access and update this cellular information. Supported operations include
adding or updating knowledge of a cell, including the cell overseeing the caller’s machine
(VIOCNEWCELL), fetching the contents of a cell configuration entry (VIOCGETCELL), find-
ing out which cell hosts a given file system object (VIOC FILE CELL NAME), discovering
the cell to which the machine belongs (VIOC GET WS CELL), finding out the caller’s “pri-
mary” cell (VIOC GET PRIMARY CELL), and getting/setting certain other per-cell system
parameters (VIOC GETCELLSTATUS, VIOC SETCELLSTATUS).

6.4.5.1 VIOCNEWCELL: Set cell service information

[Opcode 26] Give the Cache Manager all the information it needs to access an AFS cell.
Exactly eight longwords are placed at the beginning of the in input buffer. These specify
the IP addresses for the machine providing AFS authentication and volume location
authentication services. The first such longword set to zero will signal the end of the list
of server IP addresses. After these addresses, the input buffer hosts the null-terminated
name of the cell to which the above servers belong. The a pathP parameter is not used,
and so should be set to the null pointer.

Among the possible error returns is EACCES, indicating that the caller does not have
the necessary rights to perform the operation. Only root is allowed to set cell server
information. If either the IP address array or the server name is unacceptable, EINVAL
will be returned.

6.4.5.2 VIOCGETCELL: Get cell configuration entry

[Opcode 27] Get the i’th cell configuration entry known to the Cache Manager. The
index of the desired entry is placed into the in input buffer as a longword, with the
first legal value being zero. If there is a cell associated with the given index, the output
buffer will be filled with an array of 8 longwords, followed by a null-terminated string.

Cache Manager Interfaces 89 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

The longwords correspond to the list of IP addresses of the machines providing AFS
authentication and volume location services. The string reflects the name of the cell
for which the given machines are operating. There is no explicit count returned of the
number of valid IP addresses in the longword array. Rather, the list is terminated by
the first zero value encountered, or when the eighth slot is filled.

This routine is intended to be called repeatedly, with the index starting at zero and
increasing each time. The array of cell information records is kept compactly, without
holes. A return value of EDOM indicates that the given index does not map to a valid
entry, and thus may be used as the terminating condition for the iteration.

6.4.5.3 VIOC FILE CELL NAME: Get cell hosting a given object

[Opcode 30] Ask the Cache Manager to return the name of the cell in which the file system
object named by a pathP resides. The input arguments are not used, so in should be
set to the null pointer and in size should be set to zero. The null-terminated cell name
string is returned in the out output buffer.

Among the possible error values, EINVAL indicates that the pathname provided in a pathP
is illegal. If there is no cell information associated with the given object, ESRCH is
returned.

6.4.5.4 VIOC GET WS CELL: Get caller’s home cell name

[Opcode 31] Return the name of the cell to which the caller’s machine belongs. This cell
name is returned as a null-terminated string in the output buffer. The input arguments
are not used, so in should be set to the null pointer and in size should be set to zero.

Among the possible error returns is ESRCH, stating that the caller’s home cell information
was not available.

6.4.5.5 VIOC GET PRIMARY CELL: Get the caller’s primary cell

[Opcode 33] Ask the Cache Manager to return the name of the caller’s primary cell.
Internally, the Cache Manager scans its user records, and the cell information referenced
by that record is used to extract the cell’s string name. The input arguments are not
used, so in should be set to the null pointer and in size should be set to zero. The
a pathP pathname argument is not used either, and should similarly be set to the null

Cache Manager Interfaces 90 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

pointer. The null-terminated cell name string is placed into the output buffer pointed
to by out if it has sufficient room.

Among the possible error returns is ESRCH, stating that the caller’s primary cell infor-
mation was not available.

6.4.5.6 VIOC GETCELLSTATUS: Get status info for a cell entry

[Opcode 35] Given a cell name, return a single longword of status flags from the Cache
Manager’s entry for that cell. The null-terminated cell name string is expected to be in
the in parameter, with in size set to its length plus one for the trailing null. The status
flags are returned in the out buffer, which must have out size set to sizeof(long) or
larger.

The Cache Manager defines the following output flag values for this operation:

• 0x1 This entry is considered the caller’s primary cell.

• 0x2 The unix setuid() operation is not honored.

• 0x4 An obsolete version of the Volume Location Server’s database is being used.
While defined, this flag should no longer be set in modern systems.

Among the possible error returns is ENOENT, informing the caller that the Cache Manager
has no knowledge of the given cell name.

6.4.5.7 VIOC SETCELLSTATUS: Set status info for a cell entry

[Opcode 36] Given a cell name and an image of the cell status bits that should be set,
record the association in the Cache Manager. The input buffer in must be set up as
follows. The first entry is the longword containing the cell status bits to be set (see
the VIOC GETCELLSTATUS description above for valid flag definitions). The next entry is
another longword, ignored by the Cache Manager. The third and final entry in the input
buffer is a null-terminated string containing the name of the cell for which the status
flags are to be applied.

Among the possible error returns is ENOENT, reflecting the Cache Manager’s inability to
locate its record for the given cell. Only root is allowed to execute this operation, and
an EACCES return indicates the caller was not effectively root when the call took place.

Cache Manager Interfaces 91 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.4.6 Authentication Operations

The Cache Manager serves as the repository for authentication information for AFS
clients. Each client process belongs to a single Process Authentication Group
(PAG). Each process in a given PAG shares authentication information with the other
members, and thus has the identical rights with respect to AFS Access Control Lists
(ACLs) as all other processes in the PAG. As the Cache Manager interacts with File
Servers as a client process’ agent, it automatically and transparently presents the appro-
priate authentication information as required in order to gain the access to which the
caller is entitled. Each PAG can host exactly one token per cell. These tokens are objects
that unequivocally codify the principal’s identity, and are encrypted for security. Token
operations between a Cache Manager and File Server are also encrypted, as are the
interchanges between clients and the Authentication Servers that generate these tokens.

There are actually two different flavors of tokens, namely clear and secret. The data
structure representing clear tokens is described in Section 6.2.2, and the secret token
appears as an undifferentiated byte stream.

This section describes the operations involving these tokens, namely getting and setting
the caller’s token for a particular cell (VIOCGETTOK, VIOCSETTOK), checking a caller’s ac-
cess on a specified file system object (VIOCACCESS), checking the status of caller’s tokens
associated with the set of File Server connections maintained on its behalf (VIOCCKCONN),
and discarding tokens entirely (VIOCUNLOG, VIOCUNPAG). These abilities are used by such
programs as login, klog, unlog, and tokens, which must generate, manipulate, and/or
destroy AFS tokens.

6.4.6.1 VIOCSETTOK: Set the caller’s token for a cell

[Opcode 3] Store the caller’s secret and clear tokens within the Cache Manager. The
input buffer is used to hold the following quantities, laid out end to end. The first item
placed in the buffer is a longword, specifying the length in bytes of the secret token,
followed by the body of the secret token itself. The next field is another longword,
this time describing the length in bytes of the struct ClearToken, followed by the
structure. These are all required fields. The caller may optionally include two additional
fields, following directly after the required ones. The first optional field is a longword
which is set to a non-zero value if the cell in which these tokens were generated is to be
marked as the caller’s primary cell. The second optional argument is a null-terminated
string specifying the cell in which these tokens apply. If these two optional arguments
do not appear, the Cache Manager will default to using its home cell and marking the
entry as non-primary. The a pathP pathname parameter is not used, and thus should be

Cache Manager Interfaces 92 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

set to the null pointer.

If the caller does not have any tokens registered for the cell, the Cache Manager will
store them. If the caller already has tokens for the cell, the new values will overwrite
their old values. Because these are stored per PAG, the new tokens will thus determine
the access rights of all other processes belonging to the PAG.

Among the possible error returns is ESRCH, indicating the named cell is not recognized,
and EIO, if information on the local cell is not available.

6.4.6.2 VIOCGETTOK: Get the caller’s token for a cell

[Opcode 8] Get the specified authentication tokens associated with the caller. The
a pathP parameter is not used, so it should be set to the null pointer. Should the
input parameter in be set to a null pointer, then this call will place the user’s tokens
for the machine’s home cell in the out output buffer, if such tokens exist. In this case,
the following objects are placed in the output buffer. First, a longword specifying the
number of bytes in the body of the secret token is delivered, followed immediately by the
secret token itself. Next is a longword indicating the length in bytes of the clear token,
followed by the clear token. The input parameter may also consist of a single longword,
indicating the index of the token desired. Since the Cache Manager is capable of storing
multiple tokens per principal, this allows the caller to iteratively extract the full set of
tokens stored for the PAG. The first valid index value is zero. The list of tokens is kept
compactly, without holes. A return value of EDOM indicates that the given index does
not map to a valid token entry, and thus may be used as the terminating condition for
the iteration.

Other than EDOM, another possible error return is ENOTCONN, specifying that the caller
does not have any AFS tokens whatsoever.

6.4.6.3 VIOCACCESS: Check caller’s access on object

[Opcode 20] This operation is used to determine whether the caller has specific access
rights on a particular file system object. A single longword is placed into the input
buffer, in, representing the set of rights in question. The acceptable values for these
access rights are listen in Section 6.4.5. The object to check is named by the a pathP
parameter. The output parameters are not accessed, so out should be set to the null
pointer, and out size set to zero.

If the call returns successfully, the caller has at least the set of rights denoted by the bits

Cache Manager Interfaces 93 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

set in the input buffer. Otherwise, EACCESS is returned.

6.4.6.4 VIOCCKCONN: Check status of caller’s tokens/connections

[Opcode 12] Check whether the suite of File Server connections maintained on behalf
of the caller by the Cache Manager has valid authentication tokens. This function
always returns successfully, communicating the health of said connections by writing a
single longword value to the specified output buffer in out. If zero is returned to the
output buffer, then two things are true. First, the caller has tokens for at least one
cell. Second, all tokens encountered upon a review of the caller’s connections have been
properly minted (i.e., have not been generated fraudulently), and, in addition, have not
yet expired. If these conditions do not currently hold for the caller, then the output
buffer value will be set to EACCES. Neither the a pathP nor input parameters are used by
this call.

6.4.6.5 VIOCUNLOG: Discard authentication information

[Opcode 9] Discard all authentication information held in trust for the caller. The Cache
Manager sweeps through its user records, destroying all of the caller’s associated token
information. This results in reducing the rights of all processes within the caller’s PAG
to the level of file system access granted to the special system:anyuser group.

This operation always returns successfully. None of the parameters are referenced, so
they should all be set to null pointers and zeroes as appropriate.

6.4.6.6 VIOCUNPAG: Discard authentication information

[Opcode 21] This call is essentially identical to the VIOCUNLOG operation, and is in fact
implemented internally by the same code for VIOCUNLOG.

6.4.7 ACL Operations

This set of opcodes allows manipulation of AFS Access Control Lists (ACLs). Callers
are allowed to fetch the ACL on a given directory, or to set the ACL on a directory.
In AFS-3, ACLs are only maintained on directories, not on individual files. Thus, a
directory ACL determines the allowable accesses on all objects within that directory in
conjunction with their normal unix mode (owner) bits. Should the a pathP parameter

Cache Manager Interfaces 94 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

specify a file instead of a directory, the ACL operation will be performed on the directory
in which the given file resides.

These pioctl() opcodes deal only in external formats for ACLs, namely the actual text
stored in an AFS ACL container. This external format is a character string, composed of
a descriptive header followed by some number of individual principal-rights pairs. AFS
ACLs actually specify two sublists, namely the positive and negative rights lists. The
positive list catalogues the set of rights that certain principals (individual users or groups
of users) have, while the negative list contains the set of rights specifically denied to the
named parties.

These external ACL representations differ from the internal format generated by the
Cache Manager after a parsing pass. The external format may be easily generated from
the internal format as follows. The header format is expressed with the following printf()
statement:

printf("%d\n%d\n", NumPositiveEntries, NumNegativeEntries);

The header first specifies the number of entries on the positive rights list, which appear
first in the ACL body. The number of entries on the negative list is the second item in
the header. The negative entries appear after the last positive entry.

Each entry in the ACL proper obeys the format imposed by the following printf() state-
ment:

printf("%s\t%d\n", UserOrGroupName, RightsMask);

Note that the string name for the user or group is stored in an externalized ACL entry.
The Protection Server stores the mappings between the numerical identifiers for AFS
principals and their character string representations. There are cases where there is no
mapping from the numerical identifier to a string name. For example, a user or group
may have been deleted sometime after they were added to the ACL and before the
Cache Manager externalized the ACL for storage. In this case, the Cache Manager sets
UserOrGroupName to the string version of the principal’s integer identifier. Should the
erz principal be deleted from the Protection Server’s database in the above scenario,
then the string “1019” will be stored, since it corresponded to erz’s former numerical
identifier.

The RightsMask parameter to the above call represents the set of rights the named
principal may exercise on the objects covered by the ACL. The following flags may be
OR’ed together to construct the desired access rights placed in RightsMask:

Cache Manager Interfaces 95 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

#define PRSFS_READ 1 /*Read files*/
#define PRSFS_WRITE 2 /*Write & write-lock existing files*/
#define PRSFS_INSERT 4 /*Insert & write-lock new files*/
#define PRSFS_LOOKUP 8 /*Enumerate files and examine ACL*/
#define PRSFS_DELETE 16 /*Remove files*/
#define PRSFS_LOCK 32 /*Read-lock files*/
#define PRSFS_ADMINISTER 64 /*Set access list of directory*/

6.4.7.1 VIOCSETAL: Set the ACL on a directory

[Opcode 1] Set the contents of the ACL associated with the file system object named by
a pathP. Should this pathname indicate a file and not a directory, the Cache Manager
will apply this operation to the file’s parent directory. The new ACL contents, expressed
in their externalized form, are made available in in, with in size set to its length in
characters, including the trailing null. There is no output from this call, so out size
should be set to zero. Internally, the Cache Manager will call the RXAFS StoreACL()
RPC (see Section 5.1.3.3 to store the new ACL on the proper File Server.

Possible error codes include EINVAL, indicating that one of three things may be true:
the named path is not in AFS, there are too many entries in the specified ACL, or a
non-existent user or group appears on the ACL.

6.4.7.2 VIOCGETAL: Get the ACL for a directory

[Opcode 2] Get the contents of the ACL associated with the file system object named by
a pathP. Should this pathname indicate a file and not a directory, the Cache Manager
will apply this operation to the file’s parent directory. The ACL contents, expressed in
their externalized form, are delivered into the out buffer if out size has been set to a value
which indicates that there is enough room for the specified ACL. This ACL string will be
null-terminated. There is no input to this call, so in size should be set to zero. Internally,
the Cache Manager will call the RXAFS FetchACL() RPC (see Section 5.1.3.1) to fetch
the ACL from the proper File Server.

Possible error codes include EINVAL, indicating that the named path is not in AFS.

6.4.8 Cache Operations

It is possible to inquire about and affect various aspects of the cache maintained locally
by the Cache Manager through the group of pioctl()s described below. Specifically,

Cache Manager Interfaces 96 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

one may force certain file system objects to be removed from the cache (VIOCFLUSH), set
the maximum number of blocks usable by the cache (VIOCSETCACHESIZE), and ask for
information about the cache’s current state (VIOCGETCACHEPARAMS).

6.4.8.1 VIOCFLUSH: Flush an object from the cache

[Opcode 6] Flush the file system object specified by a pathP out of the local cache. The
other parameters are not referenced, so they should be set to the proper combination of
null pointers and zeroes.

Among the possible error returns is EINVAL, indicating that the value supplied in the
a pathP parameter is not acceptable.

6.4.8.2 VIOCSETCACHESIZE: Set maximum cache size in blocks

[Opcode 24] Instructs the Cache Manager to set a new maximum size (in 1 Kbyte blocks)
for its local cache. The input buffer located at in contains the new maximum block count.
If zero is supplied for this value, the Cache Manager will revert its cache limit to its value
at startup time. Neither the a pathP nor output buffer parameters is referenced by this
operation. The Cache Manager recomputes its other cache parameters based on this
new value, including the number of cache files allowed to be dirty at once and the total
amount of space filled with dirty chunks. Should the new setting be smaller than the
number of blocks currently being used, the Cache Manager will throw things out of the
cache until it obeys the new limit.

The caller is required to be effectively running as root, or this call will fail, returning
EACCES. If the Cache Manager is configured to run with a memory cache instead of a
disk cache, this operation will also fail, returning EROF.

6.4.8.3 VIOCGETCACHEPARAMS: Get current cache parameter values

[Opcode 40] Fetch the current values being used for the cache parameters. The output
buffer is filled with MAXGCSTATS (16) longwords, describing these parameters. Only
the first two longwords in this array are currently set. The first contains the value
of afs cacheBlocks, or the maximum number of 1 Kbyte blocks which may be used
in the cache (see Section 6.4.8.2 for how this value may be set). The second longword
contains the value of the Cache Manager’s internal afs blocksUsed variable, or the
number of these cache blocks currently in use. All other longwords in the array are set
to zero. Neither the a pathP nor input buffer arguments are referenced by this call.

Cache Manager Interfaces 97 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

This routine always returns successfully.

6.4.9 Miscellaneous Operations

There are several other AFS-specific operations accessible via the pioctl() interface that
don’t fit cleanly into the above categories. They are described in this section, and include
manipulation of the socket-based Mariner file trace interface (VIOC AFS MARINER HOST),
enabling and disabling of the file-basedAFSLog output interface for debugging (VIOC VENUSLOG),
getting and setting the value of the special @sys pathname component mapping (VIOC AFS SYSNAME),
and turning the NFS-AFS translator service on and off (VIOC EXPORTAFS).

6.4.9.1 VIOC AFS MARINER HOST: Get/set file transfer monitoring output

[Opcode 32] This operation is used to get or set the IP address of the host destined to
receive Mariner output. A detailed description of the Cache Manager Mariner interface
may be found in Section 6.7.

The input buffer located at in is used to pass a single longword containing the IP address
of the machine to receive output regarding file transfers between the Cache Manager
and any File Server. If the chosen host IP address is 0xffffffff, the Cache Manager
is prompted to turn off generation of Mariner output entirely. If the chosen host IP
address is zero, then the Cache Manager will not set the Mariner host, but rather return
the current Mariner host as a single longword written to the out output buffer. Any
other value chosen for the host IP address enables Mariner output (if it was not already
enabled) and causes all further traffic to be directed to the given machine.

This function always returns successfully.

6.4.9.2 VIOC VENUSLOG: Enable/disable Cache Manager logging

[Opcode 34] Tell the Cache Manager whether to generate debugging information, and
what kind of debugging output to enable. The input buffer located at in is used to
transmit a single longword to the Cache Manager, expressing the caller’s wishes. Of
the four bytes making up the longword, the highest byte indicates the desired value for
the internal afsDebug variable, enabling or disabling general trace output. The next
highest byte indicates the desired value for the internal netDebug variable, enabling or
disabling network-level debugging traces. The third byte is unused, and the low-order
byte represents an overall on/off value for the functionality. There is a special value

Cache Manager Interfaces 98 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

for the low-order byte, 99, which instructs the Cache Manager to return the current
debugging setting as a single longword placed into the output buffer pointed to by out.
The a pathP parameter is not referenced by this routine.

Trace output is delivered to the AFSLog file, typically located in the /usr/vice/etc di-
rectory. When this form of debugging output is enabled, the existing AFSLog file is
truncated, and its file descriptor is stored for future use. When this debugging is dis-
abled, a close() is done on the file, forcing all its data to disk. For additional information
on the AFSLog file for collecting Cache Manager traces, please see the description in
Section 6.6.2.1.

This call will only succeed if the caller is effectively running as root. If this is not the
case, an error code of EACCES is returned.

6.4.9.3 VIOC AFS SYSNAME: Get/set the @sys mapping

[Opcode 38] Get or set the value of the special @sys pathname component understood
by the Cache Manager. The input buffer pointed to by in is used to house a longword
whose value determines whether the @sys value is being set (1) or whether the current
value is being fetched (0). If it is being set, then a null-terminated string is expected to
follow in the input buffer, specifying the new value of @sys. Otherwise, if we are asking
the Cache Manager for the current @sys setting, a null-terminated string bearing that
value will be placed in the out output buffer. The a pathP parameter is not used by this
call, and thus should be set to a null pointer.

There are no special privileges required of the caller to fetch the value of the current
@sys mapping. However, a native caller must be running effectively as root in order
to successfully alter the mapping. An unauthorized attempt to change the @sys setting
will be ignored, and cause this routine to return EACCES. This requirement is relaxed for
VIOC AFS SYSNAME pioctl() calls emanating from foreign file systems such as NFS and
accessing AFS files through the NFS-AFS translator. Each such remote caller may set its
own notion of what the @sys mapping is without affecting native AFS clients. Since the
uid values received in calls from NFS machines are inherently insecure, it is impossible
to enforce the fact that the caller is truly root on the NFS machine. This, while any
principal running on an NFS machine may change that foreign machine’s perception of
@sys, it does not impact native AFS users in any way.

6.4.9.4 VIOC EXPORTAFS: Enable/disable NFS/AFS translation

[Opcode 39] Enable or disable the ability of an AFS-capable machine to export AFS

Cache Manager Interfaces 99 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

access to NFS clients. Actually, this is a general facility allowing exportation of AFS
service to any number of other file systems, but the only support currently in place is
for NFS client machines. A single longword is expected in the input buffer in. This
input longword is partitioned into individual bytes, organized as follows. The high-order
byte communicates the type of foreign client to receive AFS file services. There are
currently two legal values for this field, namely 0 for the null foreign file system and 1
for NFS. The next byte determines whether the Cache Manager is being asked to get
or set this information. A non-zero value here is interpreted as a command to set the
export information according to what’s in the input longword, and a zero-valued byte in
this position instructs the Cache Manager to place a longword in the output buffer out,
which contains the current export settings for the foreign system type specified in the
high-order byte. The third input byte is not used, and the lowest-order input buffer byte
determines whether export services for the specified system are being enabled or disabled.
A non-zero value will turn on the services, and a zero value will shut them down. The
a pathP pathname parameter is not used by this call, and the routine generates output
only if the export information is being requested instead of being set.

The caller must be effectively running as root in order for this operation to succeed.
The call returns EACCES if the caller is not so authorized. If the caller specifies an
illegal foreign system type in the high-order byte of the input longword, then ENODEV is
returned. Again, NFS is the only foreign file system currently supported.

Practically speaking, the machine providing NFS-AFS translation services must enable
this service with this pioctl() before any NFS client machines may begin accessing AFS
files. Conversely, if an administrator turns off this export facility, the export code on
the translator machine will immediately stop responding to traffic from its active NFS
clients.

6.5 RPC Interface

6.5.1 Introduction

This section covers the structure and workings of the Cache Manager’s RPC interface.
Typically, these calls are made by File Server processes. However, some of the calls
are designed specifically for debugging programs (e.g., the cmdebug facility) and for
collection of statistical and performance information from the Cache Manager. Any client
application that makes direct calls on the File Server RPC interface must be prepared
to export a subset of the Cache Manager RPC interface, as discussed in Section 5.1.6.

This section will first examine the Cache Manager’s use of locks, whose settings may

Cache Manager Interfaces 100 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

be observed via one of the RPC interface calls. Next, it will present some definitions
and data structures used in the RPC interface, and finally document the individual calls
available through this interface.

6.5.2 Locks

The Cache Manager makes use of locking to insure its internal integrity in the face of
its multi-threaded design. A total of 11 locks are maintained for this purpose, one of
which is now obsolete and no longer used (see below). These locks are strictly internal,
and the Cache Manager itself is the only one able to manipulate them. The current
settings for these system locks are externally accessible for debugging purposes via the
AFSRXCB GetLock() RPC interface call, as described in Section 6.5.5.4. For each lock,
its index in the locking table is given in the following text.

• afs xvcache [Index 0]: This lock controls access to the status cache entries main-
tained by the Cache Manager. This stat cache keeps stat()-related information for
AFS files it has dealt with. The stat information is kept separate from actual data
contents of the related file, since this information may change independently (say,
as a result of a unix chown() call.

• afs xdcache [Index 1]: This lock moderates access to the Cache Manager’s data
cache, namely the contents of the file system objects it has cached locally. As
stated above, this data cache is separate from the associated stat() information.

• afs xserver [Index 2]: This lock controls access to the File Server machine de-
scription table, which keeps tabs on all File Servers contacted in recent history.
This lock thus indirectly controls access to the set of per-server RPC connection
descriptors the File Server table makes visible.

• afs xvcb [Index 3]: This lock supervises access to the volume callback information
kept by the Cache Manager. This table is referenced, for example, when a client
decides to remove one or more callbacks on files from a given volume (see the
RXAFS GiveUpCallBacks() description on Section 5.1.3.13).

• afs xbrs [Index 4]: This lock serializes the actions of the Cache Manager’s back-
ground daemons, which perform prefetching and background file storage duties.

• afs xcell [Index 5]: This lock controls the addition, deletion, and update of items
on the linked list housing information on cells known to the Cache Manager.

• afs xconn [Index 6]: This lock supervises operations concerning the set of RPC
connection structures kept by the system. This lock is used in combination with the

Cache Manager Interfaces 101 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

afs xserver lock described above. In some internal Cache Manager code paths,
the File Server description records are first locked, and then the afs xconn lock is
used to access the associated Rx connection records.

• afs xuser [Index 7]: This lock serializes access to the per-user structures main-
tained by the Cache Manager.

• afs xvolume [Index 8]: This lock is used to control access to the Cache Manager’s
volume information cache, namely the set of entries currently in memory, a subset
of those stably housed in the VolumeItems disk file (see Section 6.6.2.3).

• afs puttofileLock [Index 9]: This lock is obsolete, and while still defined by the
system is no longer used. It formerly serialized writes to a debugging output
interface buffer, but the internal mechanism has since been updated and improved.

• afs ftf [Index 10]: This lock is used when flushing cache text pages from the
machine’s virtual memory tables. For each specific machine architecture on which
the Cache Manager runs, there is a set of virtual memory operations which must be
invoked to perform this operation. The result of such activities is to make sure that
the latest contents of new incarnations of binaries are used, instead of outdated
copies of previous versions still resident in the virtual memory system.

6.5.3 Definitions and Typedefs

This section documents some macro definitions and typedefs referenced by the Cache
Manager’s RPC interface. Specifically, these definitions and typedefs are used in the
RXAFSCB GetXStats() and RXAFSCB XStatsVersion calls as described in Sections
6.5.5.6 and 6.5.5.7.

/*
* Define the version of CacheManager and FileServer extended
* statistics being implemented.
*/
const AFSCB_XSTAT_VERSION = 1;

/*
* Define the maximum arrays for passing extended statistics
* info for the CacheManager and FileServer back to our caller.
*/
const AFSCB_MAX_XSTAT_LONGS = 2048;

typedef long AFSCB_CollData<AFSCB_MAX_XSTAT_LONGS>;

/*

Cache Manager Interfaces 102 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

* Define the identifiers for the accessible extended stats data
* collections.
*/
const AFSCB_XSTATSCOLL_CALL_INFO = 0; /*CM call counting & info*/
const AFSCB_XSTATSCOLL_PERF_INFO = 1; /*CM performance info*/

6.5.4 Structures

This section documents some structures used in the Cache Manager RPC interface.
As with the constants and typedefs in the previous section, these items are used in
the RXAFSCB GetXStats() and RXAFSCB XStatsVersion calls as described in Sections
6.5.5.6 and 6.5.5.7.

6.5.4.1 struct afs MeanStats

This structure may be used to collect a running average figure. It is included in some of
the statistics structures described below.

Fields

long average - The computed average.

long elements - The number of elements sampled for the above aveage.

6.5.4.2 struct afs CMCallStats

This structure maintains profiling information, communicating the number of times in-
ternal Cache Manager functions are invoked. Each field name has a “C ” prefix, followed
by the name of the function being watched. As this structure has entries for over 500
functions, it will not be described further here. Those readers who wish to see the full
layout of this structure are referred to Appendix A.

The AFSCB XSTATSCOLL CALL INFO data collection includes the information in this struc-
ture.

Cache Manager Interfaces 103 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.5.4.3 struct afs CMMeanStats

This is the other part of the information (along with the struct afs CMCallStats

construct described above) returned by the AFSCB XSTATSCOLL CALL INFO data collec-
tion defined by the Cache Manager (see Section 6.5.3). It is accessible via the RXAF-
SCB GetXStats() interface routine, as defined in Section 6.5.5.7.

This structure represents the beginning of work to compute average values for some of
the extended statistics collected by the Cache Manager.

Fields

struct afs MeanStats something - Intended to collect averages for some of the
Cache Manager extended statistics; not yet implemented.

6.5.4.4 struct afs CMStats

This structure defines the information returned by the AFSCB XSTATSCOLL CALL INFO

data collection defined by the Cache Manager (see Section 6.5.3). It is accessible via the
RXAFSCB GetXStats() interface routine, as defined in Section 6.5.5.7.

Fields

struct afs CallStats callInfo - Contains the counts on the number of times
each internal Cache Manager function has been called.

struct afs MeanStats something - Intended to collect averages for some of the
Cache Manager extended statistics; not yet implemented.

6.5.4.5 struct afs CMPerfStats

This is the information returned by the AFSCB XSTATSCOLL PERF INFO data collection
defined by the Cache Manager (see Section 6.5.3). It is accessible via the RXAF-
SCB GetXStats() interface routine, as defined in Section 6.5.5.7.

Cache Manager Interfaces 104 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Fields

long numPerfCalls - Number of performance calls received.

long epoch - Cache Manager epoch time.

long numCellsContacted - Number of cells contacted.

long dlocalAccesses - Number of data accesses to files within the local cell.

long vlocalAccesses - Number of stat accesses to files within the local cell.

long dremoteAccesses - Number of data accesses to files outside of the local cell.

long vremoteAccesses - Number of stat accesses to files outside of the local cell.

long cacheNumEntries - Number of cache entries.

long cacheBlocksTotal - Number of (1K) blocks configured for the AFS cache.

long cacheBlocksInUse - Number of cache blocks actively in use.

long cacheBlocksOrig - Number of cache blocks configured at bootup.

long cacheMaxDirtyChunks - Maximum number of dirty cache chunks tolerated.

long cacheCurrDirtyChunks - Current count of dirty cache chunks.

long dcacheHits - Number of data file requests satisfied by the local cache.

long vcacheHits - Number of stat entry requests satified by the local cache.

long dcacheMisses - Number of data file requests not satisfied by the local cache.

long vcacheMisses - Number of stat entry requests not satisfied by the local cache.

long cacheFlushes - Number of files flushed from the cache.

long cacheFilesReused - Number of cache files reused.

long numServerRecords - Number of records used for storing information concern-
ing File Servers.

long ProtServerAddr - IP addres of the Protection Server used (not implemented).

long spare[32] - A set of longword spares reserved for future use.

6.5.5 Function Calls

This section discusses the Cache Manager interface calls. No special permissions are
required of the caller for any of these operations. A summary of the calls making up the
interface appears below:

Cache Manager Interfaces 105 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

• RXAFSCB Probe() “Are-you-alive” call.

• RXAFSCB CallBack() Report callbacks dropped by a File Server.

• RXAFSCB InitCallBackState() Purge callback state from a File Server.

• RXAFSCB GetLock() Get contents of Cache Manager lock table.

• RXAFSCB GetCE() Get cache file description.

• RXAFSCB XStatsVersion() Get version of extended statistics package.

• RXAFSCB GetXStats() Get contents of extended statistics data collection.

Cache Manager Interfaces 106 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.5.5.1 RXAFSCB Probe —Acknowledge that the underlying callback ser-
vice is still operational

int RXAFSCB Probe(IN struct rx call *a rxCallP)

Description

[Opcode 206] This call simply implements an “are-you-alive” operation, used to determine
if the given Cache Manager is still running. Any File Server will probe each of the Cache
Managers with which it has interacted on a regular basis, keeping track of their health.
This information serves an important purpose for a File Server. In particular, it is used
to trigger purging of deceased Cache Managers from the File Server’s callback records,
and also to instruct a new or “resurrected” Cache Manager to purge its own callback
state for the invoking File Server.

Rx call information for the related Cache Manager is contained in a rxCallP.

Error Codes

--- No error codes are generated.

Cache Manager Interfaces 107 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.5.5.2 RXAFSCB CallBack —Report callbacks dropped by a File Server

int RXAFSCB CallBack(IN struct rx call *a rxCallP,

IN AFSCBFids *a fidArrayP,

IN AFSCBs *a callBackArrayP)

Description

[Opcode 204] Provide information on dropped callbacks to the Cache Manager for the call-
ing File Server. The number of fids involved appears in a fidArrayP->AFSCBFids len,
with the fids themselves located at a fidArrayP->AFSCBFids val. Similarly, the number
of associated callbacks is placed in a callBackArrayP->AFSCBs len, with the callbacks
themselves located at a callBackArrayP->AFSCBs val.

Rx call information for the related Cache Manager is contained in a rxCallP.

Error Codes

--- No error codes are generated.

Cache Manager Interfaces 108 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.5.5.3 RXAFSCB InitCallBackState — Purge callback state from a
File Server

int RXAFSCB InitCallBackState(IN struct rx call *a rxCallP)

Description

[Opcode 205] This routine instructs the Cache Manager to purge its callback state for
all files and directories that live on the calling host. This function is typically called by
a File Server when it gets a request from a Cache Manager that does not appear in its
internal records. This handles situations where Cache Managers survive a File Server,
or get separated from it via a temporary network partition. This also happens upon
bootup, or whenever the File Server must throw away its record of a Cache Manager
because its tables have been filled.

Rx call information for the related Cache Manager is contained in a rxCallP.

Error Codes

--- No error codes are generated.

Cache Manager Interfaces 109 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.5.5.4 RXAFSCB GetLock — Get contents of Cache Manager lock table

int RXAFSCB GetLock(IN struct rx call *a rxCall,

IN long a index,

OUT AFSDBLock *a lockP)

Description

[Opcode 207] Fetch the contents of entry a index in the Cache Manager lock table. There
are 11 locks in the table, as described in Section 6.5.2. The contents of the desired lock,
including a string name representing the lock, are returned in a lockP.

This call is not used by File Servers, but rather by debugging tools such as cmdebug.

Rx call information for the related Cache Manager is contained in a rxCallP.

Error Codes

1 The index value supplied in a index is out of range; it must be between 0 and 10.

Cache Manager Interfaces 110 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.5.5.5 RXAFSCB GetCE — Get cache file description

int RXAFSCB GetCE(IN struct rx call *a rxCall,

IN long a index,

OUT AFSDBCacheEntry *a ceP)

Description

[Opcode 208] Fetch the description for entry a index in the Cache Manager file cache,
storing it into the buffer to which a ceP points. The structure returned into this pointer
variable is described in Section 4.3.2.

This call is not used by File Servers, but rather by debugging tools such as cmdebug.

Rx call information for the related Cache Manager is contained in a rxCallP.

Error Codes

1 The index value supplied in a index is out of range.

Cache Manager Interfaces 111 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.5.5.6 RXAFSCB XStatsVersion — Get version of extended statistics
package

int RXAFSCB XStatsVersion(IN struct rx call *a rxCall,

OUT long *a versionNumberP)

Description

[Opcode 209] This call asks the Cache Manager for the current version number of the
extended statistics structures it exports (see RXAFSCB GetXStats(), Section 6.5.5.7).
The version number is placed in a versionNumberP.

Rx call information for the related Cache Manager is contained in a rxCallP.

Error Codes

--- No error codes are generated.

Cache Manager Interfaces 112 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.5.5.7 RXAFSCB GetXStats — Get contents of extended statistics data
collection

int RXAFSCB GetXStats(IN struct rx call *a rxCall,

IN long a clientVersionNumber,

IN long a collectionNumber,

OUT long *a srvVersionNumberP,

OUT long *a timeP,

OUT AFSCB CollData *a dataP)

Description

[Opcode 210] This function fetches the contents of the specified Cache Manager ex-
tended statistics structure. The caller provides the version number of the data it
expects to receive in a clientVersionNumber. Also provided in a collectionNumber is
the numerical identifier for the desired data collection. There are currently two
of these data collections defined: AFSCB XSTATSCOLL CALL INFO, which is the list of
tallies of the number of invocations of internal Cache Manager procedure calls, and
AFSCB XSTATSCOLL PERF INFO, which is a list of performance-related numbers. The pre-
cise contents of these collections are described in Section 6.5.4. The current version
number of the Cache Manager collections is returned in a srvVersionNumberP, and is
always set upon return, even if the caller has asked for a different version. If the cor-
rect version number has been specified, and a supported collection number given, then
the collection data is returned in a dataP. The time of collection is also returned, being
placed in a timeP.

Rx call information for the related Cache Manager is contained in a rxCallP.

Error Codes

1 The collection number supplied in a collectionNumber is out of range.

Cache Manager Interfaces 113 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.6 Files

The Cache Manager gets some of its start-up configuration information from files located
on the client machine’s hard disk. Each client is required to supply a /usr/vice/etc
directory in which this configuration data is kept. Section 6.6.1 describes the format and
purpose of the three files contributing this setup information: ThisCell, CellServDB, and
cacheinfo.

6.6.1 Configuration Files

6.6.1.1 ThisCell

The Cache Manager, along with various applications, needs to be able to determine the
cell to which its client machine belongs. This information is provided by the ThisCell
file. It contains a single line stating the machine’s fully-qualified cell name.

As with the CellServDB configuration file, the Cache Manager reads the contents of
ThisCell exactly once, at start-up time. Thus, an incarnation of the Cache Manager will
maintain precisely one notion of its home cell for its entire lifetime. Thus, changes to the
text of the ThisCell file will be invisible to the running Cache Manager. However, these
changes will affect such application programs as klog, which allows a user to generate
new authentication tickets. In this example, klog reads ThisCell every time it is invoked,
and then interacts with the set of Authentication Servers running in the given home cell,
unless the caller specifies the desired cell on the command line.

The ThisCell file is not expected to be changed on a regular basis. Client machines
are not imagined to be frequently traded between different administrative organizations.
The Unix mode bits are set to specify that while everyone is allowed to read the file,
only root is allowed to modify it.

6.6.1.2 CellServDB

To conduct business with a given AFS cell, a Cache Manager must be informed of the
cell’s name and the set of machines running AFS database servers within that cell.
Such servers include the Volume Location Server, Authentication Server, and Protec-
tion Server. This particular cell information is obtained upon startup by reading the
CellServDB file. Thus, when the Cache Manager initialization is complete, it will be
able to communicate with the cells covered by CellServDB.

Cache Manager Interfaces 114 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

The following is an excerpt from a valid CellServDB file, demonstrating the format used.

.

.

.
>transarc.com #Transarc Corporation
192.55.207.7 #henson.transarc.com
192.55.207.13 #bigbird.transarc.com
192.55.207.22 #ernie.transarc.com
>andrew.cmu.edu #Carnegie Mellon University
128.2.10.2 #vice2.fs.andrew.cmu.edu
128.2.10.7 #vice7.fs.andrew.cmu.edu
128.2.10.10 #vice10.fs.andrew.cmu.edu
.
.
.

There are four rules describing the legal CellServDB file format:

1. Each cell has a separate entry. The entries may appear in any order. It may be
convenient, however, to have the workstation’s local cell be the first to appear.

2. No blank lines should appear in the file, even at the end of the last entry.

3. The first line of each cell’s entry begins with the “>” character, and specifies the
cell’s human-readable, Internet Domain-style name. Optionally, some white space
and a comment (preceded by a “#”) may follow, briefly describing the specified
cell.

4. Each subsequent line in a cell’s entry names one of the cell’s database server ma-
chines. The following must appear on the line, in the order given:

• The Internet address of the server, in the standard 4-component dot notation.

• Some amount of whitespace.

• A “#”, followed by the machine’s complete Internet host name. In this
instance, the “#” sign and the text beyond it specifying the machine
name are NOT treated as a comment. This is required information.
The Cache Manager will use the given host name to determine its current
address via an Internet Domain lookup. If and only if this lookup fails does
the Cache Manager fall back to using the dotted Internet address on the first
part of the line. This dotted address thus appears simply as a hint in case of
Domain database downtime.

Cache Manager Interfaces 115 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

The CellServDB file is only parsed once, when the Cache Manager first starts. It is
possible, however, to amend existing cell information records or add completely new
ones at any time after Cache Manager initialization completes. This is accomplished via
the VIOCNEWCELL pioctl() (see Section 6.4.5.1.

6.6.1.3 cacheinfo

This one-line file contains three fields separated by colons:

• AFS Root Directory: This is the directory where the Cache Manager mounts
the AFS root volume. Typically, this is specified to be /afs.

• Cache Directory: This field names the directory where the Cache Manager is to
create its local cache files. This is typically set to /usr/vice/cache.

• Cache Blocks: The final field states the upper limit on the number of 1,024-byte
blocks that the Cache Manager is allowed to use in the partition hosting the named
cache directory.

Thus, the following cacheinfo file would instruct the Cache Manager to mount the AFS
filespace at /afs, and inform it that it may expect to be able to use up to 25,000 blocks
for the files in its cache directory, /usr/vice/cache.

/afs:/usr/vice/cache:25000

6.6.2 Cache Information Files

6.6.2.1 AFSLog

This is the AFS log file used to hold Cache Manager debugging output. The file is set up
when the Cache Manager first starts. If it already exists, it is truncated. If it doesn’t,
it is created. Output to this file is enabled and disabled via the the VIOC VENUSLOG

pioctl() (see Section 6.4.9.2). Normal text messages are written to this file by the
Cache Manager when output is enabled. Each time logging to this file is enabled, the
AFSLog file is truncated. Only root can read and write this file.

Cache Manager Interfaces 116 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.6.2.2 CacheItems

The Cache Manager only keeps a subset of its data cache entry descriptors in memory
at once. The number of these in-memory descriptors is determined by afsd. All of the
data cache entry descriptors are kept on disk, in the CacheItems file. The file begins
with a header region, taking up four longwords:

struct fheader {
long magic AFS_FHMAGIC 0x7635fab8
long firstCSize: First chunk size
long otherCSize: Next chunk sizes
long spare
}

The header is followed by one entry for each cache file. Each is:

struct fcache {
short hvNextp; /* Next in vnode hash table, or freeDCList */
short hcNextp; /* Next index in [fid, chunk] hash table */
short chunkNextp; /* File queue of all chunks for a single vnode */
struct VenusFid fid; /* Fid for this file */
long modTime; /* last time this entry was modified */
long versionNo; /* Associated data version number */
long chunk; /* Relative chunk number */
long inode; /* Unix inode for this chunk */
long chunkBytes; /* Num bytes in this chunk */
char states; /* Has this chunk been modified? */

};

6.6.2.3 VolumeItems

The Cache Manager only keeps at most MAXVOLS (50) in-memory volume descriptions.
However, it records all volume information it has obtained in the VolumeItems file in
the chosen AFS cache directory. This file is truncated when the Cache Manager starts.
Each volume record placed into this file has the following struct fvolume layout:

struct fvolume {
long cell; /*Cell for this entry*/
long volume; /*Numerical volume ID */
long next; /*Hash index*/
struct VenusFid dotdot; /*Full fid for .. dir */
struct VenusFid mtpoint; /*Full fid for mount point*/

};

Cache Manager Interfaces 117 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.7 Mariner Interface

The Cache Manager Mariner interface allows interested parties to be advised in real
time as to which files and/or directories are being actively transferred between the client
machine and one or more File Servers. If enabled, this service delivers messages of two
different types, as exemplified below:

Fetching myDataDirectory
Fetching myDataFile.c
Storing myDataObj.o

In the first message, the myDataDirectory directory is shown to have just been fetched
from a File Server. Similarly, the second message indicates that the C program my-
DataFile.c had just been fetched from its File Server of residence. Finally, the third
message reveals that the myDataObj.o object file has just been written out over the
network to its respective server.

In actuality, the text of the messages carries a string prefix to indicate whether a Fetch
or Store operation had been performed. So, the full contents of the above messages are
as follows:

fetch$Fetching myDataDirectory
fetch$Fetching myDataFile.c
store$Storing myDataObj.o

The Mariner service may be enabled or disabled for a particular machine by using the
VIOC AFS MARINER HOST pioctl() (see Section 6.4.9.1). This operation allows any host
to be specified as the recipient of these messages. A potential recipient must have its
host be declared the target of such messages, then listen to a socket on port 2106.

Internally, the Cache Manager maintains a cache of NMAR (10) vnode structure pointers
and the string name (up to 19 characters) of the associated file or directory. This cache
is implemented as an array serving as a circular buffer. Each time a file is involved in
a create or lookup operation on a File Server, the current slot in this circular buffer is
filled with the relevant vnode and string name information, and the current position is
advanced. If Mariner output is enabled, then an actual network fetch or store operation
will trigger messages of the kind shown above. Since a fetch or store operation normally
occurs shortly after the create or lookup, the mapping of vnode to name is likely to still be
in the Mariner cache when it comes time to generate the appropriate message. However,
since an unbounded number of other lookups or creates could have been performed in

Cache Manager Interfaces 118 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

the interim, there is no guarantee that the mapping entry will not have been overrun.
In these instances, the Mariner message will be a bit vaguer. Going back to our original
example,

Fetching myDataDirectory
Fetching a file
Storing myDataObj.o

In this case, the cached association between the vnode containing myDataFile.c and its
string name was thrown out of the Mariner cache before the network fetch operation
could be performed. Unable to find the mapping, the generic phrase “a file” was used
to identify the object involved.

Mariner messages only get generated when RPC traffic for fetching or storing a file system
object occurs between the Cache Manager and a File Server. Thus, file accesses that are
handled by the Cache Manager’s on-board data cache do not trigger such announcements.

Cache Manager Interfaces 119 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Appendix A

struct afs CMCallStats

This appendix contains the full specification of the afs CMCallStats structure, as orig-
inally described in Section 6.5.4.2. This construct is returned by the Cache Manager
when a client requests data collection AFSCB XSTATSCOLL CALL INFO, as defined in Sec-
tion 6.5.3.

In the following tabular presentation, each field name listed is preceded by its (longword)
offset in the afs CMCallStats structure.

0. C afs init 1. C gop rdwr 2. C aix gnode rele
3. C gettimeofday 4. C m cpytoc 5. C aix vattr null
6. C afs gn ftrunc 7. C afs gn rdwr 8. C afs gn ioctl
9. C afs gn lockctl 10. C afs gn readlink 11. C afs gn readdir
12. C afs gn select 13. C afs gn strategy 14. C afs gn symlink
15. C afs gn revoke 16. C afs gn link 17. C afs gn mkdir
18. C afs gn mknod 19. C afs gn remove 20. C afs gn rename
21. C afs gn rmdir 22. C afs gn fid 23. C afs gn lookup
24. C afs gn open 25. C afs gn create 26. C afs gn hold
27. C afs gn close 28. C afs gn map 29. C afs gn rele
30. C afs gn unmap 31. C afs gn access 32. C afs gn getattr
33. C afs gn setattr 34. C afs gn fclear 35. C afs gn fsync
36. C pHash 37. C DInit 38. C DRead
39. C FixupBucket 40. C afs newslot 41. C DRelease
42. C DFlush 43. C DFlushEntry 44. C DVOffset
45. C DZap 46. C DNew 47. C shutdown bufferpackage
48. C afs CheckKnownBad 49. C afs RemoveVCB 50. C afs NewVCache
51. C afs FlushActiveVcaches 52. C afs VerifyVCache 53. C afs WriteVCache
54. C afs GetVCache 55. C afs StuffVcache 56. C afs FindVCache
57. C afs PutDCache 58. C afs PutVCache 59. C CacheStoreProc
60. C afs FindDCache 61. C afs TryToSmush 62. C afs AdjustSize
63. C afs CheckSize 64. C afs StoreWarn 65. C CacheFetchProc

struct afs CMCallStats 120 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

66. C UFS CacheStoreProc 67. C UFS CacheFetchProc 68. C afs GetDCache
69. C afs SimpleVStat 70. C afs ProcessFS 71. C afs InitCacheInfo
72. C afs InitVolumeInfo 73. C afs InitCacheFile 74. C afs CacheInit
75. C afs GetDSlot 76. C afs WriteThroughDSlots 77. C afs MemGetDSlot
78. C afs UFSGetDSlot 79. C afs StoreDCache 80. C afs StoreMini
81. C shutdown cache 82. C afs StoreAllSegments 83. C afs InvalidateAllSegments
84. C afs TruncateAllSegments 85. C afs CheckVolSync 86. C afs wakeup
87. C afs CFileOpen 88. C afs CFileTruncate 89. C afs GetDownD
90. C afs WriteDCache 91. C afs FlushDCache 92. C afs GetDownDSlot
93. C afs FlushVCache 94. C afs GetDownV 95. C afs QueueVCB
96. C afs call 97. C afs syscall call 98. C syscall
99. C lpioctl 100. C lsetpag 101. C afs syscall
102. C afs CheckInit 103. C afs shutdown 104. C shutdown BKG
105. C shutdown afstest 106. C SRXAFSCB GetCE 107. C ClearCallBack
108. C SRXAFSCB GetLock 109. C SRXAFSCB CallBack 110. C SRXAFSCB InitCallBackState
111. C SRXAFSCB Probe 112. C afs RXCallBackServer 113. C shutdown CB
114. C afs Chunk 115. C afs ChunkBase 116. C afs ChunkOffset
117. C afs ChunkSize 118. C afs ChunkToBase 119. C afs ChunkToSize
120. C afs SetChunkSize 121. C afs config 122. C mem freebytes
123. C mem getbytes 124. C fpalloc 125. C kluge init
126. C ufdalloc 127. C ufdfree 128. C commit
129. C dev ialloc 130. C ffree 131. C iget
132. C iptovp 133. C ilock 134. C irele
135. C iput 136. C afs Daemon 137. C afs CheckRootVolume
138. C BPath 139. C BPrefetch 140. C BStore
141. C afs BBusy 142. C afs BQueue 143. C afs BRelease
144. C afs BackgroundDaemon 145. C shutdown daemons 146. C exporter add
147. C exporter find 148. C afs gfs kalloc 149. C IsAfsVnode
150. C SetAfsVnode 151. C afs gfs kfree 152. C gop lookupname
153. C gfsvop getattr 154. C gfsvop rdwr 155. C afs uniqtime
156. C gfs vattr null 157. C afs lock 158. C afs unlock
159. C afs update 160. C afs gclose 161. C afs gopen
162. C afs greadlink 163. C afs select 164. C afs gbmap
165. C afs getfsdata 166. C afs gsymlink 167. C afs namei
168. C printgnode 169. C HaveGFSLock 170. C afs gmount
171. C AddGFSLock 172. C RemoveGFSLock 173. C afs grlock
174. C afs gumount 175. C afs gget 176. C afs glink
177. C afs gmkdir 178. C afs sbupdate 179. C afs unlink
180. C afs grmdir 181. C afs makenode 182. C afs grename
183. C afs rele 184. C afs syncgp 185. C afs getval
186. C afs gfshack 187. C afs trunc 188. C afs rwgp
189. C afs stat 190. C afsc link 191. C hpsobind
192. C hpsoclose 193. C hpsocreate 194. C hpsoreserve
195. C afs vfs mount 196. C devtovfs 197. C igetinode
198. C afs syscall iopen 199. C iopen 200. C afs syscall iincdec
201. C afs syscall ireadwrite 202. C iincdec 203. C ireadwrite
204. C oiread 205. C AHash 206. C QTOA
207. C afs FindPartByDev 208. C aux init 209. C afs GetNewPart
210. C afs InitAuxVolFile 211. C afs CreateAuxEntry 212. C afs GetAuxSlot
213. C afs GetDownAux 214. C afs FlushAuxCache 215. C afs GetAuxInode

struct afs CMCallStats 121 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

216. C afs PutAuxInode 217. C afs ReadAuxInode 218. C afs WriteAuxInode
219. C afs auxcall 220. C tmpdbg auxtbl 221. C tmpdbg parttbl
222. C idec 223. C iinc 224. C iread
225. C iwrite 226. C getinode 227. C trygetfs
228. C iforget 229. C afs syscall icreate 230. C icreate
231. C Lock Init 232. C Lock Obtain 233. C Lock ReleaseR
234. C Lock ReleaseW 235. C afs BozonLock 236. C afs BozonUnlock
237. C osi SleepR 238. C osi SleepS 239. C osi SleepW
240. C osi Sleep 241. C afs BozonInit 242. C afs CheckBozonLock
243. C xxxinit 244. C KernelEntry 245. C afs InitMemCache
246. C afs LookupMCE 247. C afs MemReadBlk 248. C afs MemReadUIO
249. C afs MemWriteBlk 250. C afs MemCacheStoreProc 251. C afs MemCacheTruncate
252. C afs MemWriteUIO 253. C afs MemCacheFetchProc 254. C afs vnode pager create
255. C next KernelEntry 256. C afs GetNfsClientPag 257. C afs FindNfsClientPag
258. C afs PutNfsClientPag 259. C afs nfsclient reqhandler 260. C afs nfsclient GC
261. C afs nfsclient hold 262. C afs nfsclient stats 263. C afs nfsclient sysname
264. C afs nfsclient shutdown 265. C afs rfs readdir fixup 266. C afs rfs dispatch
267. C afs xnfs svc 268. C afs xdr putrddirres 269. C afs rfs readdir
270. C afs rfs rddirfree 271. C rfs dupcreate 272. C rfs dupsetattr
273. C Nfs2AfsCall 274. C afs sun xuntext 275. C osi Active
276. C osi FlushPages 277. C osi FlushText 278. C osi CallProc
279. C osi CancelProc 280. C osi Invisible 281. C osi Time
282. C osi Alloc 283. C osi SetTime 284. C osi Dump
285. C osi Free 286. C shutdown osi 287. C osi UFSOpen
288. C osi Close 289. C osi Stat 290. C osi Truncate
291. C osi Read 292. C osi Write 293. C osi MapStrategy
294. C shutdown osifile 295. C osi FreeSendSpace 296. C osi FreeSmallSpace
297. C pkt iodone 298. C shutdown osinet 299. C afs cs
300. C osi AllocSendSpace 301. C osi AllocSmallSpace 302. C osi CloseToTheEdge
303. C osi xgreedy 304. C osi FreeSocket 305. C osi NewSocket
306. C trysblock 307. C osi NetSend 308. C WaitHack
309. C osi CancelWait 310. C osi InitWaitHandle 311. C osi Wakeup
312. C osi Wait 313. C dirp Read 314. C dirp SetCacheDev
315. C Die 316. C dirp Cpy 317. C dirp Eq
318. C dirp Write 319. C dirp Zap 320. C PSetVolumeStatus
321. C PFlush 322. C PNewStatMount 323. C PGetTokens
324. C PUnlog 325. C PCheckServers 326. C PMariner
327. C PCheckAuth 328. C PCheckVolNames 329. C PFindVolume
330. C Prefetch 331. C PGetCacheSize 332. C PRemoveCallBack
333. C PSetCacheSize 334. C PViceAccess 335. C PListCells
336. C PNewCell 337. C PRemoveMount 338. C HandleIoctl
339. C AFSIOCTL 340. C VALIDAFSIOCTL 341. C PGetCellStatus
342. C PSetCellStatus 343. C PVenusLogging 344. C PFlushVolumeData
345. C PSetSysName 346. C PExportAfs 347. C HandleClientContext
348. C afs ioctl 349. C afs xioctl 350. C afs pioctl
351. C afs syscall pioctl 352. C HandlePioctl 353. C PGetAcl
354. C PGetFID 355. C PSetAcl 356. C PBogus
357. C PGetFileCell 358. C PGetWSCell 359. C PNoop
360. C PGetUserCell 361. C PSetTokens 362. C PGetVolumeStatus
363. C afs ResetAccessCache 364. C afs FindUser 365. C afs ResetUserConns

struct afs CMCallStats 122 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

366. C afs ResourceInit 367. C afs GetCell 368. C afs GetCellByIndex
369. C afs GetCellByName 370. C afs NewCell 371. C afs GetUser
372. C afs PutUser 373. C afs SetPrimary 374. C CheckVLDB
375. C afs GetVolume 376. C afs GetVolumeByName 377. C InstallVolumeEntry
378. C InstallVolumeInfo 379. C afs FindServer 380. C afs PutVolume
381. C afs random 382. C ranstage 383. C RemoveUserConns
384. C afs MarinerLog 385. C afs vtoi 386. C afs GetServer
387. C afs SortServers 388. C afs Conn 389. C afs ConnByHost
390. C afs ConnByMHosts 391. C afs Analyze 392. C afs PutConn
393. C afs ResetVolumeInfo 394. C StartLogFile 395. C afs SetLogFile
396. C EndLogFile 397. C afs dp 398. C fprf
399. C fprint 400. C fprintn 401. C afs CheckLocks
402. C puttofile 403. C shutdown AFS 404. C afs CheckCacheResets
405. C afs GCUserData 406. C VSleep 407. C afs CheckCode
408. C afs CopyError 409. C afs FinalizeReq 410. C afs cv2string
411. C afs FindVolCache 412. C afs GetVolCache 413. C afs GetVolSlot
414. C afs WriteVolCache 415. C afs UFSGetVolSlot 416. C afs CheckVolumeNames
417. C afs MemGetVolSlot 418. C print internet address 419. C CheckVLServer
420. C HaveCallBacksFrom 421. C ServerDown 422. C afs CheckServers
423. C afs AddToMean 424. C afs GetCMStat 425. C afs getpage
426. C afs putpage 427. C afs nfsrdwr 428. C afs map
429. C afs cmp 430. C afs cntl 431. C afs dump
432. C afs realvp 433. C afs PageLeft 434. C afsinit
435. C afs mount 436. C afs unmount 437. C afs root
438. C afs statfs 439. C afs sync 440. C afs vget
441. C afs mountroot 442. C afs swapvp 443. C afs AddMarinerName
444. C afs setpag 445. C genpag 446. C getpag
447. C afs GetMariner 448. C afs badop 449. C afs index
450. C afs noop 451. C afs open 452. C afs closex
453. C afs close 454. C afs MemWrite 455. C afs write
456. C afs UFSWrite 457. C afs rdwr 458. C afs MemRead
459. C afs read 460. C FIXUPSTUPIDINODE 461. C afs UFSRead
462. C afs CopyOutAttrs 463. C afs getattr 464. C afs VAttrToAS
465. C afs setattr 466. C EvalMountPoint 467. C afs access
468. C ENameOK 469. C HandleAtName 470. C getsysname
471. C strcat 472. C afs lookup 473. C afs create
474. C afs LocalHero 475. C FetchWholeEnchilada 476. C afs remove
477. C afs link 478. C afs rename 479. C afs InitReq
480. C afs mkdir 481. C BlobScan 482. C afs rmdir
483. C RecLen 484. C RoundToInt 485. C afs readdir with offlist
486. C DIRSIZ LEN 487. C afs readdir move 488. C afs readdir iter
489. C HandleFlock 490. C afs readdir 491. C afs symlink
492. C afs HandleLink 493. C afs MemHandleLink 494. C afs UFSHandleLink
495. C afs readlink 496. C afs fsync 497. C afs inactive
498. C afs ustrategy 499. C afs bread 500. C afs brelse
501. C afs bmap 502. C afs fid 503. C afs strategy
504. C afs FakeClose 505. C afs FakeOpen 506. C afs StoreOnLastReference
507. C afs GetAccessBits 508. C afs AccessOK 509. C shutdown vnodeops
510. C afsio copy 511. C afsio trim 512. C afs page read
513. C afs page write 524. C afsio skip 515. C afs read1dir

struct afs CMCallStats 123 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

516. C afs get groups from pag 517. C afs get pag from groups 518. C PagInCred
519. C afs getgroups 520. C setpag 521. C afs setgroups
522. C afs page in 523. C afs page out 524. C AddPag
525. C afs AdvanceFD 526. C afs lockf 527. C afs xsetgroups
528. C afs nlinks 529. C DoLockWarning 530. C afs lockctl
531. C afs xflock

struct afs CMCallStats 124 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Bibliography

[1] Transarc Corporation. AFS 3.0 System Administrator’s Guide, F-30-0-D102, Pittsburgh, PA, April
1990.

[2] Transarc Corporation. AFS 3.0 Command Reference Manual, F-30-0-D103, Pittsburgh, PA, April
1990.

[3] CMU Information Technology Center. Synchronization and Caching Issues in the Andrew File

System, USENIX Proceedings, Dallas, TX, Winter 1988.

[4] Sun Microsystems, Inc. NFS: Network File System Protocol Specification, RFC 1094, March 1989.

[5] Sun Microsystems, Inc. Design and Implementation of the Sun Network File System, USENIX
Summer Conference Proceedings, June 1985.

[6] S.P. Miller, B.C. Neuman, J.I. Schiller, J.H. Saltzer. Kerberos Authentication and Authorization

System, Project Athena Technical Plan, Section E.2.1, M.I.T., December 1987.

[7] Bill Bryant. Designing an Authentication System: a Dialogue in Four Scenes, Project Athena
internal document, M.I.T, draft of 8 February 1988.

struct afs CMCallStats 125 August 20, 1991 10:20

Index

ACL, external format, 95
ACL, internal format, 95
afs CMCallStats struct, 103
afs CMMeanStats struct, 104
afs CMPerfStats struct, 104
afs CMStats struct, 104
AFS CollData typedef, 28
AFS DISKNAMESIZE constant, 28
AFS MAX XSTAT LONGS constant, 28
afs MeanStats struct, 103
afs PerfStats struct, 34
AFS XSTATSCOLL CALL INFO constant, 28
AFS XSTATSCOLL PERF INFO constant, 28,

34
AFSBulkStats typedef, 29
AFSCB XSTATSCOLL CALL INFO constant,

103, 104
AFSCB XSTATSCOLL PERF INFO constant,

104
afsd, 79, 117
AFSDBLockDesc, 29
AFSFetchStatus struct, 30
AFSFetchVolumeStatus struct, 37
AFSFid struct, 21
AFSLog, 79, 98, 99, 116
AFSStoreStatus struct, 31
AFSStoreVolumeStatus struct, 38
AFSVolSync struct, 13, 30
AFSVolumeInfo struct, 38
AIX, 75

BOSServer, 26, 74

cacheinfo, 79, 116
CacheItems, 79, 117
callback, 2, 3, 10, 12, 13, 16–20, 22–24, 26, 27,

41, 43, 44, 46–50, 52, 63, 68, 70, 71,
73, 76–78, 83, 86, 87, 101, 106–109

callback, whole-volume, 10, 30
callback, DROPPED, 22
callback, EXCLUSIVE, 22

callback, SHARED, 22
CellServDB, 79, 114
cmdebug, 24, 78, 100, 110, 111
config file, AFSLog, 116
config file, cacheinfo, 116
config file, CacheItems, 117
config file, CellServDB, 114
config file, ThisCell, 114
config file, VolumeItems, 102, 117
const AFS LOCKWAIT, 61
const AFSCBMAX, 22, 23
const AFSNAMEMAX, 25
const AFSOPAQUEMAX, 25
const AFSPATHMAX, 25
const BACKVOL, 37
const LogLevel, 76
const MAXGCSTATS, 97
const NMAR, 118
const ROVOL, 37
const RWVOL, 37

DiskName typedef, 28, 29

EndRXAFS FetchData, 68, 71, 73
EndRXAFS StoreData, 70

FetchData Rxgen declaration, 66

ioctl, VICABORT, 81
ioctl, VICCLOSEWAIT, 80
ioctl, VICIGETCELL, 81

klog, 114
klog program, 92

login program, 92
LogLevel, 75

Mariner, 98
MAXVOLS, 117

negative rights list, 95

i

AFS-3 FS/CM Programmer’s Ref

NFS-AFS Translator, 98–100

opaque, 25

PAG (see Process Authentication Group), 92,
93

periodic LWPs, File Server, 77
pioctl, VIOC AFS DELETE MT PT, 87
pioctl, VIOC AFS MARINER HOST, 98, 118
pioctl, VIOC AFS STAT MT PT, 87
pioctl, VIOC AFS SYSNAME, 99
pioctl, VIOC EXPORTAFS, 99
pioctl, VIOC FILE CELL NAME, 90
pioctl, VIOC FLUSHVOLUME, 85
pioctl, VIOC GET PRIMARY CELL, 90
pioctl, VIOC GET WS CELL, 90
pioctl, VIOC GETCELLSTATUS, 91
pioctl, VIOC SETCELLSTATUS, 91
pioctl, VIOC VENUSLOG, 98
pioctl, VIOCACCESS, 93
pioctl, VIOCCKBACK, 86
pioctl, VIOCCKCONN, 94
pioctl, VIOCCKSERV, 88
pioctl, VIOCFLUSHCB, 87
pioctl, VIOCFLUSH, 97
pioctl, VIOCGETAL, 96
pioctl, VIOCGETCACHEPARAMS, 97
pioctl, VIOCGETCELL, 89
pioctl, VIOCGETFID, 86
pioctl, VIOCGETTOK, 93
pioctl, VIOCGETVOLSTAT, 84
pioctl, VIOCNEWCELL, 89
pioctl, VIOCSETAL, 96
pioctl, VIOCSETCACHESIZE, 97
pioctl, VIOCSETTOK, 92
pioctl, VIOCSETVOLSTAT, 85
pioctl, VIOCUNLOG, 94
pioctl, VIOCUNPAG, 94
pioctl, VIOCWHEREIS, 85
positive rights list, 95
Process Authentication Group, 92

root.afs, 86
RPC call, non-streamed, 27, 65
RPC call, streamed, 27, 65, 66, 71
rx EndCall, 71, 73
rx NewCall, 71, 72
rx Read, 71, 73
RXAFS BulkStatus, 29, 60
RXAFS CheckToken, 57

RXAFS CreateFile, 31, 45
RXAFS ExtendLock, 62
RXAFS FetchACL, 40
RXAFS FetchStatus, 41
RXAFS GetRootVolume, 56
RXAFS GetStatistics, 51
RXAFS GetTime, 58
RXAFS GetVolumeInfo, 53
RXAFS GetVolumeStatus, 54
RXAFS GetXStats, 28, 65
RXAFS GetXStats function, 34
RXAFS GiveUpCallBacks, 52
RXAFS GiveUpCallBacks(), 101
RXAFS Link, 48
RXAFS MakeDir, 31, 49
RXAFS NGetVolumeInfo, 59
RXAFS ReleaseLock, 63
RXAFS RemoveDir, 50
RXAFS RemoveFile, 44
RXAFS Rename, 46
RXAFS SetLock, 61
RXAFS SetVolumeStatus, 38, 55
RXAFS StoreACL, 42
RXAFS StoreStatus, 31, 43
RXAFS SymLink, 31
RXAFS Symlink, 47
RXAFS XStatsVersion, 64
RXAFSCB CallBack, 108
RXAFSCB GetCE, 111
RXAFSCB GetCE(), 24
RXAFSCB GetLock, 110
RXAFSCB GetLock(), 29
RXAFSCB GetXStats, 102, 103, 113
RXAFSCB GetXStats function, 104
RXAFSCB InitCallBackState, 109
RXAFSCB Probe, 107
RXAFSCB XStatsVersion, 102, 103, 112

SIGHUP, 75
SIGQUIT, 74
SIGTERM, 75
SIGTSTP, 74, 75
StartRXAFS FetchData, 66–68, 71, 73
StartRXAFS StoreData, 66, 69, 70
StoreData Rxgen declaration, 66
struct AFSCallBack, 22
struct AFSCBFids, 22, 23, 65
struct AFSCBs, 22, 23
struct AFSDBCacheEntry, 24
struct AFSDBLock, 24

Index ii August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

struct AFSDBLockDesc, 23
struct ClearToken, 80
struct VenusFid, 79
switch, File Server -banner, 76
switch, File Server -b, 76
switch, File Server -cb, 76
switch, File Server -d, 76
switch, File Server -k, 76
switch, File Server -l, 76
switch, File Server -pctspare, 76, 77
switch, File Server -rxdbge, 76
switch, File Server -rxdbg, 76
switch, File Server -rxpck, 76
switch, File Server -spare, 76, 77
switch, File Server -s, 77
switch, File Server -w, 77

ThisCell, 79, 114
token, 92
tokens program, 92
typedef AFSOpaque, 25

unlog program, 92

ViceDisk struct, 28, 29, 31
ViceLockType typedef, 29
ViceStatistics struct, 28, 29, 32
VIOC AFS DELETE MT PT, 87
VIOC AFS MARINER HOST, 98, 118
VIOC AFS STAT MT PT, 87
VIOC AFS SYSNAME, 99
VIOC EXPORTAFS, 99
VIOC FILE CELL NAME, 90
VIOC FLUSHVOLUME, 85
VIOC GET PRIMARY CELL, 90
VIOC GET WS CELL, 90
VIOC GETCELLSTATUS, 91
VIOC SETCELLSTATUS, 91
VIOC VENUSLOG, 98
VIOCACCESS, 93
VIOCCKBACK, 86
VIOCCKCONN, 94
VIOCCKSERV, 88
VIOCFLUSH, 97
VIOCFLUSHCB, 87
VIOCGETAL, 96
VIOCGETCACHEPARAMS, 97
VIOCGETCELL, 89
VIOCGETFID, 86
VIOCGETTOK, 93

VIOCGETVOLSTAT, 84
VIOCNEWCELL, 89
VIOCSETAL, 96
VIOCSETTOK, 92
VIOCSETVOLSTAT, 85
VIOCSTCACHESIZE, 97
VIOCUNLOG, 94
VIOCUNPAG, 94
VIOCWHEREIS, 85
VolumeItems, 79, 117

xstat, 78

Index iii August 20, 1991 10:20

