/* * Copyright 2000, International Business Machines Corporation and others. * All Rights Reserved. * * This software has been released under the terms of the IBM Public * License. For details, see the LICENSE file in the top-level source * directory or online at http://www.openafs.org/dl/license10.html */ /* * Linux specific vnodeops. Also includes the glue routines required to call * AFS vnodeops. The "NOTUSED" #define is used to indicate routines and * calling sequences present in an ops table that we don't actually use. * They are present solely for documentation purposes. * * So far the only truly scary part is that Linux relies on the inode cache * to be up to date. Don't you dare break a callback and expect an fstat * to give you meaningful information. This appears to be fixed in the 2.1 * development kernels. As it is we can fix this now by intercepting the * stat calls. */ #include "../afs/param.h" #include "../afs/sysincludes.h" #include "../afs/afsincludes.h" #include "../afs/afs_stats.h" #include "../h/mm.h" #include "../h/pagemap.h" #if defined(AFS_LINUX24_ENV) #include "../h/smp_lock.h" #endif #ifdef pgoff2loff #define pageoff(pp) pgoff2loff((pp)->index) #else #define pageoff(pp) pp->offset #endif extern struct vcache *afs_globalVp; extern struct dentry_operations *afs_dops; #if defined(AFS_LINUX24_ENV) extern struct inode_operations afs_file_iops; extern struct address_space_operations afs_file_aops; struct address_space_operations afs_symlink_aops; #endif extern struct inode_operations afs_dir_iops; extern struct inode_operations afs_symlink_iops; #ifdef NOTUSED static int afs_linux_lseek(struct inode *ip, struct file *fp, off_t, int) {} #endif static ssize_t afs_linux_read(struct file *fp, char *buf, size_t count, loff_t *offp) { ssize_t code; struct vcache *vcp = (struct vcache*)fp->f_dentry->d_inode; cred_t *credp = crref(); struct vrequest treq; AFS_GLOCK(); afs_Trace4(afs_iclSetp, CM_TRACE_READOP, ICL_TYPE_POINTER, vcp, ICL_TYPE_INT32, (int)*offp, ICL_TYPE_INT32, count, ICL_TYPE_INT32, 99999); /* get a validated vcache entry */ code = afs_InitReq(&treq, credp); if (!code) code = afs_VerifyVCache(vcp, &treq); if (code) code = -code; else { osi_FlushPages(vcp, credp); /* ensure stale pages are gone */ AFS_GUNLOCK(); code = generic_file_read(fp, buf, count, offp); AFS_GLOCK(); } afs_Trace4(afs_iclSetp, CM_TRACE_READOP, ICL_TYPE_POINTER, vcp, ICL_TYPE_INT32, (int)*offp, ICL_TYPE_INT32, count, ICL_TYPE_INT32, code); AFS_GUNLOCK(); crfree(credp); return code; } /* Now we have integrated VM for writes as well as reads. generic_file_write * also takes care of re-positioning the pointer if file is open in append * mode. Call fake open/close to ensure we do writes of core dumps. */ static ssize_t afs_linux_write(struct file *fp, const char *buf, size_t count, loff_t *offp) { ssize_t code = 0; int code2; struct vcache *vcp = (struct vcache *)fp->f_dentry->d_inode; struct vrequest treq; cred_t *credp = crref(); AFS_GLOCK(); afs_Trace4(afs_iclSetp, CM_TRACE_WRITEOP, ICL_TYPE_POINTER, vcp, ICL_TYPE_INT32, (int)*offp, ICL_TYPE_INT32, count, ICL_TYPE_INT32, (fp->f_flags & O_APPEND) ? 99998 : 99999); /* get a validated vcache entry */ code = (ssize_t)afs_InitReq(&treq, credp); if (!code) code = (ssize_t)afs_VerifyVCache(vcp, &treq); ObtainWriteLock(&vcp->lock, 529); afs_FakeOpen(vcp); ReleaseWriteLock(&vcp->lock); AFS_GUNLOCK(); if (code) code = -code; else { code = generic_file_write(fp, buf, count, offp); } AFS_GLOCK(); ObtainWriteLock(&vcp->lock, 530); vcp->m.Date = osi_Time(); /* set modification time */ afs_FakeClose(vcp, credp); if (code>=0) code2 = afs_DoPartialWrite(vcp, &treq); if (code2 && code >=0) code = (ssize_t) -code2; ReleaseWriteLock(&vcp->lock); afs_Trace4(afs_iclSetp, CM_TRACE_WRITEOP, ICL_TYPE_POINTER, vcp, ICL_TYPE_INT32, (int)*offp, ICL_TYPE_INT32, count, ICL_TYPE_INT32, code); AFS_GUNLOCK(); crfree(credp); return code; } /* This is a complete rewrite of afs_readdir, since we can make use of * filldir instead of afs_readdir_move. Note that changes to vcache/dcache * handling and use of bulkstats will need to be reflected here as well. */ static int afs_linux_readdir(struct file *fp, void *dirbuf, filldir_t filldir) { extern struct DirEntry * afs_dir_GetBlob(); struct vcache *avc = (struct vcache*)FILE_INODE(fp); struct vrequest treq; register struct dcache *tdc; int code; int offset; int dirpos; struct DirEntry *de; ino_t ino; int len; int origOffset; cred_t *credp = crref(); AFS_GLOCK(); AFS_STATCNT(afs_readdir); code = afs_InitReq(&treq, credp); crfree(credp); if (code) { AFS_GUNLOCK(); return -code; } /* update the cache entry */ tagain: code = afs_VerifyVCache(avc, &treq); if (code) { AFS_GUNLOCK(); return -code; } /* get a reference to the entire directory */ tdc = afs_GetDCache(avc, 0, &treq, &origOffset, &len, 1); if (!tdc) { AFS_GUNLOCK(); return -ENOENT; } ObtainReadLock(&avc->lock); /* * Make sure that the data in the cache is current. There are two * cases we need to worry about: * 1. The cache data is being fetched by another process. * 2. The cache data is no longer valid */ while ((avc->states & CStatd) && (tdc->flags & DFFetching) && hsame(avc->m.DataVersion, tdc->f.versionNo)) { tdc->flags |= DFWaiting; ReleaseReadLock(&avc->lock); afs_osi_Sleep(&tdc->validPos); ObtainReadLock(&avc->lock); } if (!(avc->states & CStatd) || !hsame(avc->m.DataVersion, tdc->f.versionNo)) { ReleaseReadLock(&avc->lock); afs_PutDCache(tdc); goto tagain; } /* Fill in until we get an error or we're done. This implementation * takes an offset in units of blobs, rather than bytes. */ code = 0; offset = (int)fp->f_pos; while(1) { dirpos = BlobScan(&tdc->f.inode, offset); if (!dirpos) break; de = (struct DirEntry*)afs_dir_GetBlob(&tdc->f.inode, dirpos); if (!de) break; ino = (avc->fid.Fid.Volume << 16) + ntohl(de->fid.vnode); ino &= 0x7fffffff; /* Assumes 32 bit ino_t ..... */ len = strlen(de->name); /* filldir returns -EINVAL when the buffer is full. */ #ifdef AFS_LINUX24_ENV { unsigned int type=DT_UNKNOWN; struct VenusFid afid; struct vcache *tvc; int vtype; afid.Cell=avc->fid.Cell; afid.Fid.Volume=avc->fid.Fid.Volume; afid.Fid.Vnode=ntohl(de->fid.vnode); afid.Fid.Unique=ntohl(de->fid.vunique); if ((avc->states & CForeign) == 0 && (ntohl(de->fid.vnode) & 1)) { type=DT_DIR; } else if ((tvc=afs_FindVCache(&afid,0,0,0,0))) { if (tvc->mvstat) { type=DT_DIR; } else if (((tvc->states) & (CStatd|CTruth))) { /* CTruth will be set if the object has *ever* been statd */ vtype=vType(tvc); if (vtype == VDIR) type=DT_DIR; else if (vtype == VREG) type=DT_REG; /* Don't do this until we're sure it can't be a mtpt */ /* else if (vtype == VLNK) type=DT_LNK; */ /* what other types does AFS support? */ } } code = (*filldir)(dirbuf, de->name, len, offset, ino, type); } #else code = (*filldir)(dirbuf, de->name, len, offset, ino); #endif DRelease(de, 0); if (code) break; offset = dirpos + 1 + ((len+16)>>5); } /* If filldir didn't fill in the last one this is still pointing to that * last attempt. */ fp->f_pos = (loff_t)offset; afs_PutDCache(tdc); ReleaseReadLock(&avc->lock); AFS_GUNLOCK(); return 0; } #ifdef NOTUSED int afs_linux_select(struct inode *ip, struct file *fp, int, select_table *); #endif /* in afs_pioctl.c */ extern int afs_xioctl(struct inode *ip, struct file *fp, unsigned int com, unsigned long arg); /* We need to detect unmap's after close. To do that, we need our own * vm_operations_struct's. And we need to set them up for both the * private and shared mappings. The fun part is that these are all static * so we'll have to initialize on the fly! */ static struct vm_operations_struct afs_private_mmap_ops; static int afs_private_mmap_ops_inited = 0; static struct vm_operations_struct afs_shared_mmap_ops; static int afs_shared_mmap_ops_inited = 0; void afs_linux_vma_close(struct vm_area_struct *vmap) { struct vcache *vcp; cred_t *credp; if (!vmap->vm_file) return; vcp = (struct vcache*)FILE_INODE(vmap->vm_file); if (!vcp) return; AFS_GLOCK(); afs_Trace4(afs_iclSetp, CM_TRACE_VM_CLOSE, ICL_TYPE_POINTER, vcp, ICL_TYPE_INT32, vcp->mapcnt, ICL_TYPE_INT32, vcp->opens, ICL_TYPE_INT32, vcp->execsOrWriters); ObtainWriteLock(&vcp->lock, 532); if (vcp->mapcnt) { vcp->mapcnt--; ReleaseWriteLock(&vcp->lock); if (!vcp->mapcnt) { credp = crref(); (void) afs_close(vcp, vmap->vm_file->f_flags, credp); /* only decrement the execsOrWriters flag if this is not a writable * file. */ if (! (vmap->vm_file->f_flags & (FWRITE | FTRUNC))) vcp->execsOrWriters--; vcp->states &= ~CMAPPED; crfree(credp); } } else { ReleaseWriteLock(&vcp->lock); } unlock_exit: AFS_GUNLOCK(); } static int afs_linux_mmap(struct file *fp, struct vm_area_struct *vmap) { struct vcache *vcp = (struct vcache*)FILE_INODE(fp); cred_t *credp = crref(); struct vrequest treq; int code; AFS_GLOCK(); #if defined(AFS_LINUX24_ENV) afs_Trace3(afs_iclSetp, CM_TRACE_GMAP, ICL_TYPE_POINTER, vcp, ICL_TYPE_POINTER, vmap->vm_start, ICL_TYPE_INT32, vmap->vm_end - vmap->vm_start); #else afs_Trace4(afs_iclSetp, CM_TRACE_GMAP, ICL_TYPE_POINTER, vcp, ICL_TYPE_POINTER, vmap->vm_start, ICL_TYPE_INT32, vmap->vm_end - vmap->vm_start, ICL_TYPE_INT32, vmap->vm_offset); #endif /* get a validated vcache entry */ code = afs_InitReq(&treq, credp); if (!code) code = afs_VerifyVCache(vcp, &treq); if (code) code = -code; else { osi_FlushPages(vcp, credp); /* ensure stale pages are gone */ AFS_GUNLOCK(); code = generic_file_mmap(fp, vmap); AFS_GLOCK(); } if (code == 0) { ObtainWriteLock(&vcp->lock,531); /* Set out vma ops so we catch the close. The following test should be * the same as used in generic_file_mmap. */ if ((vmap->vm_flags & VM_SHARED) && (vmap->vm_flags & VM_MAYWRITE)) { if (!afs_shared_mmap_ops_inited) { afs_shared_mmap_ops_inited = 1; afs_shared_mmap_ops = *vmap->vm_ops; afs_shared_mmap_ops.close = afs_linux_vma_close; } vmap->vm_ops = &afs_shared_mmap_ops; } else { if (!afs_private_mmap_ops_inited) { afs_private_mmap_ops_inited = 1; afs_private_mmap_ops = *vmap->vm_ops; afs_private_mmap_ops.close = afs_linux_vma_close; } vmap->vm_ops = &afs_private_mmap_ops; } /* Add an open reference on the first mapping. */ if (vcp->mapcnt == 0) { vcp->execsOrWriters++; vcp->opens++; vcp->states |= CMAPPED; } ReleaseWriteLock(&vcp->lock); vcp->mapcnt++; } AFS_GUNLOCK(); crfree(credp); return code; } int afs_linux_open(struct inode *ip, struct file *fp) { int code; cred_t *credp = crref(); AFS_GLOCK(); #ifdef AFS_LINUX24_ENV lock_kernel(); #endif code = afs_open((struct vcache**)&ip, fp->f_flags, credp); #ifdef AFS_LINUX24_ENV unlock_kernel(); #endif AFS_GUNLOCK(); crfree(credp); return -code; } /* afs_Close is called from release, since release is used to handle all * file closings. In addition afs_linux_flush is called from sys_close to * handle flushing the data back to the server. The kicker is that we could * ignore flush completely if only sys_close took it's return value from * fput. See afs_linux_flush for notes on interactions between release and * flush. */ static int afs_linux_release(struct inode *ip, struct file *fp) { int code = 0; cred_t *credp = crref(); struct vcache *vcp = (struct vcache*)ip; AFS_GLOCK(); #ifdef AFS_LINUX24_ENV lock_kernel(); #endif if (vcp->flushcnt) { vcp->flushcnt--; /* protected by AFS global lock. */ } else { code = afs_close(vcp, fp->f_flags, credp); } #ifdef AFS_LINUX24_ENV unlock_kernel(); #endif AFS_GUNLOCK(); crfree(credp); return -code; } #if defined(AFS_LINUX24_ENV) static int afs_linux_fsync(struct file *fp, struct dentry *dp, int datasync) #else static int afs_linux_fsync(struct file *fp, struct dentry *dp) #endif { int code; struct inode *ip = FILE_INODE(fp); cred_t *credp = crref(); AFS_GLOCK(); #ifdef AFS_LINUX24_ENV lock_kernel(); #endif code = afs_fsync((struct vcache*)ip, credp); #ifdef AFS_LINUX24_ENV unlock_kernel(); #endif AFS_GUNLOCK(); crfree(credp); return -code; } #ifdef NOTUSED /* No support for async i/o */ int afs_linux_fasync(struct inode *ip, struct file *fp, int); /* I don't think it will, at least not as can be detected here. */ int afs_linux_check_media_change(kdev_t dev); /* Revalidate media and file system. */ int afs_linux_file_revalidate(kdev_t dev); #endif /* NOTUSED */ static int afs_linux_lock(struct file *fp, int cmd, struct file_lock *flp) { int code = 0; struct vcache *vcp = (struct vcache*)FILE_INODE(fp); cred_t *credp = crref(); struct flock flock; /* Convert to a lock format afs_lockctl understands. */ memset((char*)&flock, 0, sizeof(flock)); flock.l_type = flp->fl_type; flock.l_pid = flp->fl_pid; flock.l_whence = 0; flock.l_start = flp->fl_start; flock.l_len = flp->fl_end - flp->fl_start; AFS_GLOCK(); code = afs_lockctl(vcp, &flock, cmd, credp); AFS_GUNLOCK(); crfree(credp); return -code; } /* afs_linux_flush * flush is called from sys_close. We could ignore it, but sys_close return * code comes from flush, not release. We need to use release to keep * the vcache open count correct. Note that flush is called before release * (via fput) in sys_close. vcp->flushcnt is a bit of ugliness to avoid * races and also avoid calling afs_close twice when closing the file. * If we merely checked for opens > 0 in afs_linux_release, then if an * new open occurred when storing back the file, afs_linux_release would * incorrectly close the file and decrement the opens count. Calling afs_close * on the just flushed file is wasteful, since the background daemon will * execute the code that finally decides there is nothing to do. */ int afs_linux_flush(struct file *fp) { struct vcache *vcp = (struct vcache *)FILE_INODE(fp); int code = 0; cred_t *credp; /* Only do this on the last close of the file pointer. */ #if defined(AFS_LINUX24_ENV) if (atomic_read(&fp->f_count) > 1) #else if (fp->f_count > 1) #endif return 0; credp = crref(); AFS_GLOCK(); code = afs_close(vcp, fp->f_flags, credp); vcp->flushcnt++; /* protected by AFS global lock. */ AFS_GUNLOCK(); crfree(credp); return -code; } /* Not allowed to directly read a directory. */ ssize_t afs_linux_dir_read(struct file *fp, char *buf, size_t count, loff_t *ppos) { return -EISDIR; } #if defined(AFS_LINUX24_ENV) struct file_operations afs_dir_fops = { read: generic_read_dir, readdir: afs_linux_readdir, ioctl: afs_xioctl, open: afs_linux_open, release: afs_linux_release, }; #else struct file_operations afs_dir_fops = { NULL, /* afs_linux_lseek */ afs_linux_dir_read, NULL, /* afs_linux_write */ afs_linux_readdir, NULL, /* afs_linux_select */ afs_xioctl, /* close enough to use the ported AFS one */ NULL, /* afs_linux_mmap */ afs_linux_open, NULL, /* afs_linux_flush */ afs_linux_release, afs_linux_fsync, NULL, /* afs_linux_fasync */ NULL, /* afs_linux_check_media_change */ NULL, /* afs_linux_file_revalidate */ afs_linux_lock, }; #endif #if defined(AFS_LINUX24_ENV) struct file_operations afs_file_fops = { read: afs_linux_read, write: afs_linux_write, ioctl: afs_xioctl, mmap: afs_linux_mmap, open: afs_linux_open, flush: afs_linux_flush, release: afs_linux_release, fsync: afs_linux_fsync, lock: afs_linux_lock, }; #else struct file_operations afs_file_fops = { NULL, /* afs_linux_lseek */ afs_linux_read, afs_linux_write, NULL, /* afs_linux_readdir */ NULL, /* afs_linux_select */ afs_xioctl, /* close enough to use the ported AFS one */ afs_linux_mmap, afs_linux_open, afs_linux_flush, afs_linux_release, afs_linux_fsync, NULL, /* afs_linux_fasync */ NULL, /* afs_linux_check_media_change */ NULL, /* afs_linux_file_revalidate */ afs_linux_lock, }; #endif /********************************************************************** * AFS Linux dentry operations **********************************************************************/ /* afs_linux_revalidate * Ensure vcache is stat'd before use. Return 0 if entry is valid. */ static int afs_linux_revalidate(struct dentry *dp) { int code; cred_t *credp; struct vrequest treq; struct vcache *vcp = (struct vcache*)dp->d_inode; AFS_GLOCK(); #ifdef AFS_LINUX24_ENV lock_kernel(); #endif /* Make this a fast path (no crref), since it's called so often. */ if (vcp->states & CStatd) { if (*dp->d_name.name != '/' && vcp->mvstat == 2) /* root vnode */ check_bad_parent(dp); /* check and correct mvid */ vcache2inode(vcp); #ifdef AFS_LINUX24_ENV unlock_kernel(); #endif AFS_GUNLOCK(); return 0; } credp = crref(); code = afs_InitReq(&treq, credp); if (!code) code = afs_VerifyVCache(vcp, &treq); #ifdef AFS_LINUX24_ENV unlock_kernel(); #endif AFS_GUNLOCK(); crfree(credp); return -code ; } /* Validate a dentry. Return 0 if unchanged, 1 if VFS layer should re-evaluate. * In kernels 2.2.10 and above, we are passed an additional flags var which * may have either the LOOKUP_FOLLOW OR LOOKUP_DIRECTORY set in which case * we are advised to follow the entry if it is a link or to make sure that * it is a directory. But since the kernel itself checks these possibilities * later on, we shouldn't have to do it until later. Perhaps in the future.. */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,10) static int afs_linux_dentry_revalidate(struct dentry *dp, int flags) #else static int afs_linux_dentry_revalidate(struct dentry *dp) #endif { int code; cred_t *credp; struct vrequest treq; struct vcache *vcp = (struct vcache*)dp->d_inode; /* If it's a negative dentry, then there's nothing to do. */ if (!vcp) { goto out_valid; } AFS_GLOCK(); #ifdef AFS_LINUX24_ENV lock_kernel(); #endif /* Drop the dentry if the callback is broken */ if (!(vcp->states & CStatd)) { d_drop(dp); #ifdef AFS_LINUX24_ENV unlock_kernel(); #endif AFS_GUNLOCK(); return 0; } /* Make this a fast path (no crref), since it's called so often. */ if (*dp->d_name.name != '/' && vcp->mvstat == 2) /* root vnode */ check_bad_parent(dp); /* check and correct mvid */ vcache2inode(vcp); #ifdef AFS_LINUX24_ENV unlock_kernel(); #endif AFS_GUNLOCK(); out_valid: return 1; out_bad: return 0; } /* afs_dentry_iput */ static void afs_dentry_iput(struct dentry *dp, struct inode *ip) { osi_iput(ip); } #if defined(AFS_LINUX24_ENV) struct dentry_operations afs_dentry_operations = { d_revalidate: afs_linux_dentry_revalidate, d_iput: afs_dentry_iput, }; struct dentry_operations *afs_dops = &afs_dentry_operations; #else struct dentry_operations afs_dentry_operations = { afs_linux_dentry_revalidate, /* d_validate(struct dentry *) */ NULL, /* d_hash */ NULL, /* d_compare */ NULL, /* d_delete(struct dentry *) */ NULL, /* d_release(struct dentry *) */ afs_dentry_iput /* d_iput(struct dentry *, struct inode *) */ }; struct dentry_operations *afs_dops = &afs_dentry_operations; #endif /********************************************************************** * AFS Linux inode operations **********************************************************************/ /* afs_linux_create * * Merely need to set enough of vattr to get us through the create. Note * that the higher level code (open_namei) will take care of any tuncation * explicitly. Exclusive open is also taken care of in open_namei. * * name is in kernel space at this point. */ int afs_linux_create(struct inode *dip, struct dentry *dp, int mode) { int code; cred_t *credp = crref(); struct vattr vattr; enum vcexcl excl; const char *name = dp->d_name.name; struct inode *ip; VATTR_NULL(&vattr); vattr.va_mode = mode; AFS_GLOCK(); code = afs_create((struct vcache*)dip, name, &vattr, NONEXCL, mode, (struct vcache**)&ip, credp); if (!code) { vattr2inode(ip, &vattr); /* Reset ops if symlink or directory. */ #if defined(AFS_LINUX24_ENV) if (S_ISREG(ip->i_mode)) { ip->i_op = &afs_file_iops; ip->i_fop = &afs_file_fops; ip->i_data.a_ops = &afs_file_aops; } else if (S_ISDIR(ip->i_mode)) { ip->i_op = &afs_dir_iops; ip->i_fop = &afs_dir_fops; } else if (S_ISLNK(ip->i_mode)) { ip->i_op = &afs_symlink_iops; ip->i_data.a_ops = &afs_symlink_aops; ip->i_mapping = &ip->i_data; } else printk("afs_linux_create: FIXME\n"); #else if (S_ISDIR(ip->i_mode)) ip->i_op = &afs_dir_iops; else if (S_ISLNK(ip->i_mode)) ip->i_op = &afs_symlink_iops; #endif dp->d_op = afs_dops; d_instantiate(dp, ip); } AFS_GUNLOCK(); crfree(credp); return -code; } /* afs_linux_lookup */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,10) struct dentry *afs_linux_lookup(struct inode *dip, struct dentry *dp) #else int afs_linux_lookup(struct inode *dip, struct dentry *dp) #endif { int code = 0; cred_t *credp = crref(); struct vcache *vcp=NULL; const char *comp = dp->d_name.name; AFS_GLOCK(); code = afs_lookup((struct vcache *)dip, comp, &vcp, credp); if (vcp) { struct inode *ip = (struct inode*)vcp; /* Reset ops if symlink or directory. */ #if defined(AFS_LINUX24_ENV) if (S_ISREG(ip->i_mode)) { ip->i_op = &afs_file_iops; ip->i_fop = &afs_file_fops; ip->i_data.a_ops = &afs_file_aops; } else if (S_ISDIR(ip->i_mode)) { ip->i_op = &afs_dir_iops; ip->i_fop = &afs_dir_fops; } else if (S_ISLNK(ip->i_mode)) { ip->i_op = &afs_symlink_iops; ip->i_data.a_ops = &afs_symlink_aops; ip->i_mapping = &ip->i_data; } else printk("afs_linux_lookup: FIXME\n"); #else if (S_ISDIR(ip->i_mode)) ip->i_op = &afs_dir_iops; else if (S_ISLNK(ip->i_mode)) ip->i_op = &afs_symlink_iops; #endif } dp->d_op = afs_dops; d_add(dp, (struct inode*)vcp); AFS_GUNLOCK(); crfree(credp); /* It's ok for the file to not be found. That's noted by the caller by * seeing that the dp->d_inode field is NULL. */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,10) if (code == ENOENT) return ERR_PTR(0); else return ERR_PTR(-code); #else if (code == ENOENT) code = 0; return -code; #endif } int afs_linux_link(struct dentry *olddp, struct inode *dip, struct dentry *newdp) { int code; cred_t *credp = crref(); const char *name = newdp->d_name.name; struct inode *oldip = olddp->d_inode; /* If afs_link returned the vnode, we could instantiate the * dentry. Since it's not, we drop this one and do a new lookup. */ d_drop(newdp); AFS_GLOCK(); code = afs_link((struct vcache*)oldip, (struct vcache*)dip, name, credp); AFS_GUNLOCK(); crfree(credp); return -code; } int afs_linux_unlink(struct inode *dip, struct dentry *dp) { int code; cred_t *credp = crref(); const char *name = dp->d_name.name; int putback = 0; if (!list_empty(&dp->d_hash)) { d_drop(dp); /* Install a definite non-existence if we're the only user. */ #if defined(AFS_LINUX24_ENV) if (atomic_read(&dp->d_count) == 1) #else if (dp->d_count == 1) #endif putback = 1; } AFS_GLOCK(); code = afs_remove((struct vcache*)dip, name, credp); AFS_GUNLOCK(); if (!code) { d_delete(dp); if (putback) d_add(dp, NULL); /* means definitely does _not_ exist */ } crfree(credp); return -code; } int afs_linux_symlink(struct inode *dip, struct dentry *dp, const char *target) { int code; cred_t *credp = crref(); struct vattr vattr; const char *name = dp->d_name.name; /* If afs_symlink returned the vnode, we could instantiate the * dentry. Since it's not, we drop this one and do a new lookup. */ d_drop(dp); AFS_GLOCK(); VATTR_NULL(&vattr); code = afs_symlink((struct vcache*)dip, name, &vattr, target, credp); AFS_GUNLOCK(); crfree(credp); return -code; } int afs_linux_mkdir(struct inode *dip, struct dentry *dp, int mode) { int code; cred_t *credp = crref(); struct vcache *tvcp = NULL; struct vattr vattr; const char *name = dp->d_name.name; AFS_GLOCK(); VATTR_NULL(&vattr); vattr.va_mask = ATTR_MODE; vattr.va_mode = mode; code = afs_mkdir((struct vcache*)dip, name, &vattr, &tvcp, credp); if (tvcp) { tvcp->v.v_op = &afs_dir_iops; #if defined(AFS_LINUX24_ENV) tvcp->v.v_fop = &afs_dir_fops; #endif dp->d_op = afs_dops; d_instantiate(dp, (struct inode*)tvcp); } AFS_GUNLOCK(); crfree(credp); return -code; } int afs_linux_rmdir(struct inode *dip, struct dentry *dp) { int code; cred_t *credp = crref(); const char *name = dp->d_name.name; AFS_GLOCK(); code = afs_rmdir((struct vcache*)dip, name, credp); /* Linux likes to see ENOTDIR returned from an rmdir() syscall * that failed because a directory is not empty. So, we map * EEXIST to ENOTDIR on linux. */ if (code == EEXIST) { code = ENOTDIR; } if (!code) { d_delete(dp); } AFS_GUNLOCK(); crfree(credp); return -code; } int afs_linux_rename(struct inode *oldip, struct dentry *olddp, struct inode *newip, struct dentry *newdp) { int code; cred_t *credp = crref(); const char *oldname = olddp->d_name.name; const char *newname = newdp->d_name.name; /* Remove old and new entries from name hash. New one will change below. * While it's optimal to catch failures and re-insert newdp into hash, * it's also error prone and in that case we're already dealing with error * cases. Let another lookup put things right, if need be. */ if (!list_empty(&olddp->d_hash)) { d_drop(olddp); } if (!list_empty(&newdp->d_hash)) { d_drop(newdp); } AFS_GLOCK(); code = afs_rename((struct vcache*)oldip, oldname, (struct vcache*)newip, newname, credp); AFS_GUNLOCK(); if (!code) d_move(olddp, newdp); crfree(credp); return -code; } /* afs_linux_ireadlink * Internal readlink which can return link contents to user or kernel space. * Note that the buffer is NOT supposed to be null-terminated. */ static int afs_linux_ireadlink(struct inode *ip, char *target, int maxlen, uio_seg_t seg) { int code; cred_t *credp = crref(); uio_t tuio; struct iovec iov; setup_uio(&tuio, &iov, target, 0, maxlen, UIO_READ, seg); code = afs_readlink((struct vcache*)ip, &tuio, credp); crfree(credp); if (!code) return maxlen - tuio.uio_resid; else return -code; } #if !defined(AFS_LINUX24_ENV) /* afs_linux_readlink * Fill target (which is in user space) with contents of symlink. */ int afs_linux_readlink(struct dentry *dp, char *target, int maxlen) { int code; struct inode *ip = dp->d_inode; AFS_GLOCK(); code = afs_linux_ireadlink(ip, target, maxlen, AFS_UIOUSER); AFS_GUNLOCK(); return code; } /* afs_linux_follow_link * a file system dependent link following routine. */ struct dentry * afs_linux_follow_link(struct dentry *dp, struct dentry *basep, unsigned int follow) { int code = 0; char *name; struct dentry *res; AFS_GLOCK(); name = osi_Alloc(PATH_MAX+1); if (!name) { AFS_GUNLOCK(); dput(basep); return ERR_PTR(-EIO); } code = afs_linux_ireadlink(dp->d_inode, name, PATH_MAX, AFS_UIOSYS); AFS_GUNLOCK(); if (code<0) { dput(basep); res = ERR_PTR(code); } else { name[code] = '\0'; res = lookup_dentry(name, basep, follow); } AFS_GLOCK(); osi_Free(name, PATH_MAX+1); AFS_GUNLOCK(); return res; } #endif /* afs_linux_readpage * all reads come through here. A strategy-like read call. */ int afs_linux_readpage(struct file *fp, struct page *pp) { int code; cred_t *credp = crref(); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) char *address; loff_t offset = pp->index << PAGE_CACHE_SHIFT; #else ulong address = afs_linux_page_address(pp); loff_t offset = pageoff(pp); #endif uio_t tuio; struct iovec iovec; struct inode *ip = FILE_INODE(fp); int cnt = atomic_read(&pp->count); AFS_GLOCK(); afs_Trace4(afs_iclSetp, CM_TRACE_READPAGE, ICL_TYPE_POINTER, ip, ICL_TYPE_POINTER, pp, ICL_TYPE_INT32, cnt, ICL_TYPE_INT32, 99999); /* not a possible code value */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) address = kmap(pp); ClearPageError(pp); lock_kernel(); #else atomic_add(1, &pp->count); set_bit(PG_locked, &pp->flags); /* other bits? See mm.h */ clear_bit(PG_error, &pp->flags); #endif setup_uio(&tuio, &iovec, (char*)address, offset, PAGESIZE, UIO_READ, AFS_UIOSYS); code = afs_rdwr((struct vcache*)ip, &tuio, UIO_READ, 0, credp); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) unlock_kernel(); #endif if (!code) { if (tuio.uio_resid) /* zero remainder of page */ memset((void*)(address+(PAGESIZE-tuio.uio_resid)), 0, tuio.uio_resid); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) flush_dcache_page(pp); SetPageUptodate(pp); #else set_bit(PG_uptodate, &pp->flags); #endif } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) kunmap(pp); UnlockPage(pp); #else clear_bit(PG_locked, &pp->flags); wake_up(&pp->wait); free_page(address); #endif crfree(credp); afs_Trace4(afs_iclSetp, CM_TRACE_READPAGE, ICL_TYPE_POINTER, ip, ICL_TYPE_POINTER, pp, ICL_TYPE_INT32, cnt, ICL_TYPE_INT32, code); AFS_GUNLOCK(); return -code; } #if defined(AFS_LINUX24_ENV) int afs_linux_writepage(struct page *pp) { struct address_space *mapping = pp->mapping; struct inode *inode; unsigned long end_index; unsigned offset = PAGE_CACHE_SIZE; long status; inode = (struct inode *) mapping->host; end_index = inode->i_size >> PAGE_CACHE_SHIFT; /* easy case */ if (pp->index < end_index) goto do_it; /* things got complicated... */ offset = inode->i_size & (PAGE_CACHE_SIZE-1); /* OK, are we completely out? */ if (pp->index >= end_index+1 || !offset) return -EIO; do_it: AFS_GLOCK(); status = afs_linux_writepage_sync(inode, pp, 0, offset); AFS_GUNLOCK(); SetPageUptodate(pp); UnlockPage(pp); if (status == offset) return 0; else return status; } #endif #ifdef NOTUSED /* afs_linux_bmap - supports generic_readpage, but we roll our own. */ int afs_linux_bmap(struct inode *ip, int) { return -EINVAL; } /* afs_linux_truncate * Handles discarding disk blocks if this were a device. ext2 indicates we * may need to zero partial last pages of memory mapped files. */ void afs_linux_truncate(struct inode *ip) { } #endif /* afs_linux_permission * Check access rights - returns error if can't check or permission denied. */ int afs_linux_permission(struct inode *ip, int mode) { int code; cred_t *credp = crref(); int tmp = 0; AFS_GLOCK(); if (mode & MAY_EXEC) tmp |= VEXEC; if (mode & MAY_READ) tmp |= VREAD; if (mode & MAY_WRITE) tmp |= VWRITE; code = afs_access((struct vcache*)ip, tmp, credp); AFS_GUNLOCK(); crfree(credp); return -code; } #ifdef NOTUSED /* msdos sector mapping hack for memory mapping. */ int afs_linux_smap(struct inode *ip, int) { return -EINVAL; } #endif #if defined(AFS_LINUX24_ENV) int afs_linux_writepage_sync(struct inode *ip, struct page *pp, unsigned long offset, unsigned int count) { struct vcache *vcp = (struct vcache *) ip; char *buffer; loff_t base; int code = 0; cred_t *credp; uio_t tuio; struct iovec iovec; int f_flags = 0; buffer = kmap(pp) + offset; base = (pp->index << PAGE_CACHE_SHIFT) + offset; credp = crref(); afs_Trace4(afs_iclSetp, CM_TRACE_UPDATEPAGE, ICL_TYPE_POINTER, vcp, ICL_TYPE_POINTER, pp, ICL_TYPE_INT32, atomic_read(&pp->count), ICL_TYPE_INT32, 99999); setup_uio(&tuio, &iovec, buffer, base, count, UIO_WRITE, AFS_UIOSYS); code = afs_write(vcp, &tuio, f_flags, credp, 0); vcache2inode(vcp); code = code ? -code : count - tuio.uio_resid; afs_Trace4(afs_iclSetp, CM_TRACE_UPDATEPAGE, ICL_TYPE_POINTER, vcp, ICL_TYPE_POINTER, pp, ICL_TYPE_INT32, atomic_read(&pp->count), ICL_TYPE_INT32, code); crfree(credp); kunmap(pp); return code; } static int afs_linux_updatepage(struct file *file, struct page *page, unsigned long offset, unsigned int count) { struct dentry *dentry = file->f_dentry; return afs_linux_writepage_sync(dentry->d_inode, page, offset, count); } #else /* afs_linux_updatepage * What one would have thought was writepage - write dirty page to file. * Called from generic_file_write. buffer is still in user space. pagep * has been filled in with old data if we're updating less than a page. */ int afs_linux_updatepage(struct file *fp, struct page *pp, unsigned long offset, unsigned int count, int sync) { struct vcache *vcp = (struct vcache *)FILE_INODE(fp); u8 *page_addr = (u8*) afs_linux_page_address(pp); int code = 0; cred_t *credp; uio_t tuio; struct iovec iovec; set_bit(PG_locked, &pp->flags); credp = crref(); AFS_GLOCK(); afs_Trace4(afs_iclSetp, CM_TRACE_UPDATEPAGE, ICL_TYPE_POINTER, vcp, ICL_TYPE_POINTER, pp, ICL_TYPE_INT32, atomic_read(&pp->count), ICL_TYPE_INT32, 99999); setup_uio(&tuio, &iovec, page_addr + offset, pp->offset + offset, count, UIO_WRITE, AFS_UIOSYS); code = afs_write(vcp, &tuio, fp->f_flags, credp, 0); vcache2inode(vcp); code = code ? -code : count - tuio.uio_resid; afs_Trace4(afs_iclSetp, CM_TRACE_UPDATEPAGE, ICL_TYPE_POINTER, vcp, ICL_TYPE_POINTER, pp, ICL_TYPE_INT32, atomic_read(&pp->count), ICL_TYPE_INT32, code); AFS_GUNLOCK(); crfree(credp); clear_bit(PG_locked, &pp->flags); return code; } #endif #if defined(AFS_LINUX24_ENV) static int afs_linux_commit_write(struct file *file, struct page *page, unsigned offset, unsigned to) { int code; AFS_GLOCK(); lock_kernel(); code = afs_linux_updatepage(file, page, offset, to-offset); unlock_kernel(); AFS_GUNLOCK(); kunmap(page); return code; } static int afs_linux_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to) { kmap(page); return 0; } extern int afs_notify_change(struct dentry *dp, struct iattr* iattrp); #endif #if defined(AFS_LINUX24_ENV) struct inode_operations afs_file_iops = { revalidate: afs_linux_revalidate, setattr: afs_notify_change, permission: afs_linux_permission, }; struct address_space_operations afs_file_aops = { readpage: afs_linux_readpage, writepage: afs_linux_writepage, commit_write: afs_linux_commit_write, prepare_write: afs_linux_prepare_write, }; struct inode_operations *afs_ops = &afs_file_iops; #else struct inode_operations afs_iops = { &afs_file_fops, /* file operations */ NULL, /* afs_linux_create */ NULL, /* afs_linux_lookup */ NULL, /* afs_linux_link */ NULL, /* afs_linux_unlink */ NULL, /* afs_linux_symlink */ NULL, /* afs_linux_mkdir */ NULL, /* afs_linux_rmdir */ NULL, /* afs_linux_mknod */ NULL, /* afs_linux_rename */ NULL, /* afs_linux_readlink */ NULL, /* afs_linux_follow_link */ afs_linux_readpage, NULL, /* afs_linux_writepage */ NULL, /* afs_linux_bmap */ NULL, /* afs_linux_truncate */ afs_linux_permission, NULL, /* afs_linux_smap */ afs_linux_updatepage, afs_linux_revalidate, }; struct inode_operations *afs_ops = &afs_iops; #endif /* Separate ops vector for directories. Linux 2.2 tests type of inode * by what sort of operation is allowed..... */ #if defined(AFS_LINUX24_ENV) struct inode_operations afs_dir_iops = { create: afs_linux_create, lookup: afs_linux_lookup, link: afs_linux_link, unlink: afs_linux_unlink, symlink: afs_linux_symlink, mkdir: afs_linux_mkdir, rmdir: afs_linux_rmdir, rename: afs_linux_rename, revalidate: afs_linux_revalidate, setattr: afs_notify_change, permission: afs_linux_permission, }; #else struct inode_operations afs_dir_iops = { &afs_dir_fops, /* file operations for directories */ afs_linux_create, afs_linux_lookup, afs_linux_link, afs_linux_unlink, afs_linux_symlink, afs_linux_mkdir, afs_linux_rmdir, NULL, /* afs_linux_mknod */ afs_linux_rename, NULL, /* afs_linux_readlink */ NULL, /* afs_linux_follow_link */ NULL, /* afs_linux_readpage */ NULL, /* afs_linux_writepage */ NULL, /* afs_linux_bmap */ NULL, /* afs_linux_truncate */ afs_linux_permission, NULL, /* afs_linux_smap */ NULL, /* afs_linux_updatepage */ afs_linux_revalidate, }; #endif /* We really need a separate symlink set of ops, since do_follow_link() * determines if it _is_ a link by checking if the follow_link op is set. */ #if defined(AFS_LINUX24_ENV) static int afs_symlink_filler(struct file *file, struct page *page) { struct inode *ip = (struct inode *) page->mapping->host; char *p = (char *)kmap(page); int code; AFS_GLOCK(); lock_kernel(); code = afs_linux_ireadlink(ip, p, PAGE_SIZE, AFS_UIOSYS); if (code<0) goto fail; p[code] = '\0'; /* null terminate? */ unlock_kernel(); AFS_GUNLOCK(); SetPageUptodate(page); kunmap(page); UnlockPage(page); return 0; fail: unlock_kernel(); AFS_GUNLOCK(); SetPageError(page); kunmap(page); UnlockPage(page); return code; } struct address_space_operations afs_symlink_aops = { readpage: afs_symlink_filler }; struct inode_operations afs_symlink_iops = { readlink: page_readlink, follow_link: page_follow_link, setattr: afs_notify_change, }; #else struct inode_operations afs_symlink_iops = { NULL, /* file operations */ NULL, /* create */ NULL, /* lookup */ NULL, /* link */ NULL, /* unlink */ NULL, /* symlink */ NULL, /* mkdir */ NULL, /* rmdir */ NULL, /* afs_linux_mknod */ NULL, /* rename */ afs_linux_readlink, afs_linux_follow_link, NULL, /* readpage */ NULL, /* afs_linux_writepage */ NULL, /* afs_linux_bmap */ NULL, /* afs_linux_truncate */ afs_linux_permission, /* tho the code appears to indicate not used? */ NULL, /* afs_linux_smap */ NULL, /* updatepage */ afs_linux_revalidate, /* tho the code appears to indicate not used? */ }; #endif