/* * Copyright 2000, International Business Machines Corporation and others. * All Rights Reserved. * * This software has been released under the terms of the IBM Public * License. For details, see the LICENSE file in the top-level source * directory or online at http://www.openafs.org/dl/license10.html */ /* * afs_init.c - initialize AFS client. * * Implements: */ #include #include "../afs/param.h" RCSID("$Header$"); #include "../afs/stds.h" #include "../afs/sysincludes.h" /* Standard vendor system headers */ #include "../afs/afsincludes.h" /* Afs-based standard headers */ #include "../afs/afs_stats.h" /* afs statistics */ /* Imported variables */ extern afs_int32 afs_waitForever; extern short afs_waitForeverCount; extern afs_int32 afs_FVIndex; extern struct server *afs_setTimeHost; extern struct server *afs_servers[NSERVERS]; extern struct unixuser *afs_users[NUSERS]; extern struct volume *afs_freeVolList; extern struct volume *afs_volumes[NVOLS]; extern afs_int32 afs_volCounter; extern afs_rwlock_t afs_xaxs; extern afs_rwlock_t afs_xvolume; extern afs_rwlock_t afs_xuser; extern afs_rwlock_t afs_xserver; #ifndef AFS_AIX41_ENV extern afs_lock_t osi_fsplock; #endif extern afs_lock_t osi_flplock; extern afs_int32 fvTable[NFENTRIES]; /* afs_cell.c */ extern afs_rwlock_t afs_xcell; extern struct afs_q CellLRU; extern afs_int32 afs_cellindex; extern afs_int32 afs_nextCellNum; /* afs_conn.c */ extern afs_rwlock_t afs_xconn; extern afs_rwlock_t afs_xinterface; /* afs_mariner.c */ extern struct rx_service *afs_server; /* afs_mariner.c */ extern afs_int32 afs_mariner; extern afs_int32 afs_marinerHost; /* afs_volume.c */ extern ino_t volumeInode; /* afs_osi_pag.c */ extern afs_uint32 pag_epoch; /* afs_dcache.c */ extern afs_rwlock_t afs_xdcache; extern int cacheDiskType; extern afs_int32 afs_fsfragsize; extern ino_t cacheInode; extern struct osi_file *afs_cacheInodep; extern afs_int32 afs_freeDCList; /*Free list for disk cache entries*/ /* afs_vcache.c */ extern afs_rwlock_t afs_xvcache; extern afs_rwlock_t afs_xvcb; /* VNOPS/afs_vnop_read.c */ extern afs_int32 maxIHint; extern afs_int32 nihints; /* # of above actually in-use */ extern afs_int32 usedihint; /* afs_server.c */ extern afs_int32 afs_setTime; /* Imported functions. */ extern struct rx_securityClass *rxnull_NewServerSecurityObject(); extern int RXAFSCB_ExecuteRequest(); extern int RXSTATS_ExecuteRequest(); /* afs_osi.c */ extern afs_lock_t afs_ftf; /* Exported variables */ struct osi_dev cacheDev; /*Cache device*/ afs_int32 cacheInfoModTime; /*Last time cache info modified*/ #if defined(AFS_OSF_ENV) || defined(AFS_DEC_ENV) || defined(AFS_DARWIN_ENV) struct mount *afs_cacheVfsp=0; #elif defined(AFS_LINUX20_ENV) struct super_block *afs_cacheSBp = 0; #else struct vfs *afs_cacheVfsp=0; #endif afs_rwlock_t afs_puttofileLock; /* not used */ char *afs_sysname = 0; /* So that superuser may change the * local value of @sys */ char *afs_sysnamelist[MAXNUMSYSNAMES]; /* For support of a list of sysname */ int afs_sysnamecount = 0; struct volume *Initialafs_freeVolList; int afs_memvolumes = 0; /* Local variables */ /* * Initialization order is important. Must first call afs_CacheInit, * then cache file and volume file initialization routines. Next, the * individual cache entry initialization routines are called. */ /* * afs_CacheInit * * Description: * * Parameters: * astatSize : The number of stat cache (vnode) entries to * allocate. * afiles : The number of disk files to allocate to the cache * ablocks : The max number of 1 Kbyte blocks that all of * the files in the cache may occupy. * aDentries : Number of dcache entries to allocate. * aVolumes : Number of volume cache entries to allocate. * achunk : Power of 2 to make the chunks. * aflags : Flags passed in. * inodes : max inodes to pin down in inode[] * users : what should size of per-user access cache be? * * Environment: * This routine should only be called at initialization time, since * it reclaims no resources and doesn't sufficiently synchronize * with other processes. */ struct cm_initparams cm_initParams; static int afs_cacheinit_flag = 0; int afs_CacheInit(astatSize, afiles, ablocks, aDentries, aVolumes, achunk, aflags, ninodes, nusers) afs_int32 afiles; afs_int32 astatSize, ablocks; afs_int32 achunk, aflags, ninodes, nusers; afs_int32 aDentries; { /*afs_CacheInit*/ extern int afs_memvolumes; register afs_int32 i, preallocs; register struct volume *tv; long code; AFS_STATCNT(afs_CacheInit); /* * Jot down the epoch time, namely when this incarnation of the * Cache Manager started. */ afs_stats_cmperf.epoch = pag_epoch = osi_Time(); #ifdef SYS_NAME_ID afs_stats_cmperf.sysName_ID = SYS_NAME_ID; #else afs_stats_cmperf.sysName_ID = SYS_NAME_ID_UNDEFINED; #endif /* SYS_NAME_ID */ printf("Starting AFS cache scan..."); if (afs_cacheinit_flag) return 0; afs_cacheinit_flag = 1; cacheInfoModTime = 0; maxIHint = ninodes; nihints = 0; usedihint = 0; LOCK_INIT(&afs_ftf, "afs_ftf"); RWLOCK_INIT(&afs_xaxs, "afs_xaxs"); osi_dnlc_init(); #if defined(AFS_AIX32_ENV) || defined(AFS_HPUX_ENV) /* * We want to also reserve space for the gnode struct which is associated * with each vnode (vcache) one; we want to use the pinned pool for them * since they're referenced at interrupt level. */ if (afs_stats_cmperf.SmallBlocksAlloced + astatSize < 3600) preallocs = astatSize; else { preallocs = 3600 - afs_stats_cmperf.SmallBlocksAlloced; if (preallocs <= 0) preallocs = 10; } osi_AllocMoreSSpace(preallocs); #endif /* * create volume list structure */ if ( aVolumes < 50 ) aVolumes = 50; if (aVolumes > 3000) aVolumes = 3000; tv = (struct volume *) afs_osi_Alloc(aVolumes * sizeof(struct volume)); for (i=0;i> 10); } else { i = (afs_cacheBlocks << 10) / AFS_FIRSTCSIZE; } i = (2*i) / 3; if (afs_maxCacheDirty > i) afs_maxCacheDirty = i; if (afs_maxCacheDirty < 1) afs_maxCacheDirty = 1; afs_stats_cmperf.cacheMaxDirtyChunks = afs_maxCacheDirty; } /*afs_ComputeCacheParms*/ /* * afs_InitVolumeInfo * * Description: * Set up the volume info storage file. * * Parameters: * afile : the file to be declared to be the volume info storage * file for AFS. It must be already truncated to 0 length. * * Environment: * This function is called only during initialization. * * WARNING: Data will be written to this file over time by AFS. */ afs_InitVolumeInfo(afile) register char *afile; { /*afs_InitVolumeInfo*/ afs_int32 code; struct osi_file *tfile; struct vnode *filevp; struct fcache fce; AFS_STATCNT(afs_InitVolumeInfo); #ifdef AFS_LINUX22_ENV { struct dentry *dp; code = gop_lookupname(afile, AFS_UIOSYS, 0, (struct vnode **) 0, &dp); if (code) return ENOENT; fce.inode = volumeInode = dp->d_inode->i_ino; dput(dp); } #else code = gop_lookupname(afile, AFS_UIOSYS, 0, (struct vnode **) 0, &filevp); if (code) return ENOENT; fce.inode = volumeInode = afs_vnodeToInumber(filevp); #ifdef AFS_DEC_ENV grele(filevp); #else AFS_RELE((struct vnode *)filevp); #endif #endif /* AFS_LINUX22_ENV */ tfile = afs_CFileOpen(fce.inode); afs_CFileTruncate(tfile, 0); afs_CFileClose(tfile); return 0; } /*afs_InitVolumeInfo*/ /* * afs_InitCacheInfo * * Description: * Set up the given file as the AFS cache info file. * * Parameters: * afile : Name of the file assumed to be the cache info file * for the Cache Manager; it will be used as such. * Side Effects: This sets afs_fragsize, which is used in the cache usage * calculations such as in afs_adjustsize() * * Environment: * This function is called only during initialization. The given * file should NOT be truncated to 0 lenght; its contents descrebe * what data is really in the cache. * * WARNING: data will be written to this file over time by AFS. * * NOTE: Starting to use separate osi_InitCacheInfo() routines to clean up * code. * */ afs_InitCacheInfo(afile) register char *afile; { /*afs_InitCacheInfo*/ register afs_int32 code; struct osi_stat tstat; register struct osi_file *tfile; struct afs_fheader theader; struct vnode *filevp; int goodFile; AFS_STATCNT(afs_InitCacheInfo); if(cacheDiskType != AFS_FCACHE_TYPE_UFS) osi_Panic("afs_InitCacheInfo --- called for non-ufs cache!"); #ifdef AFS_LINUX22_ENV code = osi_InitCacheInfo(afile); if (code) return code; #else code = gop_lookupname(afile, AFS_UIOSYS, 0, (struct vnode **) 0, &filevp); if (code || !filevp) return ENOENT; { #if defined(AFS_SUN56_ENV) struct statvfs64 st; #else #if defined(AFS_HPUX102_ENV) struct k_statvfs st; #else #if defined(AFS_SUN5_ENV) || defined(AFS_SGI_ENV) ||defined(AFS_HPUX100_ENV) struct statvfs st; #else #if defined(AFS_DUX40_ENV) struct nstatfs st; #else struct statfs st; #endif /* DUX40 */ #endif /* SUN5 SGI */ #endif /* HP 10.20 */ #endif /* SUN56 */ #if defined(AFS_SGI_ENV) #ifdef AFS_SGI65_ENV VFS_STATVFS(filevp->v_vfsp, &st, (struct vnode *)0, code); if (!code) #else if (!VFS_STATFS(filevp->v_vfsp, &st, (struct vnode *)0)) #endif /* AFS_SGI65_ENV */ #else /* AFS_SGI_ENV */ #if defined(AFS_SUN5_ENV) || defined(AFS_HPUX100_ENV) if (!VFS_STATVFS(filevp->v_vfsp, &st)) #else #ifdef AFS_OSF_ENV VFS_STATFS(filevp->v_vfsp, code); /* struct copy */ st = filevp->v_vfsp->m_stat; if (code == 0) #else /* AFS_OSF_ENV */ #ifdef AFS_AIX41_ENV if (!VFS_STATFS(filevp->v_vfsp, &st, &afs_osi_cred)) #else #ifdef AFS_LINUX20_ENV { KERNEL_SPACE_DECL; TO_USER_SPACE(); VFS_STATFS(filevp->v_vfsp, &st); TO_KERNEL_SPACE(); } #else #if defined(AFS_DARWIN_ENV) || defined(AFS_FBSD_ENV) if (!VFS_STATFS(filevp->v_mount, &st, current_proc())) #else if (!VFS_STATFS(filevp->v_vfsp, &st)) #endif /* AFS_DARWIN_ENV || AFS_FBSD_ENV */ #endif /* AFS_LINUX20_ENV */ #endif /* AIX41 */ #endif /* OSF */ #endif /* SUN5 HP10 */ #endif /* SGI */ #if defined(AFS_SUN5_ENV) || defined(AFS_HPUX100_ENV) afs_fsfragsize = st.f_frsize - 1; #else afs_fsfragsize = st.f_bsize - 1; #endif } #ifdef AFS_LINUX20_ENV cacheInode = filevp->i_ino; afs_cacheSBp = filevp->i_sb; #else #if defined(AFS_SGI62_ENV) || defined(AFS_HAVE_VXFS) || defined(AFS_DARWIN_ENV) afs_InitDualFSCacheOps(filevp); #endif cacheInode = afs_vnodeToInumber(filevp); cacheDev.dev = afs_vnodeToDev(filevp); afs_cacheVfsp = filevp->v_vfsp; #endif /* AFS_LINUX20_ENV */ AFS_RELE((struct vnode *)filevp); #endif /* AFS_LINUX22_ENV */ tfile = osi_UFSOpen(cacheInode); afs_osi_Stat(tfile, &tstat); cacheInfoModTime = tstat.mtime; code = afs_osi_Read(tfile, -1, &theader, sizeof(theader)); goodFile = 0; if (code == sizeof(theader)) { /* read the header correctly */ if (theader.magic == AFS_FHMAGIC && theader.firstCSize == AFS_FIRSTCSIZE && theader.otherCSize == AFS_OTHERCSIZE && theader.version == AFS_CI_VERSION ) goodFile = 1; } if (!goodFile) { /* write out a good file label */ theader.magic = AFS_FHMAGIC; theader.firstCSize = AFS_FIRSTCSIZE; theader.otherCSize = AFS_OTHERCSIZE; theader.version = AFS_CI_VERSION; afs_osi_Write(tfile, 0, &theader, sizeof(theader)); /* * Truncate the rest of the file, since it may be arbitrarily * wrong */ osi_UFSTruncate(tfile, sizeof(struct afs_fheader)); } /* Leave the file open now, since reopening the file makes public pool * vnode systems (like OSF/Alpha) much harder to handle, That's because * they can do a vnode recycle operation any time we open a file, which * we'd do on any afs_GetDSlot call, etc. */ afs_cacheInodep = (struct osi_file *)tfile; return 0; } /*afs_InitCacheInfo*/ int afs_resourceinit_flag = 0; afs_ResourceInit(preallocs) int preallocs; { register afs_int32 i; static struct rx_securityClass *secobj; AFS_STATCNT(afs_ResourceInit); RWLOCK_INIT(&afs_xuser, "afs_xuser"); RWLOCK_INIT(&afs_xvolume, "afs_xvolume"); RWLOCK_INIT(&afs_xcell, "afs_xcell"); RWLOCK_INIT(&afs_xserver, "afs_xserver"); RWLOCK_INIT(&afs_xinterface, "afs_xinterface"); LOCK_INIT(&afs_puttofileLock, "afs_puttofileLock"); #ifndef AFS_AIX32_ENV LOCK_INIT(&osi_fsplock, "osi_fsplock"); #endif LOCK_INIT(&osi_flplock, "osi_flplock"); RWLOCK_INIT(&afs_xconn, "afs_xconn"); afs_InitCBQueue(1); /* initialize callback queues */ if (afs_resourceinit_flag == 0) { afs_resourceinit_flag = 1; for (i=0;i 256) && (preallocs < 3600)) afs_preallocs = preallocs; osi_AllocMoreSSpace(afs_preallocs); osi_AllocMoreMSpace(100); } #endif } secobj = rxnull_NewServerSecurityObject(); afs_server = rx_NewService(0, 1, "afs", &secobj, 1, RXAFSCB_ExecuteRequest); afs_server = rx_NewService(0, RX_STATS_SERVICE_ID, "rpcstats", &secobj, 1, RXSTATS_ExecuteRequest); rx_StartServer(0); afs_osi_Wakeup(&afs_server); /* wakeup anyone waiting for it */ return 0; } /*afs_ResourceInit*/ #if defined(AFS_AIX_ENV) /* * AIX dynamic sizeof(struct proc) * * AIX keeps its proc structures in an array. The size of struct proc * varies from release to release of the OS. In order to maintain * binary compatibility with releases later than what we build on, we * need to determine the size of struct proc at run time. * * We need this in order to walk the proc[] array to do PAG garbage * collection. * * We also need this in order to support 'klog -setpag', since the * kernel code needs to locate the proc structure for the parent process * of the current process. * * To compute sizeof(struct proc), we need the addresses of two proc * structures and their corresponding pids. Given the pids, we can use * the PROCMASK() macro to compute their corresponding indices in the * proc[] array. By dividing the distance between the pointers by the * number of proc structures, we can compute the size of a single proc * structure. * * We know the base address of the proc table from v.vb_proc: * * declares sysconfig() and SYS_GETPARMS; * (we don't use this, but I note it here for completeness) * * declares struct var and external variable v; * * v.v_proc NPROC * v.vb_proc &proc[0] * v.ve_proc &proc[x] (current highwater mark for * proc[] array usage) * * The first proc pointer is v.vb_proc, which is the proc structure for * process 0. Process 0's pointer to its first child is the other proc * pointer. If process 0 has no children, we simply give up and do not * support features that require knowing the size of struct proc. */ static void afs_procsize_init(void) { struct proc *p0; /* pointer to process 0 */ struct proc *pN; /* pointer to process 0's first child */ int pN_index; ptrdiff_t pN_offset; int procsize; p0 = (struct proc *)v.vb_proc; if (!p0) { afs_gcpags = AFS_GCPAGS_EPROC0; return; } pN = p0->p_child; if (!pN) { afs_gcpags = AFS_GCPAGS_EPROCN; return; } if (pN->p_pid == p0->p_pid) { afs_gcpags = AFS_GCPAGS_EEQPID; return; } pN_index = PROCMASK(pN->p_pid); pN_offset = ((char *)pN - (char *)p0); procsize = pN_offset / pN_index; /* * check that the computation was exact */ if (pN_index * procsize != pN_offset) { afs_gcpags = AFS_GCPAGS_EINEXACT; return; } /* * check that the proc table size is a multiple of procsize. */ if ((((char *)v.ve_proc - (char *)v.vb_proc) % procsize) != 0) { afs_gcpags = AFS_GCPAGS_EPROCEND; return; } /* okay, use it */ afs_gcpags_procsize = procsize; } #endif /* * shutdown_cache * * Description: * Clean up and shut down the AFS cache. * * Parameters: * None. * * Environment: * Nothing interesting. */ void shutdown_cache() { /*shutdown_cache*/ register struct afs_cbr *tsp, *nsp; extern int afs_cold_shutdown; extern int pagCounter; int i; AFS_STATCNT(shutdown_cache); afs_WriteThroughDSlots(); if (afs_cold_shutdown) { afs_cacheinit_flag = 0; shutdown_dcache(); shutdown_vcache(); afs_cacheStats = 0; afs_cacheFiles = afs_cacheBlocks = 0; pag_epoch = maxIHint = nihints = usedihint = 0; pagCounter = 0; cacheInode = volumeInode = (ino_t)0; cacheInfoModTime = 0; afs_fsfragsize = 1023; memset((char *)&afs_stats_cmperf, 0, sizeof(afs_stats_cmperf)); memset((char *)&cacheDev, 0, sizeof(struct osi_dev)); osi_dnlc_shutdown(); } } /*shutdown_cache*/ void shutdown_vnodeops() { extern int afs_cold_shutdown; #ifndef AFS_LINUX20_ENV extern int afs_rd_stash_i; #endif #ifndef AFS_SUN5_ENV extern int lastWarnTime; #endif #if !defined(AFS_SGI_ENV) && !defined(AFS_SUN_ENV) && !defined(AFS_SUN5_ENV) struct buf *afs_bread_freebp = 0; #endif AFS_STATCNT(shutdown_vnodeops); if (afs_cold_shutdown) { #ifndef AFS_SUN5_ENV /* XXX */ lastWarnTime = 0; #endif #ifndef AFS_LINUX20_ENV afs_rd_stash_i = 0; #endif #if !defined(AFS_SGI_ENV) && !defined(AFS_SUN_ENV) && !defined(AFS_SUN5_ENV) afs_bread_freebp = 0; #endif shutdown_mariner(); } } void shutdown_AFS() { int i; register struct srvAddr *sa; extern int afs_cold_shutdown; AFS_STATCNT(shutdown_AFS); if (afs_cold_shutdown) { afs_resourceinit_flag = 0; /* * Free Cells table allocations */ { struct cell *tc; register struct afs_q *cq, *tq; for (cq = CellLRU.next; cq != &CellLRU; cq = tq) { tc = QTOC(cq); tq = QNext(cq); if (tc->cellName) afs_osi_Free(tc->cellName, strlen(tc->cellName)+1); afs_osi_Free(tc, sizeof(struct cell)); } } /* * Free Volumes table allocations */ { struct volume *tv; for (i = 0; i < NVOLS; i++) { for (tv = afs_volumes[i]; tv; tv = tv->next) { if (tv->name) { afs_osi_Free(tv->name, strlen(tv->name)+1); tv->name = 0; } } afs_volumes[i] = 0; } } /* * Free FreeVolList allocations */ afs_osi_Free(Initialafs_freeVolList, afs_memvolumes * sizeof(struct volume)); afs_freeVolList = Initialafs_freeVolList = 0; /* XXX HACK fort MEM systems XXX * * For -memcache cache managers when we run out of free in memory volumes * we simply malloc more; we won't be able to free those additional volumes. */ /* * Free Users table allocation */ { struct unixuser *tu, *ntu; for (i=0; i < NUSERS; i++) { for (tu=afs_users[i]; tu; tu = ntu) { ntu = tu->next; if (tu->stp) afs_osi_Free(tu->stp, tu->stLen); if (tu->exporter) EXP_RELE(tu->exporter); afs_osi_Free(tu, sizeof(struct unixuser)); } afs_users[i] = 0; } } /* * Free Servers table allocation */ { struct server *ts, *nts; struct conn *tc, *ntc; register struct afs_cbr *tcbrp, *tbrp; struct afs_cbr **lcbrpp; for (i=0; i < NSERVERS; i++) { for (ts = afs_servers[i]; ts; ts = nts) { nts = ts->next; for (sa = ts->addr; sa; sa = sa->next_sa) { if (sa->conns) { /* * Free all server's connection structs */ tc = sa->conns; while (tc) { ntc = tc->next; AFS_GUNLOCK(); rx_DestroyConnection(tc->id); AFS_GLOCK(); afs_osi_Free(tc, sizeof(struct conn)); tc = ntc; } } } for (tcbrp = ts->cbrs; tcbrp; tcbrp = tbrp) { /* * Free all server's callback structs */ tbrp = tcbrp->next; afs_FreeCBR(tcbrp); } afs_osi_Free(ts, sizeof(struct server)); } afs_servers[i] = 0; } } for (i=0; i