/****************************************************************************** * mcas.c * * MCAS implemented as described in: * A Practical Multi-Word Compare-and-Swap Operation * Timothy Harris, Keir Fraser and Ian Pratt * Proceedings of the IEEE Symposium on Distributed Computing, Oct 2002 * * Copyright (c) 2002-2003, K A Fraser Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. Neither the name of the Keir Fraser * nor the names of its contributors may be used to endorse or * promote products derived from this software without specific * prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include typedef struct CasDescriptor CasDescriptor_t; typedef struct CasEntry CasEntry_t; typedef struct per_thread_state_t per_thread_state_t; extern int num_threads; #define ARENA_SIZE 40960 struct per_thread_state_t { int id; CasDescriptor_t *next_descriptor; void *arena; void *arena_lim; }; static pthread_key_t mcas_ptst_key; typedef struct pad128 { char pad[128]; } pad128_t; /* CAS descriptors. */ #define STATUS_IN_PROGRESS 0 #define STATUS_SUCCEEDED 1 #define STATUS_FAILED 2 #define STATUS_ABORTED 3 struct CasEntry { void **ptr; void *old; void *new; }; struct CasDescriptor { int status; int length; CasDescriptor_t *pt[MAX_THREADS]; int rc; CasDescriptor_t *fc; /* free chain */ CasEntry_t entries[1]; }; /* Marked pointers. */ typedef unsigned long ptr_int; #ifndef MARK_IN_PROGRESS #define MARK_IN_PROGRESS 1 #endif #ifndef MARK_PTR_TO_CD #define MARK_PTR_TO_CD 2 #endif #define get_markedness(p) (((ptr_int) (p)) & 3) #define get_unmarked_reference(p) ((void *) (((ptr_int) (p)) & (~3))) #define get_marked_reference(p,m) ((void *) (((ptr_int) (p)) | m)) static bool_t mcas0 (per_thread_state_t *ptst, CasDescriptor_t *cd); static per_thread_state_t *get_ptst (void); pad128_t p0; /* I'm worried these important RO vars might be false shared */ static int cas_sz; static int num_ptrs = 1024; static int ptr_mult = 1; pad128_t p1; static void *ALLOC(int size) { void *a = calloc(1, size); if ( a == NULL ) abort(); return a; } static void *ALLOC_ALONE (int size) { int ps = sysconf(_SC_PAGESIZE); int req = ps + size + ps; char *res = ALLOC(req); return (void *)(res + ps); } static int next_thread_id = 0; static per_thread_state_t *ptsts = NULL; static void new_arena (per_thread_state_t *ptst, int size) { ptst->arena = ALLOC(size); if ( !ptst->arena ) abort(); ptst->arena_lim = (((char *) ptst->arena) + size); } static per_thread_state_t *get_ptst (void) { per_thread_state_t *result; int r; result = pthread_getspecific(mcas_ptst_key); if ( result == NULL ) { int my_id; int largest = sysconf(_SC_PAGESIZE); if ( largest < sizeof (per_thread_state_t) ) largest = sizeof (per_thread_state_t); ALLOC (largest); result = ALLOC (largest); ALLOC (largest); do { my_id = next_thread_id; } while ( CASIO (&next_thread_id, my_id, my_id + 1) != my_id ); result->id = my_id; ptsts = result; new_arena(result, ARENA_SIZE); r = pthread_setspecific(mcas_ptst_key, result); assert(r == 0); } return result; } static void release_descriptor (CasDescriptor_t *cd) { per_thread_state_t *ptst = get_ptst (); cd->fc = ptst->next_descriptor; ptst->next_descriptor = cd; } static int rc_delta_descriptor (CasDescriptor_t *cd, int delta) { int rc, new_rc = cd->rc; do { rc = new_rc; } while ( (new_rc = CASIO (&(cd->rc), rc, rc + delta)) != rc ); return rc; } static void rc_up_descriptor (CasDescriptor_t *cd) { rc_delta_descriptor(cd, 2); MB(); } static void rc_down_descriptor (CasDescriptor_t *cd) { int old_rc, new_rc, cur_rc = cd->rc; do { old_rc = cur_rc; new_rc = old_rc - 2; if ( new_rc == 0 ) new_rc = 1; else MB(); } while ( (cur_rc = CASIO(&(cd->rc), old_rc, new_rc)) != old_rc ); if ( old_rc == 2 ) release_descriptor(cd); } static CasDescriptor_t *new_descriptor (per_thread_state_t *ptst, int length) { CasDescriptor_t *result; int i; CasDescriptor_t **ptr = &(ptst->next_descriptor); result = *ptr; while ( (result != NULL) && (result->length != length) ) { ptr = &(result->fc); result = *ptr; } if ( result == NULL ) { int alloc_size; alloc_size = sizeof (CasDescriptor_t) + ((length - 1) * sizeof (CasEntry_t)); result = (CasDescriptor_t *) ptst->arena; ptst->arena = ((char *) (ptst->arena)) + alloc_size; if ( ptst->arena >= ptst->arena_lim ) { new_arena(ptst, ARENA_SIZE); result = (CasDescriptor_t *) ptst->arena; ptst->arena = ((char *) (ptst->arena)) + alloc_size; } for ( i = 0; i < num_threads; i++ ) result->pt[i] = result; result->length = length; result->rc = 2; } else { *ptr = result->fc; assert((result->rc & 1) == 1); rc_delta_descriptor(result, 1); /* clears lowest bit */ } assert(result->length == length); return result; } static void *read_from_cd (void **ptr, CasDescriptor_t *cd, bool_t get_old) { CasEntry_t *ce; int i; int n; n = cd->length; for ( i = 0; i < n; i++ ) { ce = &(cd->entries[i]); if ( ce->ptr == ptr ) return get_old ? ce->old : ce->new; } assert(0); return NULL; } static void *read_barrier_lite (void **ptr) { CasDescriptor_t *cd; void *v; int m; retry_read_barrier: v = *ptr; m = get_markedness(v); if ( m == MARK_PTR_TO_CD ) { WEAK_DEP_ORDER_RMB(); cd = get_unmarked_reference(v); rc_up_descriptor(cd); if ( *ptr != v ) { rc_down_descriptor(cd); goto retry_read_barrier; } v = read_from_cd(ptr, cd, (cd->status != STATUS_SUCCEEDED)); rc_down_descriptor(cd); } else if ( m == MARK_IN_PROGRESS ) { WEAK_DEP_ORDER_RMB(); cd = *(CasDescriptor_t **)get_unmarked_reference(v); rc_up_descriptor(cd); if ( *ptr != v ) { rc_down_descriptor(cd); goto retry_read_barrier; } v = read_from_cd(ptr, cd, (cd->status != STATUS_SUCCEEDED)); rc_down_descriptor(cd); } return v; } static void clean_descriptor (CasDescriptor_t *cd) { int i; void *mcd; int status; status = cd->status; assert(status == STATUS_SUCCEEDED || status == STATUS_FAILED); mcd = get_marked_reference(cd, MARK_PTR_TO_CD); if (status == STATUS_SUCCEEDED) for ( i = 0; i < cd->length; i++ ) CASPO (cd->entries[i].ptr, mcd, cd->entries[i].new); else for ( i = 0; i < cd->length; i++ ) CASPO(cd->entries[i].ptr, mcd, cd->entries[i].old); } static bool_t mcas_fixup (void **ptr, void *value_read) { int m; retry_mcas_fixup: m = get_markedness(value_read); if ( m == MARK_PTR_TO_CD ) { CasDescriptor_t *helpee; helpee = get_unmarked_reference(value_read); rc_up_descriptor(helpee); if ( *ptr != value_read ) { rc_down_descriptor(helpee); value_read = *ptr; goto retry_mcas_fixup; } mcas0(NULL, helpee); rc_down_descriptor(helpee); return TRUE; } else if ( m == MARK_IN_PROGRESS ) { CasDescriptor_t *other_cd; WEAK_DEP_ORDER_RMB(); other_cd = *(CasDescriptor_t **)get_unmarked_reference(value_read); rc_up_descriptor(other_cd); if ( *ptr != value_read ) { rc_down_descriptor(other_cd); value_read = *ptr; goto retry_mcas_fixup; } if ( other_cd->status == STATUS_IN_PROGRESS ) CASPO(ptr, value_read, get_marked_reference(other_cd, MARK_PTR_TO_CD)); else CASPO(ptr, value_read, read_from_cd(ptr, other_cd, TRUE)); rc_down_descriptor (other_cd); return TRUE; } return FALSE; } static void *read_barrier (void **ptr) { void *v; do { v = *ptr; } while ( mcas_fixup(ptr, v) ); return v; } static bool_t mcas0 (per_thread_state_t *ptst, CasDescriptor_t *cd) { int i; int n; int desired_status; bool_t final_success; void *mcd; void *dmcd; int old_status; if ( ptst == NULL ) ptst = get_ptst(); MB(); /* required for sequential consistency */ if ( cd->status == STATUS_SUCCEEDED ) { clean_descriptor(cd); final_success = TRUE; goto out; } else if ( cd->status == STATUS_FAILED ) { clean_descriptor(cd); final_success = FALSE; goto out; } /* Attempt to link in all entries in the descriptor. */ mcd = get_marked_reference(cd, MARK_PTR_TO_CD); dmcd = get_marked_reference(&(cd->pt[ptst->id]), MARK_IN_PROGRESS); desired_status = STATUS_SUCCEEDED; retry: n = cd->length; for (i = 0; i < n; i ++) { CasEntry_t *ce = &(cd->entries[i]); void *value_read = CASPO(ce->ptr, ce->old, dmcd); if ( (value_read != ce->old) && (value_read != dmcd) && (value_read != mcd) ) { if ( mcas_fixup(ce->ptr, value_read) ) goto retry; desired_status = STATUS_FAILED; break; } RMB_NEAR_CAS(); /* ensure check of status occurs after CASPO. */ if ( cd->status != STATUS_IN_PROGRESS ) { CASPO(ce->ptr, dmcd, ce->old); break; } if ( value_read != mcd ) { value_read = CASPO(ce->ptr, dmcd, mcd); assert((value_read == dmcd) || (value_read == mcd) || (cd->status != STATUS_IN_PROGRESS)); } } /* * All your ptrs are belong to us (or we've been helped and * already known to have succeeded or failed). Try to * propagate our desired result into the status field. */ /* * When changing to success, we must have all pointer ownerships * globally visible. But we get this without a memory barrier, as * 'desired_status' is dependent on the outcome of each CASPO * to MARK_IN_PROGRESS. * * Architectures providing CAS natively all specify that the operation * is _indivisible_. That is, the write will be done when the CAS * completes. * * Architectures providing LL/SC are even better: any following * instruction in program order is control-dependent on the CAS, because * CAS may be retried if SC fails. All we need is that SC gets to point * of coherency before producing its result: even Alpha provides this! */ WEAK_DEP_ORDER_WMB(); old_status = CASIO((int *)&cd->status, STATUS_IN_PROGRESS, desired_status); /* * This ensures final sequential consistency. * Also ensures that the status update is visible before cleanup. */ WMB_NEAR_CAS(); clean_descriptor(cd); final_success = (cd->status == STATUS_SUCCEEDED); out: return final_success; } void mcas_init (void) { int r = pthread_key_create(&mcas_ptst_key, NULL); if ( r != 0 ) abort(); } /***********************************************************************/ bool_t mcas (int n, void **ptr, void *old, void *new, ...) { va_list ap; int i; CasDescriptor_t *cd; CasEntry_t *ce; int result = 0; per_thread_state_t *ptst = get_ptst(); cd = new_descriptor(ptst, n); cd->status = STATUS_IN_PROGRESS; cd->length = n; ce = cd->entries; ce->ptr = ptr; ce->old = old; ce->new = new; va_start(ap, new); for ( i = 1; i < n; i++ ) { ce ++; ce->ptr = va_arg(ap, void **); ce->old = va_arg(ap, void *); ce->new = va_arg(ap, void *); } va_end (ap); /* Insertion sort. Fail on non-unique pointers. */ for ( i = 1, ce = &cd->entries[1]; i < n; i++, ce++ ) { int j; CasEntry_t *cei, tmp; for ( j = i-1, cei = ce-1; j >= 0; j--, cei-- ) if ( cei->ptr <= ce->ptr ) break; if ( cei->ptr == ce->ptr ) goto out; if ( ++cei != ce ) { tmp = *ce; memmove(cei+1, cei, (ce-cei)*sizeof(CasEntry_t)); *cei = tmp; } } result = mcas0(ptst, cd); assert(cd->status != STATUS_IN_PROGRESS); out: rc_down_descriptor (cd); return result; }