/* * Sun RPC is a product of Sun Microsystems, Inc. and is provided for * unrestricted use provided that this legend is included on all tape * media and as a part of the software program in whole or part. Users * may copy or modify Sun RPC without charge, but are not authorized * to license or distribute it to anyone else except as part of a product or * program developed by the user. * * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. * * Sun RPC is provided with no support and without any obligation on the * part of Sun Microsystems, Inc. to assist in its use, correction, * modification or enhancement. * * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC * OR ANY PART THEREOF. * * In no event will Sun Microsystems, Inc. be liable for any lost revenue * or profits or other special, indirect and consequential damages, even if * Sun has been advised of the possibility of such damages. * * Sun Microsystems, Inc. * 2550 Garcia Avenue * Mountain View, California 94043 */ #include #include #ifndef KERNEL # include #endif /* * xdr.c, Generic XDR routines implementation. * * Copyright (C) 1984, Sun Microsystems, Inc. * * These are the "generic" xdr routines used to serialize and de-serialize * most common data items. See xdr.h for more info on the interface to * xdr. */ #ifndef NeXT #if defined(KERNEL) && !defined(UKERNEL) #if !defined(AFS_LINUX26_ENV) #include #endif #ifndef AFS_LINUX20_ENV #include #endif #endif #include "xdr.h" #include "rx.h" /* * constants specific to the xdr "protocol" */ #define XDR_FALSE ((afs_int32) 0) #define XDR_TRUE ((afs_int32) 1) #define LASTUNSIGNED ((u_int) 0-1) /* * for unit alignment */ /* * XDR nothing */ bool_t xdr_void(void) { return (TRUE); } /* * XDR integers */ bool_t xdr_int(XDR * xdrs, int *ip) { afs_int32 l; switch (xdrs->x_op) { case XDR_ENCODE: l = (afs_int32) * ip; return (XDR_PUTINT32(xdrs, &l)); case XDR_DECODE: if (!XDR_GETINT32(xdrs, &l)) { return (FALSE); } *ip = (int)l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR unsigned integers */ bool_t xdr_u_int(XDR * xdrs, u_int * uip) { afs_uint32 l; switch (xdrs->x_op) { case XDR_ENCODE: l = (afs_uint32) * uip; return (XDR_PUTINT32(xdrs, (afs_int32 *) &l)); case XDR_DECODE: if (!XDR_GETINT32(xdrs, (afs_int32 *) &l)) { return (FALSE); } *uip = (u_int) l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR long integers */ bool_t xdr_long(XDR * xdrs, long *lp) { afs_int32 l; switch (xdrs->x_op) { case XDR_ENCODE: l = (afs_int32) * lp; return (XDR_PUTINT32(xdrs, &l)); case XDR_DECODE: if (!XDR_GETINT32(xdrs, &l)) { return (FALSE); } *lp = (long)l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR unsigned long integers */ bool_t xdr_u_long(XDR * xdrs, u_long * ulp) { afs_uint32 l; switch (xdrs->x_op) { case XDR_ENCODE: l = (afs_uint32) * ulp; return (XDR_PUTINT32(xdrs, (afs_int32 *)&l)); case XDR_DECODE: if (!XDR_GETINT32(xdrs, (afs_int32 *)&l)) { return (FALSE); } *ulp = (u_long) l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR chars */ bool_t xdr_char(XDR * xdrs, char *sp) { afs_int32 l; switch (xdrs->x_op) { case XDR_ENCODE: l = (afs_int32) * sp; return (XDR_PUTINT32(xdrs, &l)); case XDR_DECODE: if (!XDR_GETINT32(xdrs, &l)) { return (FALSE); } *sp = (char)l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR unsigned chars */ bool_t xdr_u_char(XDR * xdrs, u_char * usp) { afs_uint32 l; switch (xdrs->x_op) { case XDR_ENCODE: l = (afs_uint32) * usp; return (XDR_PUTINT32(xdrs, (afs_int32 *)&l)); case XDR_DECODE: if (!XDR_GETINT32(xdrs, (afs_int32 *)&l)) { return (FALSE); } *usp = (u_char) l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR short integers */ bool_t xdr_short(XDR * xdrs, short *sp) { afs_int32 l; switch (xdrs->x_op) { case XDR_ENCODE: l = (afs_int32) * sp; return (XDR_PUTINT32(xdrs, &l)); case XDR_DECODE: if (!XDR_GETINT32(xdrs, &l)) { return (FALSE); } *sp = (short)l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR unsigned short integers */ bool_t xdr_u_short(XDR * xdrs, u_short * usp) { afs_uint32 l; switch (xdrs->x_op) { case XDR_ENCODE: l = (afs_uint32) * usp; return (XDR_PUTINT32(xdrs, (afs_int32 *)&l)); case XDR_DECODE: if (!XDR_GETINT32(xdrs, (afs_int32 *)&l)) { return (FALSE); } *usp = (u_short) l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR booleans */ bool_t xdr_bool(XDR * xdrs, bool_t * bp) { afs_int32 lb; switch (xdrs->x_op) { case XDR_ENCODE: lb = *bp ? XDR_TRUE : XDR_FALSE; return (XDR_PUTINT32(xdrs, &lb)); case XDR_DECODE: if (!XDR_GETINT32(xdrs, &lb)) { return (FALSE); } *bp = (lb == XDR_FALSE) ? FALSE : TRUE; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR enumerations */ bool_t xdr_enum(XDR * xdrs, enum_t * ep) { /* * enums are treated as ints */ return (xdr_int(xdrs, ep)); } /* * XDR opaque data * Allows the specification of a fixed size sequence of opaque bytes. * cp points to the opaque object and cnt gives the byte length. */ bool_t xdr_opaque(XDR * xdrs, caddr_t cp, u_int cnt) { u_int rndup; int crud[BYTES_PER_XDR_UNIT]; char xdr_zero[BYTES_PER_XDR_UNIT] = { 0, 0, 0, 0 }; /* * if no data we are done */ if (cnt == 0) return (TRUE); /* * round byte count to full xdr units */ rndup = cnt % BYTES_PER_XDR_UNIT; if (rndup > 0) rndup = BYTES_PER_XDR_UNIT - rndup; if (xdrs->x_op == XDR_DECODE) { if (!XDR_GETBYTES(xdrs, cp, cnt)) { return (FALSE); } if (rndup == 0) return (TRUE); return (XDR_GETBYTES(xdrs, (caddr_t)crud, rndup)); } if (xdrs->x_op == XDR_ENCODE) { if (!XDR_PUTBYTES(xdrs, cp, cnt)) { return (FALSE); } if (rndup == 0) return (TRUE); return (XDR_PUTBYTES(xdrs, xdr_zero, rndup)); } if (xdrs->x_op == XDR_FREE) { return (TRUE); } return (FALSE); } /* * XDR counted bytes * *cpp is a pointer to the bytes, *sizep is the count. * If *cpp is NULL maxsize bytes are allocated */ bool_t xdr_bytes(XDR * xdrs, char **cpp, u_int * sizep, u_int maxsize) { char *sp = *cpp; /* sp is the actual string pointer */ u_int nodesize; /* * first deal with the length since xdr bytes are counted */ if (!xdr_u_int(xdrs, sizep)) { return (FALSE); } nodesize = *sizep; if ((nodesize > maxsize) && (xdrs->x_op != XDR_FREE)) { return (FALSE); } /* * now deal with the actual bytes */ switch (xdrs->x_op) { case XDR_DECODE: if (sp == NULL) { *cpp = sp = (char *)osi_alloc(nodesize); } if (sp == NULL) { return (FALSE); } AFS_FALLTHROUGH; case XDR_ENCODE: return (xdr_opaque(xdrs, sp, nodesize)); case XDR_FREE: if (sp != NULL) { osi_free(sp, nodesize); *cpp = NULL; } return (TRUE); } return (FALSE); } /* * XDR a descriminated union * Support routine for discriminated unions. * You create an array of xdrdiscrim structures, terminated with * an entry with a null procedure pointer. The routine gets * the discriminant value and then searches the array of xdrdiscrims * looking for that value. It calls the procedure given in the xdrdiscrim * to handle the discriminant. If there is no specific routine a default * routine may be called. * If there is no specific or default routine an error is returned. */ /* enum_t *dscmp; * enum to decide which arm to work on * caddr_t unp; * the union itself * struct xdr_discrim *choices; * [value, xdr proc] for each arm * xdrproc_t dfault; * default xdr routine * */ bool_t xdr_union(XDR * xdrs, enum_t * dscmp, caddr_t unp, struct xdr_discrim * choices, xdrproc_t dfault) { enum_t dscm; /* * we deal with the discriminator; it's an enum */ if (!xdr_enum(xdrs, dscmp)) { return (FALSE); } dscm = *dscmp; /* * search choices for a value that matches the discriminator. * if we find one, execute the xdr routine for that value. */ for (; choices->proc != NULL_xdrproc_t; choices++) { if (choices->value == dscm) return ((*(choices->proc)) (xdrs, unp, LASTUNSIGNED)); } /* * no match - execute the default xdr routine if there is one */ return ((dfault == NULL_xdrproc_t) ? FALSE : (*dfault) (xdrs, unp, LASTUNSIGNED)); } /* * Non-portable xdr primitives. * Care should be taken when moving these routines to new architectures. */ /* * XDR null terminated ASCII strings * xdr_string deals with "C strings" - arrays of bytes that are * terminated by a NULL character. The parameter cpp references a * pointer to storage; If the pointer is null, then the necessary * storage is allocated. The last parameter is the max allowed length * of the string as specified by a protocol. */ bool_t xdr_string(XDR * xdrs, char **cpp, u_int maxsize) { char *sp = *cpp; /* sp is the actual string pointer */ u_int size; u_int nodesize; if (maxsize > ((~0u) >> 1) - 1) maxsize = ((~0u) >> 1) - 1; /* * first deal with the length since xdr strings are counted-strings */ switch (xdrs->x_op) { case XDR_FREE: if (sp == NULL) { return (TRUE); /* already free */ } AFS_FALLTHROUGH; case XDR_ENCODE: size = strlen(sp); break; case XDR_DECODE: break; } if (!xdr_u_int(xdrs, &size)) { return (FALSE); } if (size > maxsize) { return (FALSE); } nodesize = size + 1; /* * now deal with the actual bytes */ switch (xdrs->x_op) { case XDR_DECODE: if (sp == NULL) *cpp = sp = (char *)osi_alloc(nodesize); if (sp == NULL) { return (FALSE); } sp[size] = 0; AFS_FALLTHROUGH; case XDR_ENCODE: return (xdr_opaque(xdrs, sp, size)); case XDR_FREE: if (sp != NULL) { osi_free(sp, nodesize); *cpp = NULL; } return (TRUE); } return (FALSE); } /* * Wrapper for xdr_string that can be called directly from * routines like clnt_call */ #ifndef KERNEL bool_t xdr_wrapstring(XDR * xdrs, char **cpp) { if (xdr_string(xdrs, cpp, BUFSIZ)) { return (TRUE); } return (FALSE); } #endif void * xdr_alloc(afs_int32 size) { return osi_alloc(size); } void xdr_free(xdrproc_t proc, void *obj) { XDR x; x.x_op = XDR_FREE; /* See note in xdr.h for the method behind this madness */ #if defined(AFS_I386_LINUX26_ENV) && defined(KERNEL) && !defined(UKERNEL) (*proc)(&x, obj, 0); #else (*proc)(&x, obj); #endif } #endif /* NeXT */