--- /dev/null
+/*
+ * Copyright (c) 1995 - 2000 Kungliga Tekniska Högskolan
+ * (Royal Institute of Technology, Stockholm, Sweden).
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * 3. Neither the name of the Institute nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+#include <afsconfig.h>
+#ifdef KERNEL
+#include "afs/param.h"
+#else
+#include <afs/param.h>
+#endif
+
+RCSID("$Header$");
+
+#define DEBUG 0
+#ifdef KERNEL
+#ifndef UKERNEL
+#include "afs/stds.h"
+#include "h/types.h"
+#if !defined(AFS_LINUX20_ENV) && !defined(AFS_OBSD_ENV)
+#include "netinet/in.h"
+#endif
+#else /* UKERNEL */
+#include "afs/sysincludes.h"
+#include "afs/stds.h"
+#endif /* UKERNEL */
+#ifdef AFS_LINUX22_ENV
+#include <asm/byteorder.h>
+#endif
+
+#include "afs/longc_procs.h"
+
+#else /* KERNEL */
+
+#include <afs/stds.h>
+#include <sys/types.h>
+#ifdef AFS_NT40_ENV
+#include <winsock2.h>
+#else
+#include <netinet/in.h>
+#endif
+#include <rx/rx.h>
+#endif /* KERNEL */
+
+#include "fcrypt.h"
+#include "rxkad.h"
+#include "fcrypt.h"
+
+#undef WORDS_BIGENDIAN
+#ifdef AFSBIG_ENDIAN
+#define WORDS_BIGENDIAN 1
+#endif
+
+/*
+ * Unrolling of the inner loops helps the most on pentium chips
+ * (ca 18%). On risc machines only expect a modest improvement (ca 5%).
+ * The cost for this is rougly 4k bytes.
+ */
+#define UNROLL_LOOPS 1
+/*
+ * Inline assembler gives a boost only to fc_keysched.
+ * On the pentium expect ca 28%.
+ */
+/*#define GNU_ASM 1 (now autoconfed) */
+
+#if !defined(inline) && !defined(__GNUC__)
+#define inline
+#endif
+
+/*
+ * There is usually no memcpy in kernels but gcc will inline all
+ * calls to memcpy in this code anyway.
+ */
+#if defined(KERNEL) && !defined(__GNUC__)
+#define memcpy(to, from, n) bcopy((from), (to), (n))
+#endif
+
+/* Rotate 32 bit word left */
+#define ROT32L(x, n) ((((afs_uint32) x) << (n)) | (((afs_uint32) x) >> (32-(n))))
+#define bswap32(x) (((ROT32L(x, 16) & 0x00ff00ff)<<8) | ((ROT32L(x, 16)>>8) & 0x00ff00ff))
+
+#if WORDS_BIGENDIAN
+#define NTOH(x) (x)
+#else
+#define NTOH(x) bswap32(x)
+#endif
+
+/*
+ * Try to use a good function for ntohl-ing.
+ *
+ * The choice is done by autoconf setting EFF_NTOHL to one of:
+ * CPU function
+ * i386 ntohl
+ * i[4-9]86 bswap
+ * alpha bswap32
+ * all else ntohl
+ */
+
+#define EFF_NTOHL(x) ntohl(x)
+
+#if 0
+#if defined(__GNUC__) && (defined(i386) || defined(__i386__))
+static inline afs_uint32
+bswap(afs_uint32 x)
+{
+ asm("bswap %0" : "=r" (x) : "0" (x));
+ return x;
+}
+#endif
+#endif
+
+/*
+ * Sboxes for Feistel network derived from
+ * /afs/transarc.com/public/afsps/afs.rel31b.export-src/rxkad/sboxes.h
+ */
+
+#undef Z
+#define Z(x) NTOH(x << 3)
+static const afs_uint32 sbox0[256] = {
+ Z(0xea), Z(0x7f), Z(0xb2), Z(0x64), Z(0x9d), Z(0xb0), Z(0xd9), Z(0x11), Z(0xcd), Z(0x86), Z(0x86),
+ Z(0x91), Z(0x0a), Z(0xb2), Z(0x93), Z(0x06), Z(0x0e), Z(0x06), Z(0xd2), Z(0x65), Z(0x73), Z(0xc5),
+ Z(0x28), Z(0x60), Z(0xf2), Z(0x20), Z(0xb5), Z(0x38), Z(0x7e), Z(0xda), Z(0x9f), Z(0xe3), Z(0xd2),
+ Z(0xcf), Z(0xc4), Z(0x3c), Z(0x61), Z(0xff), Z(0x4a), Z(0x4a), Z(0x35), Z(0xac), Z(0xaa), Z(0x5f),
+ Z(0x2b), Z(0xbb), Z(0xbc), Z(0x53), Z(0x4e), Z(0x9d), Z(0x78), Z(0xa3), Z(0xdc), Z(0x09), Z(0x32),
+ Z(0x10), Z(0xc6), Z(0x6f), Z(0x66), Z(0xd6), Z(0xab), Z(0xa9), Z(0xaf), Z(0xfd), Z(0x3b), Z(0x95),
+ Z(0xe8), Z(0x34), Z(0x9a), Z(0x81), Z(0x72), Z(0x80), Z(0x9c), Z(0xf3), Z(0xec), Z(0xda), Z(0x9f),
+ Z(0x26), Z(0x76), Z(0x15), Z(0x3e), Z(0x55), Z(0x4d), Z(0xde), Z(0x84), Z(0xee), Z(0xad), Z(0xc7),
+ Z(0xf1), Z(0x6b), Z(0x3d), Z(0xd3), Z(0x04), Z(0x49), Z(0xaa), Z(0x24), Z(0x0b), Z(0x8a), Z(0x83),
+ Z(0xba), Z(0xfa), Z(0x85), Z(0xa0), Z(0xa8), Z(0xb1), Z(0xd4), Z(0x01), Z(0xd8), Z(0x70), Z(0x64),
+ Z(0xf0), Z(0x51), Z(0xd2), Z(0xc3), Z(0xa7), Z(0x75), Z(0x8c), Z(0xa5), Z(0x64), Z(0xef), Z(0x10),
+ Z(0x4e), Z(0xb7), Z(0xc6), Z(0x61), Z(0x03), Z(0xeb), Z(0x44), Z(0x3d), Z(0xe5), Z(0xb3), Z(0x5b),
+ Z(0xae), Z(0xd5), Z(0xad), Z(0x1d), Z(0xfa), Z(0x5a), Z(0x1e), Z(0x33), Z(0xab), Z(0x93), Z(0xa2),
+ Z(0xb7), Z(0xe7), Z(0xa8), Z(0x45), Z(0xa4), Z(0xcd), Z(0x29), Z(0x63), Z(0x44), Z(0xb6), Z(0x69),
+ Z(0x7e), Z(0x2e), Z(0x62), Z(0x03), Z(0xc8), Z(0xe0), Z(0x17), Z(0xbb), Z(0xc7), Z(0xf3), Z(0x3f),
+ Z(0x36), Z(0xba), Z(0x71), Z(0x8e), Z(0x97), Z(0x65), Z(0x60), Z(0x69), Z(0xb6), Z(0xf6), Z(0xe6),
+ Z(0x6e), Z(0xe0), Z(0x81), Z(0x59), Z(0xe8), Z(0xaf), Z(0xdd), Z(0x95), Z(0x22), Z(0x99), Z(0xfd),
+ Z(0x63), Z(0x19), Z(0x74), Z(0x61), Z(0xb1), Z(0xb6), Z(0x5b), Z(0xae), Z(0x54), Z(0xb3), Z(0x70),
+ Z(0xff), Z(0xc6), Z(0x3b), Z(0x3e), Z(0xc1), Z(0xd7), Z(0xe1), Z(0x0e), Z(0x76), Z(0xe5), Z(0x36),
+ Z(0x4f), Z(0x59), Z(0xc7), Z(0x08), Z(0x6e), Z(0x82), Z(0xa6), Z(0x93), Z(0xc4), Z(0xaa), Z(0x26),
+ Z(0x49), Z(0xe0), Z(0x21), Z(0x64), Z(0x07), Z(0x9f), Z(0x64), Z(0x81), Z(0x9c), Z(0xbf), Z(0xf9),
+ Z(0xd1), Z(0x43), Z(0xf8), Z(0xb6), Z(0xb9), Z(0xf1), Z(0x24), Z(0x75), Z(0x03), Z(0xe4), Z(0xb0),
+ Z(0x99), Z(0x46), Z(0x3d), Z(0xf5), Z(0xd1), Z(0x39), Z(0x72), Z(0x12), Z(0xf6), Z(0xba), Z(0x0c),
+ Z(0x0d), Z(0x42), Z(0x2e)};
+
+#undef Z
+#define Z(x) NTOH((x << 27) | (x >> 5))
+static const afs_uint32 sbox1[256] = {
+ Z(0x77), Z(0x14), Z(0xa6), Z(0xfe), Z(0xb2), Z(0x5e), Z(0x8c), Z(0x3e), Z(0x67), Z(0x6c), Z(0xa1),
+ Z(0x0d), Z(0xc2), Z(0xa2), Z(0xc1), Z(0x85), Z(0x6c), Z(0x7b), Z(0x67), Z(0xc6), Z(0x23), Z(0xe3),
+ Z(0xf2), Z(0x89), Z(0x50), Z(0x9c), Z(0x03), Z(0xb7), Z(0x73), Z(0xe6), Z(0xe1), Z(0x39), Z(0x31),
+ Z(0x2c), Z(0x27), Z(0x9f), Z(0xa5), Z(0x69), Z(0x44), Z(0xd6), Z(0x23), Z(0x83), Z(0x98), Z(0x7d),
+ Z(0x3c), Z(0xb4), Z(0x2d), Z(0x99), Z(0x1c), Z(0x1f), Z(0x8c), Z(0x20), Z(0x03), Z(0x7c), Z(0x5f),
+ Z(0xad), Z(0xf4), Z(0xfa), Z(0x95), Z(0xca), Z(0x76), Z(0x44), Z(0xcd), Z(0xb6), Z(0xb8), Z(0xa1),
+ Z(0xa1), Z(0xbe), Z(0x9e), Z(0x54), Z(0x8f), Z(0x0b), Z(0x16), Z(0x74), Z(0x31), Z(0x8a), Z(0x23),
+ Z(0x17), Z(0x04), Z(0xfa), Z(0x79), Z(0x84), Z(0xb1), Z(0xf5), Z(0x13), Z(0xab), Z(0xb5), Z(0x2e),
+ Z(0xaa), Z(0x0c), Z(0x60), Z(0x6b), Z(0x5b), Z(0xc4), Z(0x4b), Z(0xbc), Z(0xe2), Z(0xaf), Z(0x45),
+ Z(0x73), Z(0xfa), Z(0xc9), Z(0x49), Z(0xcd), Z(0x00), Z(0x92), Z(0x7d), Z(0x97), Z(0x7a), Z(0x18),
+ Z(0x60), Z(0x3d), Z(0xcf), Z(0x5b), Z(0xde), Z(0xc6), Z(0xe2), Z(0xe6), Z(0xbb), Z(0x8b), Z(0x06),
+ Z(0xda), Z(0x08), Z(0x15), Z(0x1b), Z(0x88), Z(0x6a), Z(0x17), Z(0x89), Z(0xd0), Z(0xa9), Z(0xc1),
+ Z(0xc9), Z(0x70), Z(0x6b), Z(0xe5), Z(0x43), Z(0xf4), Z(0x68), Z(0xc8), Z(0xd3), Z(0x84), Z(0x28),
+ Z(0x0a), Z(0x52), Z(0x66), Z(0xa3), Z(0xca), Z(0xf2), Z(0xe3), Z(0x7f), Z(0x7a), Z(0x31), Z(0xf7),
+ Z(0x88), Z(0x94), Z(0x5e), Z(0x9c), Z(0x63), Z(0xd5), Z(0x24), Z(0x66), Z(0xfc), Z(0xb3), Z(0x57),
+ Z(0x25), Z(0xbe), Z(0x89), Z(0x44), Z(0xc4), Z(0xe0), Z(0x8f), Z(0x23), Z(0x3c), Z(0x12), Z(0x52),
+ Z(0xf5), Z(0x1e), Z(0xf4), Z(0xcb), Z(0x18), Z(0x33), Z(0x1f), Z(0xf8), Z(0x69), Z(0x10), Z(0x9d),
+ Z(0xd3), Z(0xf7), Z(0x28), Z(0xf8), Z(0x30), Z(0x05), Z(0x5e), Z(0x32), Z(0xc0), Z(0xd5), Z(0x19),
+ Z(0xbd), Z(0x45), Z(0x8b), Z(0x5b), Z(0xfd), Z(0xbc), Z(0xe2), Z(0x5c), Z(0xa9), Z(0x96), Z(0xef),
+ Z(0x70), Z(0xcf), Z(0xc2), Z(0x2a), Z(0xb3), Z(0x61), Z(0xad), Z(0x80), Z(0x48), Z(0x81), Z(0xb7),
+ Z(0x1d), Z(0x43), Z(0xd9), Z(0xd7), Z(0x45), Z(0xf0), Z(0xd8), Z(0x8a), Z(0x59), Z(0x7c), Z(0x57),
+ Z(0xc1), Z(0x79), Z(0xc7), Z(0x34), Z(0xd6), Z(0x43), Z(0xdf), Z(0xe4), Z(0x78), Z(0x16), Z(0x06),
+ Z(0xda), Z(0x92), Z(0x76), Z(0x51), Z(0xe1), Z(0xd4), Z(0x70), Z(0x03), Z(0xe0), Z(0x2f), Z(0x96),
+ Z(0x91), Z(0x82), Z(0x80)};
+
+#undef Z
+#define Z(x) NTOH(x << 11)
+static const afs_uint32 sbox2[256] = {
+ Z(0xf0), Z(0x37), Z(0x24), Z(0x53), Z(0x2a), Z(0x03), Z(0x83), Z(0x86), Z(0xd1), Z(0xec), Z(0x50),
+ Z(0xf0), Z(0x42), Z(0x78), Z(0x2f), Z(0x6d), Z(0xbf), Z(0x80), Z(0x87), Z(0x27), Z(0x95), Z(0xe2),
+ Z(0xc5), Z(0x5d), Z(0xf9), Z(0x6f), Z(0xdb), Z(0xb4), Z(0x65), Z(0x6e), Z(0xe7), Z(0x24), Z(0xc8),
+ Z(0x1a), Z(0xbb), Z(0x49), Z(0xb5), Z(0x0a), Z(0x7d), Z(0xb9), Z(0xe8), Z(0xdc), Z(0xb7), Z(0xd9),
+ Z(0x45), Z(0x20), Z(0x1b), Z(0xce), Z(0x59), Z(0x9d), Z(0x6b), Z(0xbd), Z(0x0e), Z(0x8f), Z(0xa3),
+ Z(0xa9), Z(0xbc), Z(0x74), Z(0xa6), Z(0xf6), Z(0x7f), Z(0x5f), Z(0xb1), Z(0x68), Z(0x84), Z(0xbc),
+ Z(0xa9), Z(0xfd), Z(0x55), Z(0x50), Z(0xe9), Z(0xb6), Z(0x13), Z(0x5e), Z(0x07), Z(0xb8), Z(0x95),
+ Z(0x02), Z(0xc0), Z(0xd0), Z(0x6a), Z(0x1a), Z(0x85), Z(0xbd), Z(0xb6), Z(0xfd), Z(0xfe), Z(0x17),
+ Z(0x3f), Z(0x09), Z(0xa3), Z(0x8d), Z(0xfb), Z(0xed), Z(0xda), Z(0x1d), Z(0x6d), Z(0x1c), Z(0x6c),
+ Z(0x01), Z(0x5a), Z(0xe5), Z(0x71), Z(0x3e), Z(0x8b), Z(0x6b), Z(0xbe), Z(0x29), Z(0xeb), Z(0x12),
+ Z(0x19), Z(0x34), Z(0xcd), Z(0xb3), Z(0xbd), Z(0x35), Z(0xea), Z(0x4b), Z(0xd5), Z(0xae), Z(0x2a),
+ Z(0x79), Z(0x5a), Z(0xa5), Z(0x32), Z(0x12), Z(0x7b), Z(0xdc), Z(0x2c), Z(0xd0), Z(0x22), Z(0x4b),
+ Z(0xb1), Z(0x85), Z(0x59), Z(0x80), Z(0xc0), Z(0x30), Z(0x9f), Z(0x73), Z(0xd3), Z(0x14), Z(0x48),
+ Z(0x40), Z(0x07), Z(0x2d), Z(0x8f), Z(0x80), Z(0x0f), Z(0xce), Z(0x0b), Z(0x5e), Z(0xb7), Z(0x5e),
+ Z(0xac), Z(0x24), Z(0x94), Z(0x4a), Z(0x18), Z(0x15), Z(0x05), Z(0xe8), Z(0x02), Z(0x77), Z(0xa9),
+ Z(0xc7), Z(0x40), Z(0x45), Z(0x89), Z(0xd1), Z(0xea), Z(0xde), Z(0x0c), Z(0x79), Z(0x2a), Z(0x99),
+ Z(0x6c), Z(0x3e), Z(0x95), Z(0xdd), Z(0x8c), Z(0x7d), Z(0xad), Z(0x6f), Z(0xdc), Z(0xff), Z(0xfd),
+ Z(0x62), Z(0x47), Z(0xb3), Z(0x21), Z(0x8a), Z(0xec), Z(0x8e), Z(0x19), Z(0x18), Z(0xb4), Z(0x6e),
+ Z(0x3d), Z(0xfd), Z(0x74), Z(0x54), Z(0x1e), Z(0x04), Z(0x85), Z(0xd8), Z(0xbc), Z(0x1f), Z(0x56),
+ Z(0xe7), Z(0x3a), Z(0x56), Z(0x67), Z(0xd6), Z(0xc8), Z(0xa5), Z(0xf3), Z(0x8e), Z(0xde), Z(0xae),
+ Z(0x37), Z(0x49), Z(0xb7), Z(0xfa), Z(0xc8), Z(0xf4), Z(0x1f), Z(0xe0), Z(0x2a), Z(0x9b), Z(0x15),
+ Z(0xd1), Z(0x34), Z(0x0e), Z(0xb5), Z(0xe0), Z(0x44), Z(0x78), Z(0x84), Z(0x59), Z(0x56), Z(0x68),
+ Z(0x77), Z(0xa5), Z(0x14), Z(0x06), Z(0xf5), Z(0x2f), Z(0x8c), Z(0x8a), Z(0x73), Z(0x80), Z(0x76),
+ Z(0xb4), Z(0x10), Z(0x86)};
+
+#undef Z
+#define Z(x) NTOH(x << 19)
+static const afs_uint32 sbox3[256] = {
+ Z(0xa9), Z(0x2a), Z(0x48), Z(0x51), Z(0x84), Z(0x7e), Z(0x49), Z(0xe2), Z(0xb5), Z(0xb7), Z(0x42),
+ Z(0x33), Z(0x7d), Z(0x5d), Z(0xa6), Z(0x12), Z(0x44), Z(0x48), Z(0x6d), Z(0x28), Z(0xaa), Z(0x20),
+ Z(0x6d), Z(0x57), Z(0xd6), Z(0x6b), Z(0x5d), Z(0x72), Z(0xf0), Z(0x92), Z(0x5a), Z(0x1b), Z(0x53),
+ Z(0x80), Z(0x24), Z(0x70), Z(0x9a), Z(0xcc), Z(0xa7), Z(0x66), Z(0xa1), Z(0x01), Z(0xa5), Z(0x41),
+ Z(0x97), Z(0x41), Z(0x31), Z(0x82), Z(0xf1), Z(0x14), Z(0xcf), Z(0x53), Z(0x0d), Z(0xa0), Z(0x10),
+ Z(0xcc), Z(0x2a), Z(0x7d), Z(0xd2), Z(0xbf), Z(0x4b), Z(0x1a), Z(0xdb), Z(0x16), Z(0x47), Z(0xf6),
+ Z(0x51), Z(0x36), Z(0xed), Z(0xf3), Z(0xb9), Z(0x1a), Z(0xa7), Z(0xdf), Z(0x29), Z(0x43), Z(0x01),
+ Z(0x54), Z(0x70), Z(0xa4), Z(0xbf), Z(0xd4), Z(0x0b), Z(0x53), Z(0x44), Z(0x60), Z(0x9e), Z(0x23),
+ Z(0xa1), Z(0x18), Z(0x68), Z(0x4f), Z(0xf0), Z(0x2f), Z(0x82), Z(0xc2), Z(0x2a), Z(0x41), Z(0xb2),
+ Z(0x42), Z(0x0c), Z(0xed), Z(0x0c), Z(0x1d), Z(0x13), Z(0x3a), Z(0x3c), Z(0x6e), Z(0x35), Z(0xdc),
+ Z(0x60), Z(0x65), Z(0x85), Z(0xe9), Z(0x64), Z(0x02), Z(0x9a), Z(0x3f), Z(0x9f), Z(0x87), Z(0x96),
+ Z(0xdf), Z(0xbe), Z(0xf2), Z(0xcb), Z(0xe5), Z(0x6c), Z(0xd4), Z(0x5a), Z(0x83), Z(0xbf), Z(0x92),
+ Z(0x1b), Z(0x94), Z(0x00), Z(0x42), Z(0xcf), Z(0x4b), Z(0x00), Z(0x75), Z(0xba), Z(0x8f), Z(0x76),
+ Z(0x5f), Z(0x5d), Z(0x3a), Z(0x4d), Z(0x09), Z(0x12), Z(0x08), Z(0x38), Z(0x95), Z(0x17), Z(0xe4),
+ Z(0x01), Z(0x1d), Z(0x4c), Z(0xa9), Z(0xcc), Z(0x85), Z(0x82), Z(0x4c), Z(0x9d), Z(0x2f), Z(0x3b),
+ Z(0x66), Z(0xa1), Z(0x34), Z(0x10), Z(0xcd), Z(0x59), Z(0x89), Z(0xa5), Z(0x31), Z(0xcf), Z(0x05),
+ Z(0xc8), Z(0x84), Z(0xfa), Z(0xc7), Z(0xba), Z(0x4e), Z(0x8b), Z(0x1a), Z(0x19), Z(0xf1), Z(0xa1),
+ Z(0x3b), Z(0x18), Z(0x12), Z(0x17), Z(0xb0), Z(0x98), Z(0x8d), Z(0x0b), Z(0x23), Z(0xc3), Z(0x3a),
+ Z(0x2d), Z(0x20), Z(0xdf), Z(0x13), Z(0xa0), Z(0xa8), Z(0x4c), Z(0x0d), Z(0x6c), Z(0x2f), Z(0x47),
+ Z(0x13), Z(0x13), Z(0x52), Z(0x1f), Z(0x2d), Z(0xf5), Z(0x79), Z(0x3d), Z(0xa2), Z(0x54), Z(0xbd),
+ Z(0x69), Z(0xc8), Z(0x6b), Z(0xf3), Z(0x05), Z(0x28), Z(0xf1), Z(0x16), Z(0x46), Z(0x40), Z(0xb0),
+ Z(0x11), Z(0xd3), Z(0xb7), Z(0x95), Z(0x49), Z(0xcf), Z(0xc3), Z(0x1d), Z(0x8f), Z(0xd8), Z(0xe1),
+ Z(0x73), Z(0xdb), Z(0xad), Z(0xc8), Z(0xc9), Z(0xa9), Z(0xa1), Z(0xc2), Z(0xc5), Z(0xe3), Z(0xba),
+ Z(0xfc), Z(0x0e), Z(0x25)};
+
+/*
+ * This is a 16 round Feistel network with permutation F_ENCRYPT
+ */
+
+#define F_ENCRYPT(R, L, sched) { \
+ union lc4 { afs_uint32 l; unsigned char c[4]; } u; \
+ u.l = sched ^ R; \
+ L ^= sbox0[u.c[0]] ^ sbox1[u.c[1]] ^ sbox2[u.c[2]] ^ sbox3[u.c[3]]; }
+
+#ifndef WORDS_BIGENDIAN
+/* BEWARE: this code is endian dependent.
+ * This should really be inline assembler on the x86.
+ */
+#undef F_ENCRYPT
+#define FF(y, shiftN) (((y) >> shiftN) & 0xFF)
+#define F_ENCRYPT(R, L, sched) { \
+ afs_uint32 u; \
+ u = sched ^ R; \
+ L ^= sbox0[FF(u, 0)] ^ sbox1[FF(u, 8)] ^ sbox2[FF(u, 16)] ^ sbox3[FF(u, 24)];}
+#endif
+
+static inline
+void
+fc_ecb_enc(afs_uint32 l,
+ afs_uint32 r,
+ afs_uint32 out[2],
+ const afs_int32 sched[MAXROUNDS])
+{
+#if !defined(UNROLL_LOOPS)
+ {
+ int i;
+ for (i = 0; i < (MAXROUNDS/4); i++)
+ {
+ F_ENCRYPT(r, l, *sched++);
+ F_ENCRYPT(l, r, *sched++);
+ F_ENCRYPT(r, l, *sched++);
+ F_ENCRYPT(l, r, *sched++);
+ }
+ }
+#else
+ F_ENCRYPT(r, l, *sched++);
+ F_ENCRYPT(l, r, *sched++);
+ F_ENCRYPT(r, l, *sched++);
+ F_ENCRYPT(l, r, *sched++);
+ F_ENCRYPT(r, l, *sched++);
+ F_ENCRYPT(l, r, *sched++);
+ F_ENCRYPT(r, l, *sched++);
+ F_ENCRYPT(l, r, *sched++);
+ F_ENCRYPT(r, l, *sched++);
+ F_ENCRYPT(l, r, *sched++);
+ F_ENCRYPT(r, l, *sched++);
+ F_ENCRYPT(l, r, *sched++);
+ F_ENCRYPT(r, l, *sched++);
+ F_ENCRYPT(l, r, *sched++);
+ F_ENCRYPT(r, l, *sched++);
+ F_ENCRYPT(l, r, *sched++);
+#endif /* UNROLL_LOOPS */
+
+ out[0] = l;
+ out[1] = r;
+}
+
+static inline
+void
+fc_ecb_dec(afs_uint32 l,
+ afs_uint32 r,
+ afs_uint32 out[2],
+ const afs_int32 sched[MAXROUNDS])
+{
+ sched = &sched[MAXROUNDS-1];
+
+#if !defined(UNROLL_LOOPS)
+ {
+ int i;
+ for (i = 0; i < (MAXROUNDS/4); i++)
+ {
+ F_ENCRYPT(l, r, *sched--);
+ F_ENCRYPT(r, l, *sched--);
+ F_ENCRYPT(l, r, *sched--);
+ F_ENCRYPT(r, l, *sched--);
+ }
+ }
+#else
+ F_ENCRYPT(l, r, *sched--);
+ F_ENCRYPT(r, l, *sched--);
+ F_ENCRYPT(l, r, *sched--);
+ F_ENCRYPT(r, l, *sched--);
+ F_ENCRYPT(l, r, *sched--);
+ F_ENCRYPT(r, l, *sched--);
+ F_ENCRYPT(l, r, *sched--);
+ F_ENCRYPT(r, l, *sched--);
+ F_ENCRYPT(l, r, *sched--);
+ F_ENCRYPT(r, l, *sched--);
+ F_ENCRYPT(l, r, *sched--);
+ F_ENCRYPT(r, l, *sched--);
+ F_ENCRYPT(l, r, *sched--);
+ F_ENCRYPT(r, l, *sched--);
+ F_ENCRYPT(l, r, *sched--);
+ F_ENCRYPT(r, l, *sched--);
+#endif /* UNROLL_LOOPS */
+
+ out[0] = l;
+ out[1] = r;
+}
+
+static inline
+void
+fc_cbc_enc(const afs_uint32 *in,
+ afs_uint32 *out,
+ afs_int32 length,
+ const afs_int32 sched[MAXROUNDS],
+ afs_uint32 *iv)
+{
+ afs_int32 xor0 = iv[0], xor1 = iv[1];
+
+ for (; length > 0; length -= 8)
+ {
+ afs_uint32 b8[2];
+ /* If length < 8 we read to much, usally ok */
+ xor0 ^= in[0];
+ xor1 ^= in[1];
+ fc_ecb_enc(xor0, xor1, b8, sched);
+ xor0 = in[0] ^ b8[0];
+ xor1 = in[1] ^ b8[1];
+
+ /* Out is always a multiple of 8 */
+ memcpy(out, b8, 8);
+ out += 2;
+ in += 2;
+ }
+ iv[0] = xor0;
+ iv[1] = xor1;
+}
+
+static inline
+void
+fc_cbc_dec(const afs_uint32 *in,
+ afs_uint32 *out,
+ afs_int32 length,
+ const afs_int32 sched[MAXROUNDS],
+ afs_uint32 *iv)
+{
+ afs_int32 xor0 = iv[0], xor1 = iv[1];
+
+ for (; length > 0; length -= 8)
+ {
+ afs_uint32 b8[2];
+ /* In is always a multiple of 8 */
+ fc_ecb_dec(in[0], in[1], b8, sched);
+ b8[0] ^= xor0;
+ b8[1] ^= xor1;
+ xor0 = in[0] ^ b8[0];
+ xor1 = in[1] ^ b8[1];
+
+#if 0
+ if (length >= 8)
+ memcpy(out, b8, 8);
+ else
+ memcpy(out, b8, length); /* Don't write to much when length < 8 */
+#else
+ /* If length < 8 we write to much, this is not always ok */
+ memcpy(out, b8, 8);
+#endif
+ out += 2;
+ in += 2;
+ }
+ iv[0] = xor0;
+ iv[1] = xor1;
+}
+
+afs_int32
+fc_ecb_encrypt(afs_uint32 *in, afs_uint32 *out,
+ fc_KeySchedule sched,
+ int encrypt)
+{
+ if (encrypt)
+ fc_ecb_enc(in[0], in[1], out, sched);
+ else
+ fc_ecb_dec(in[0], in[1], out, sched);
+ return 0;
+}
+
+afs_int32
+fc_cbc_encrypt(afs_uint32 *in, afs_uint32 *out,
+ afs_int32 length,
+ fc_KeySchedule sched,
+ afs_uint32 *iv,
+ int encrypt)
+{
+ if (encrypt)
+ fc_cbc_enc(in, out, length, sched, iv);
+ else
+ fc_cbc_dec(in, out, length, sched, iv);
+ return 0;
+}
+
+/* Rotate two 32 bit numbers as a 56 bit number */
+#define ROT56R(hi, lo, n) { \
+ afs_uint32 t = lo & ((1<<n)-1); \
+ lo = (lo >> n) | ((hi & ((1<<n)-1)) << (32-n)); \
+ hi = (hi >> n) | (t << (24-n)); }
+
+/* Rotate one 64 bit number as a 56 bit number */
+#define ROT56R64(k, n) { \
+ k = (k >> n) | ((k & ((1<<n) - 1)) << (56-n)); }
+
+/*
+ * Generate a key schedule from key, the least significant bit in each
+ * key byte is parity and shall be ignored. This leaves 56 significant
+ * bits in the key to scatter over the 16 key schedules. For each
+ * schedule extract the low order 32 bits and use as schedule, then
+ * rotate right by 11 bits.
+ *
+ * Note that this fc_keysched() generates a schedule in natural byte
+ * order, the Transarc function does not. Therefore it's *not*
+ * possible to mix fc_keysched, fc_ecb_encrypt and fc_cbc_encrypt
+ * from different implementations. Keep them in the same module!
+ */
+int
+fc_keysched(void *key_,
+ fc_KeySchedule sched)
+{
+ const unsigned char *key = key_;
+
+ /* Do we have 56 bit longs or even longer longs? */
+#if ((1ul << 31) << 1) && defined(ULONG_MAX) && ((ULONG_MAX >> 55) != 0) && ((1ul << 55) != 0)
+ unsigned long k; /* k holds all 56 non parity bits */
+
+ /* Compress out parity bits */
+ k = (*key++) >> 1;
+ k <<= 7;
+ k |= (*key++) >> 1;
+ k <<= 7;
+ k |= (*key++) >> 1;
+ k <<= 7;
+ k |= (*key++) >> 1;
+ k <<= 7;
+ k |= (*key++) >> 1;
+ k <<= 7;
+ k |= (*key++) >> 1;
+ k <<= 7;
+ k |= (*key++) >> 1;
+ k <<= 7;
+ k |= (*key) >> 1;
+
+ /* Use lower 32 bits for schedule, rotate by 11 each round (16 times) */
+ *sched++ = EFF_NTOHL((afs_uint32)k);
+ ROT56R64(k, 11);
+ *sched++ = EFF_NTOHL((afs_uint32)k);
+ ROT56R64(k, 11);
+ *sched++ = EFF_NTOHL((afs_uint32)k);
+ ROT56R64(k, 11);
+ *sched++ = EFF_NTOHL((afs_uint32)k);
+ ROT56R64(k, 11);
+
+ *sched++ = EFF_NTOHL((afs_uint32)k);
+ ROT56R64(k, 11);
+ *sched++ = EFF_NTOHL((afs_uint32)k);
+ ROT56R64(k, 11);
+ *sched++ = EFF_NTOHL((afs_uint32)k);
+ ROT56R64(k, 11);
+ *sched++ = EFF_NTOHL((afs_uint32)k);
+ ROT56R64(k, 11);
+
+ *sched++ = EFF_NTOHL((afs_uint32)k);
+ ROT56R64(k, 11);
+ *sched++ = EFF_NTOHL((afs_uint32)k);
+ ROT56R64(k, 11);
+ *sched++ = EFF_NTOHL((afs_uint32)k);
+ ROT56R64(k, 11);
+ *sched++ = EFF_NTOHL((afs_uint32)k);
+ ROT56R64(k, 11);
+
+ *sched++ = EFF_NTOHL((afs_uint32)k);
+ ROT56R64(k, 11);
+ *sched++ = EFF_NTOHL((afs_uint32)k);
+ ROT56R64(k, 11);
+ *sched++ = EFF_NTOHL((afs_uint32)k);
+ ROT56R64(k, 11);
+ *sched++ = EFF_NTOHL((afs_uint32)k);
+ return 0;
+#else
+ afs_uint32 hi, lo; /* hi is upper 24 bits and lo lower 32, total 56 */
+
+ /* Compress out parity bits */
+ lo = (*key++) >> 1;
+ lo <<= 7;
+ lo |= (*key++) >> 1;
+ lo <<= 7;
+ lo |= (*key++) >> 1;
+ lo <<= 7;
+ lo |= (*key++) >> 1;
+ hi = lo >> 4;
+ lo &= 0xf;
+ lo <<= 7;
+ lo |= (*key++) >> 1;
+ lo <<= 7;
+ lo |= (*key++) >> 1;
+ lo <<= 7;
+ lo |= (*key++) >> 1;
+ lo <<= 7;
+ lo |= (*key) >> 1;
+
+ /* Use lower 32 bits for schedule, rotate by 11 each round (16 times) */
+ *sched++ = EFF_NTOHL(lo);
+ ROT56R(hi, lo, 11);
+ *sched++ = EFF_NTOHL(lo);
+ ROT56R(hi, lo, 11);
+ *sched++ = EFF_NTOHL(lo);
+ ROT56R(hi, lo, 11);
+ *sched++ = EFF_NTOHL(lo);
+ ROT56R(hi, lo, 11);
+
+ *sched++ = EFF_NTOHL(lo);
+ ROT56R(hi, lo, 11);
+ *sched++ = EFF_NTOHL(lo);
+ ROT56R(hi, lo, 11);
+ *sched++ = EFF_NTOHL(lo);
+ ROT56R(hi, lo, 11);
+ *sched++ = EFF_NTOHL(lo);
+ ROT56R(hi, lo, 11);
+
+ *sched++ = EFF_NTOHL(lo);
+ ROT56R(hi, lo, 11);
+ *sched++ = EFF_NTOHL(lo);
+ ROT56R(hi, lo, 11);
+ *sched++ = EFF_NTOHL(lo);
+ ROT56R(hi, lo, 11);
+ *sched++ = EFF_NTOHL(lo);
+ ROT56R(hi, lo, 11);
+
+ *sched++ = EFF_NTOHL(lo);
+ ROT56R(hi, lo, 11);
+ *sched++ = EFF_NTOHL(lo);
+ ROT56R(hi, lo, 11);
+ *sched++ = EFF_NTOHL(lo);
+ ROT56R(hi, lo, 11);
+ *sched++ = EFF_NTOHL(lo);
+ return 0;
+#endif
+}
+
+/*
+ * Encryption/decryption of Rx packets is pretty straight forward. Run
+ * fc_cbc_encrypt over the packet fragments until len bytes have been
+ * processed. Skip the Rx packet header but not the security header.
+ */
+afs_int32
+rxkad_EncryptPacket(const struct rx_connection *rx_connection_not_used,
+ const fc_KeySchedule *sched,
+ const afs_uint32 *iv,
+ int len,
+ struct rx_packet *packet)
+{
+ afs_uint32 ivec[2];
+ struct iovec *frag;
+
+ {
+ /* What is this good for?
+ * It turns out that the security header for auth_enc is of
+ * size 8 bytes and the last 4 bytes are defined to be 0!
+ */
+ afs_uint32 *t = (afs_uint32 *)packet->wirevec[1].iov_base;
+ t[1] = 0;
+ }
+
+ memcpy(ivec, iv, sizeof(ivec)); /* Must use copy of iv */
+ for (frag = &packet->wirevec[1]; len; frag++)
+ {
+ int iov_len = frag->iov_len;
+ afs_uint32 *iov_bas = (afs_uint32 *) frag->iov_base;
+ if (iov_len == 0)
+ return RXKADDATALEN; /* Length mismatch */
+ if (len < iov_len)
+ iov_len = len; /* Don't process to much data */
+ fc_cbc_enc(iov_bas, iov_bas, iov_len, sched, ivec);
+ len -= iov_len;
+ }
+ return 0;
+}
+
+afs_int32
+rxkad_DecryptPacket(const struct rx_connection *rx_connection_not_used,
+ const fc_KeySchedule *sched,
+ const afs_uint32 *iv,
+ int len,
+ struct rx_packet *packet)
+{
+ afs_uint32 ivec[2];
+ struct iovec *frag;
+
+ memcpy(ivec, iv, sizeof(ivec)); /* Must use copy of iv */
+ for (frag = &packet->wirevec[1]; len > 0; frag++)
+ {
+ int iov_len = frag->iov_len;
+ afs_uint32 *iov_bas = (afs_uint32 *) frag->iov_base;
+ if (iov_len == 0)
+ return RXKADDATALEN; /* Length mismatch */
+ if (len < iov_len)
+ iov_len = len; /* Don't process to much data */
+ fc_cbc_dec(iov_bas, iov_bas, iov_len, sched, ivec);
+ len -= iov_len;
+ }
+ return 0;
+}
+
+#if defined(TEST) || defined(TEST_KERNEL)
+/*
+ * It is possible to link with the client kernel libafs.a to verify
+ * the test case. Use TEST_KERNEL to get the mangled names.
+ */
+
+#include <stdio.h>
+#include <string.h>
+
+#include <time.h>
+
+const char the_quick[] = "The quick brown fox jumps over the lazy dogs.\0\0";
+
+const unsigned char key1[8]={0xf0,0xe1,0xd2,0xc3,0xb4,0xa5,0x96,0x87};
+const char ciph1[] = {
+ 0x00, 0xf0, 0xe, 0x11, 0x75, 0xe6, 0x23, 0x82, 0xee, 0xac, 0x98, 0x62,
+ 0x44, 0x51, 0xe4, 0x84, 0xc3, 0x59, 0xd8, 0xaa, 0x64, 0x60, 0xae, 0xf7,
+ 0xd2, 0xd9, 0x13, 0x79, 0x72, 0xa3, 0x45, 0x03, 0x23, 0xb5, 0x62, 0xd7,
+ 0xc, 0xf5, 0x27, 0xd1, 0xf8, 0x91, 0x3c, 0xac, 0x44, 0x22, 0x92, 0xef };
+
+const unsigned char key2[8]={0xfe,0xdc,0xba,0x98,0x76,0x54,0x32,0x10};
+const char ciph2[] = {
+ 0xca, 0x90, 0xf5, 0x9d, 0xcb, 0xd4, 0xd2, 0x3c, 0x01, 0x88, 0x7f, 0x3e,
+ 0x31, 0x6e, 0x62, 0x9d, 0xd8, 0xe0, 0x57, 0xa3, 0x06, 0x3a, 0x42, 0x58,
+ 0x2a, 0x28, 0xfe, 0x72, 0x52, 0x2f, 0xdd, 0xe0, 0x19, 0x89, 0x09, 0x1c,
+ 0x2a, 0x8e, 0x8c, 0x94, 0xfc, 0xc7, 0x68, 0xe4, 0x88, 0xaa, 0xde, 0x0f };
+
+#ifdef TEST_KERNEL
+#define fc_keysched _afs_QTKrFdpoFL
+#define fc_ecb_encrypt _afs_sDLThwNLok
+#define fc_cbc_encrypt _afs_fkyCWTvfRS
+#define rxkad_DecryptPacket _afs_SRWEeqTXrS
+#define rxkad_EncryptPacket _afs_bpwQbdoghO
+#endif
+
+int rx_SlowPutInt32() { abort(); }
+
+int
+main()
+{
+ afs_int32 sched[MAXROUNDS];
+ char ciph[100], clear[100], tmp[100];
+ afs_uint32 data[2];
+ afs_uint32 iv[2];
+ struct rx_packet packet;
+
+ if (sizeof(afs_int32) != 4)
+ fprintf(stderr, "error: sizeof(afs_int32) != 4\n");
+ if (sizeof(afs_uint32) != 4)
+ fprintf(stderr, "error: sizeof(afs_uint32) != 4\n");
+
+ /*
+ * Use key1 and key2 as iv */
+ fc_keysched(key1, sched);
+ memcpy(iv, key2, sizeof(iv));
+ fc_cbc_encrypt(the_quick, ciph, sizeof(the_quick), sched, iv, ENCRYPT);
+ if (memcmp(ciph1, ciph, sizeof(ciph1)) != 0)
+ fprintf(stderr, "encrypt FAILED\n");
+ memcpy(iv, key2, sizeof(iv));
+ fc_cbc_encrypt(ciph, clear, sizeof(the_quick), sched, iv, DECRYPT);
+ if (strcmp(the_quick, clear) != 0)
+ fprintf(stderr, "crypt decrypt FAILED\n");
+
+ /*
+ * Use key2 and key1 as iv
+ */
+ fc_keysched(key2, sched);
+ memcpy(iv, key1, sizeof(iv));
+ fc_cbc_encrypt(the_quick, ciph, sizeof(the_quick), sched, iv, ENCRYPT);
+ if (memcmp(ciph2, ciph, sizeof(ciph2)) != 0)
+ fprintf(stderr, "encrypt FAILED\n");
+ memcpy(iv, key1, sizeof(iv));
+ fc_cbc_encrypt(ciph, clear, sizeof(the_quick), sched, iv, DECRYPT);
+ if (strcmp(the_quick, clear) != 0)
+ fprintf(stderr, "crypt decrypt FAILED\n");
+
+ /*
+ * Test Encrypt- and Decrypt-Packet, use key1 and key2 as iv
+ */
+ fc_keysched(key1, sched);
+ memcpy(iv, key2, sizeof(iv));
+ strcpy(clear, the_quick);
+ packet.wirevec[1].iov_base = clear;
+ packet.wirevec[1].iov_len = sizeof(the_quick);
+ packet.wirevec[2].iov_len = 0;
+
+ /* For unknown reasons bytes 4-7 are zeroed in rxkad_EncryptPacket */
+ rxkad_EncryptPacket(tmp, sched, iv, sizeof(the_quick), &packet);
+ rxkad_DecryptPacket(tmp, sched, iv, sizeof(the_quick), &packet);
+ clear[4] ^= 'q';
+ clear[5] ^= 'u';
+ clear[6] ^= 'i';
+ clear[7] ^= 'c';
+ if (strcmp(the_quick, clear) != 0)
+ fprintf(stderr, "rxkad_EncryptPacket/rxkad_DecryptPacket FAILED\n");
+
+ {
+ struct timeval start, stop;
+ int i;
+
+ fc_keysched(key1, sched);
+ gettimeofday(&start, 0);
+ for (i = 0; i < 1000000; i++)
+ fc_keysched(key1, sched);
+ gettimeofday(&stop, 0);
+ printf("fc_keysched = %2.2f us\n",
+ (stop.tv_sec - start.tv_sec
+ + (stop.tv_usec - start.tv_usec)/1e6)*1);
+
+ fc_ecb_encrypt(data, data, sched, ENCRYPT);
+ gettimeofday(&start, 0);
+ for (i = 0; i < 1000000; i++)
+ fc_ecb_encrypt(data, data, sched, ENCRYPT);
+ gettimeofday(&stop, 0);
+ printf("fc_ecb_encrypt = %2.2f us\n",
+ (stop.tv_sec - start.tv_sec
+ + (stop.tv_usec - start.tv_usec)/1e6)*1);
+
+ fc_cbc_encrypt(the_quick, ciph, sizeof(the_quick), sched, iv, ENCRYPT);
+ gettimeofday(&start, 0);
+ for (i = 0; i < 100000; i++)
+ fc_cbc_encrypt(the_quick, ciph, sizeof(the_quick), sched, iv, ENCRYPT);
+ gettimeofday(&stop, 0);
+ printf("fc_cbc_encrypt = %2.2f us\n",
+ (stop.tv_sec - start.tv_sec
+ + (stop.tv_usec - start.tv_usec)/1e6)*10);
+
+ }
+
+ exit(0);
+}
+#endif /* TEST */